Multi-Scale X-ray Imaging of the Pigment Discoloration Processes Triggered by Chlorine Compounds in the Upper Basilica of Saint Francis of Assisi
Abstract
:1. Introduction
- Is there a similarity among the observed alteration phenomena? Can a single chemical agent be identified that is responsible for the discoloration of a variety of (white, red, and blue) pigments?
- Is there a synergistic effect, i.e., are some degradation reactions caused/enhanced by a specific mixture of pigments applied together? Are there marker compounds for this?
- Is it possible to identify degradation phenomena not only of the applied pigments but also of the binder and/or substrate? If so, do they show common patterns or are they influenced by surrounding compounds?
2. Materials and Methods
2.1. Mural Painting Fragments
Paint Cross-Section Preparation
2.2. Analytical Method
- Laboratory-based macroscopic (centimeter and millimeter range) element- and compound-specific distributions were obtained by analyzing the painted surface with MA-XRF and MA-XRPD setups, as in Figure S1a. MA-XRF analysis is a well-established technique for the non-invasive investigation of flat, painted surfaces in the cultural heritage sector [5]. The results obtained from this preliminary investigation, performed in the laboratory at the University of Antwerp, are shown in the Supplementary Information (Figures S3a–S9a).
- A second set of macroscopic elemental and phase maps from the mural painting fragments was collected at the PUMA beamline of the synchrotron SOLEIL (Saint-Aubin, France). Since the lateral resolution of this beamline is greatly superior to that of the laboratory-based MA-XRPD setup, distribution maps from smaller areas could be collected in greater detail (Figure S1b).
- From the macroscopic datasets collected, it was possible to identify sample subareas in which both the original pigments and their corresponding degradation products were present. Minute paint chips were then collected from these regions and embedded in resin to gain information on the in-depth distributions of primary and secondary products in the paint [6]. Paint stratigraphy analyses were performed by means of SR µ-XRF and SR µ-XRPD using the Hard X-ray Micro/Nano-Probe beamline P06 (PETRA III storage ring, DESY, Hamburg, Germany) from ad-hoc prepared cross-sections.
2.2.1. Laboratory MA-XRF
2.2.2. Laboratory MA-XRPD
2.2.3. SR MA-XRF and MA-XRPD Mapping at PUMA Beamline, Synchrotron SOLEIL
2.2.4. µ-XRF and µ-XRPD Mapping at the P06 Beamline at PETRA-III Synchrotron
3. Results
3.1. General Observations
3.1.1. Ground Layers
3.1.2. Paint Layers
3.2. Cl-Induced Degradation of Vermilion: Corderoite and Calomel
3.3. Cl-Induced Degradation of Lead White: Laurionite and Plattnerite
3.4. Cl-Induced Degradation of Cu-Pigments: (Clino)atacamite, Cumengeite and Mixite
3.5. Plattnerite β-PbO2 and Scrutinyite α-PbO2
4. Discussion
5. Conclusions
- In all the fragments, the presence of various secondary products such as corderoite, plattnerite, calomel, laurionite, clinoatacamite, and atacamite, almost always containing chlorine, was commonly identified.
- The identification of the lead–copper hydroxychloride cumengeite strongly suggested a synergistic effect in the degradation of the originally applied copper- and lead-containing compounds, and it might act as a chlorine reservoir for the further degradation of the originally applied pigments when a local variation in pH occurs.
- The degradation has not only affected the inorganic pigments but also the substrate and the impasto medium used to create the murals. The formation of gypsum and calcium oxalates such as whewellite and weddellite was equally identified in all samples, and these were considered by-products. The former is due to the calcium-containing substrate interaction with the atmosphere and/or vermilion, and the latter is due to the reactivity of the substrate with the binder.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R. Pigment Compendium: A Dictionary of Historical Pigments; Butterworth-Heinemann: Oxford, UK; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Bottiroli, G.; Gallone, A.; Masala, B. Analysis of Color Samples Taken from the Wall Paintings by the Artist Known as the “Maestro Oltremontano”; Basile, G., Ed.; Il Prato Editore: Padua, Italy, 2009; pp. 171–173. [Google Scholar]
- Santopadre, P.; Artioli, D. Fragments of Cross Rib between the Star-Studded Vault and the St. Mathew Vault: Study of Painting Technique; Basile, G., Ed.; Il Prato Editore: Padua, Italy, 2009; pp. 165–170. [Google Scholar]
- Vagnini, M.; Vivani, R.; Viscuso, E.; Favazza, M.; Brunetti, B.; Sgamellotti, A.; Miliani, C. Investigation on the process of lead white blackening by Raman spectroscopy, XRD and other methods: Study of Cimabue’s paintings in Assisi. Vib. Spectrosc. 2018, 98, 41–49. [Google Scholar] [CrossRef]
- Alfeld, M.; Janssens, K.; Dik, J.; de Nolf, W.; van der Snickt, G. Optimization of mobile scanning macro-XRF systems for the in situ investigation of historical paintings. J. Anal. At. Spectrom. 2011, 26, 899–909. [Google Scholar] [CrossRef]
- Gonzalez, V.; Cotte, M.; Vanmeert, F.; De Nolf, W.; Janssens, K. X-ray Diffraction Mapping for Cultural Heritage Science: A Review of Experimental Configurations and Applications. Chem. Eur. 2020, 26, 1703. [Google Scholar] [CrossRef]
- Alfeld, M.; Pedroso, J.V.; van Eikema Hommes, M.; Van der Snickt, G.; Tauber, G.; Blaas, J.; Haschke, M.; Erler, K.; Dik, J.; Janssens, K. A mobile instrument for in situ scanning macro-XRF investigation of historical paintings. J. Anal. At. Spectrom. 2013, 28, 760–767. [Google Scholar] [CrossRef]
- Solé, V.A.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta Part B 2007, 62, 63–68. [Google Scholar] [CrossRef]
- Alfeld, M.; Janssens, K. Strategies for processing mega-pixel X-ray fluorescence hyperspectral data: A case study on a version of Caravaggio’s painting Supper at Emmaus. J. Anal. At. Spectrom. 2015, 30, 777–789. [Google Scholar] [CrossRef]
- De Meyer, S.; Vanmeert, F.; Storme, P.; Janssens, K. A mobile scanner for XRPD-imaging of paintings in reflection- and transmission-geometry. In Proceedings of the Painting as a Story 6th lnterdisciplinary ALMA Conference, Brno, Czech Republic, 1–3 June 2017; pp. 29–38. [Google Scholar]
- De Meyer, S.; Vanmeert, F.; Vertongen, R.; Van Loon, A.; Gonzalez, V.; Delaney, J.; Dooley, K.; Dik, J.; Van der Snickt, G.; Vandivere, A.; et al. Macroscopic x-ray powder diffraction imaging reveals Vermeer’s discriminating use of lead white pigments in Girl with a Pearl Earring. Sci. Adv. 2019, 5, eaax1975. [Google Scholar] [CrossRef]
- De Nolf, W.; Vanmeert, F.; Janssens, K. XRDUA: Crystalline phase distribution maps by two-dimensional scanning and tomographic (micro) X-ray powder diffraction. J. Appl. Crystallogr. 2014, 47, 1107–1117. [Google Scholar] [CrossRef]
- Bertrand, L.; Languille, M.A.; Cohen, S.X.; Robinet, L.; Gervais, C.; Leroy, S.; Bernard, D.; Le Pennec, E.; Josse, W.; Doucet, J.; et al. European research platform IPANEMA at the SOLEIL synchrotron for ancient and historical materials. J. Synchrotron Radiat. 2011, 18, 765–772. [Google Scholar] [CrossRef]
- Cotte, M.; Gonzalez, V.; Vanmeert, F.; Monico, L.; Dejoie, C.; Burghammer, M.; Huder, L.; de Nolf, W.; Fisher, S.; Fazlic, I.; et al. The “Historical Materials BAG”: A New Facilitated Access to Synchrotron X-ray Diffraction Analyses for Cultural Heritage Materials at the European Synchrotron Radiation Facility. Molecules 2022, 27, 1997. [Google Scholar] [CrossRef]
- Kieffer, J.; Wright, J. PyFAI: A Python library for high performance azimuthal integration on GPU. Powder Diffr. 2013, 28, S339–S350. [Google Scholar] [CrossRef]
- Schroer, C.G.; Boye, P.; Feldkamp, J.M.; Patommel, J.; Samberg, D.; Schropp, A.; Schwab, A.; Stephan, S.; Falkenberg, G.; Wellenreuther, G.; et al. Hard X-ray nanoprobe at beamline P06 at PETRA III. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2010, 616, 93–97. [Google Scholar] [CrossRef]
- Gliozzo, E. Pigments—Mercury-based red (cinnabar-vermilion) and white (calomel) and their degradation products. Archaeol. Anthr. Sci. 2021, 13, 210. [Google Scholar] [CrossRef]
- Emslie, S.D.; Silva, A.M.; Valera, A.; Vijande Vila, E.; Melo, L.; Curate, F.; Fidalgo, D.; Inácio, N.; Molina Moreno, M.; Cambra-Moo, O.; et al. The use and abuse of cinnabar in Late Neolithic and Copper Age Iberia. Int. J. Osteoarchaeol. 2022, 32, 202–214. [Google Scholar] [CrossRef]
- Zararsiz, A.; Özen, L.; Kalayci, Y.; Bostanci, O.; Elyildirim, I.; Toker, A.; Karydas, A.G. Characterization of Neolithic wall-painting pigments (çatalhoyuk 7000–8000 B.C.) by means of a hand-HELD XRF spectrometer. In Situ Monitoring of Monumental Surfaces, Proceedings of the International Workshop SMW08, Florence, Italy, 27–29 October 2008; Edifir: Beijing, China, 2008; pp. 97–102. [Google Scholar]
- Radepont, M.; Coquinot, Y.; Janssens, K.; Ezrati, J.J.; de Nolf, W.; Cotte, M. Thermodynamic and experimental study of the degradation of the red pigment mercury sulphide. J. Anal. At. Spectrom. 2015, 30, 599–612. [Google Scholar] [CrossRef]
- Iorio, M.; Sodo, A.; Graziani, V.; Branchini, P.; Casanova, A.; Ricci, M.A.; Salvadori, O.; Fiorin, E.; Tortora, L. Mapping at the nanometer scale the effects of sea-salt derived chlorine on cinnabar and lead white by using delayed image extraction in ToF-SIMS. Analyst 2021, 7, 2392–2399. [Google Scholar] [CrossRef] [PubMed]
- Cotte, M.; Susini, J.; Metrich, N.; Moscato, A.; Gratziu, C.; Bertagnini, A.; Pagano, M. Blackening of Pompeian cinnabar paintings: X-ray microspectroscopy analysis. Anal. Chem. 2006, 78, 7484–7492. [Google Scholar] [CrossRef]
- Black, A.P.; Goodson, J.B., Jr. The Oxidation of Sulfides by Chlorine in Dilute Aqueous Solutions. J. Am. Water Works Assoc. 1952, 44, 309–316. [Google Scholar] [CrossRef]
- Elert, K.; Herrera, A.; Cardell, C. Pigment-binder interactions in calcium-based tempera paints. Dyes Pigments 2018, 148, 236–248. [Google Scholar] [CrossRef]
- Sotiropoulou, S.; Sciutto, G.; Tenorio, A.L.; Mazurek, J.; Bonaduce, I.; Prati, S.; Mazzeo, R.; Colombini, M.P. Advanced analytical investigation on degradation markers in wall paintings. Microchem. J. 2018, 139, 278–294. [Google Scholar] [CrossRef]
- Sotiropoulou, S.; Perdikatsis, V.; Apostolaki, C.; Karydas, A.G.; Devetzi, A.; Birtacha, K. Lead pigments and related tools at Akrotiri, Thera, Greece. Provenance and application techniques. J. Archaeol. Sci. 2010, 8, 1830–1840. [Google Scholar] [CrossRef]
- Niknejad, M.; Karimy, A.-H. Lead White or Lead Whites? Reconsideration of Methods of sefidāb-i-sorb Production in Iran. Stud. Conserv. 2018, 64, 1–9. [Google Scholar] [CrossRef]
- Winter, J. ‘Lead white’ in Japanese paintings. Stud. Conserv. 1981, 26, 89–101. [Google Scholar]
- Zhou, G.X.; Zhang, J.Q.; Cheng, H.W. Pigment analysis of polychrome statuary and wall paintings of the Tiantishan Grottoes. In Proceedings of the International Conference on the Conservation of Grotto Sites, Dunhuang, China, 3–8 October 1993; pp. 362–368. [Google Scholar]
- Hradil, D.; Hradilová, J.; Bezdička, P.; Švarcová, S.; Čermáková, Z.; Košařová, V.; Němec, I. Crocoite PbCrO4 and mimetite Pb5(AsO4)3Cl: Rare minerals in highly degraded mediaeval murals in Northern Bohemia. J. Raman Spectrosc. 2014, 45, 848–858. [Google Scholar] [CrossRef]
- Uchida, E.; Takubo, Y.; Toyouchi, K.; Miyata, J. Study on the pigments in the cruciform gallery of Angkor Wat, Cambodia. Archaeometry 2012, 54, 549–564. [Google Scholar] [CrossRef]
- Keune, K.; van Loon, A.; Boon, J.J. SEM backscattered-electron images of paint cross sections as information source for the presence of the lead white pigment and lead-related degradation and migration phenomena in oil paintings. Microsc. Microanal. 2011, 17, 696–701. [Google Scholar] [CrossRef]
- Dunn, E.J. Lead pigments. In Treatise on Coatings Volume 3: Pigments Part I; Marcel Dekker Inc.: New York, NY, USA, 1975; pp. 333–427. [Google Scholar]
- Kang, Z.C.; Machesky, L.; Eick, H.A.; Eyring, L. The solvolytic disproportionation of mixed-valence compounds: III. Pb3O4. J. Solid State Chem. 1988, 75, 73–89. [Google Scholar] [CrossRef]
- De Ferri, L.; Mazzini, F.; Vallotto, D.; Pojana, G. In situ non-invasive characterization of pigments and alteration products on the masonry altar of S. Maria ad Undas (Idro, Italy). Archaeol. Anthr. Sci. 2019, 11, 609–625. [Google Scholar] [CrossRef]
- Gutman, M.; Lesar-Kikelj, M.; Mladenovič, A.; Čobal-Sedmak, V.; Križnar, A.; Kramar, S. Raman microspectroscopic analysis of pigments of the Gothic wall painting from the Dominican Monastery in Ptuj (Slovenia). J. Raman Spectrosc. 2014, 45, 1103–1109. [Google Scholar] [CrossRef]
- Aceto, M.; Gatti, G.; Agostino, A.; Fenoglio, G.; Giordano, V.; Varetto, M.; Castagneri, G. The mural paintings of Ala di Stura (Piedmont, Italy): A hidden treasure investigated. J. Raman Spectrosc. 2012, 43, 1754–1760. [Google Scholar] [CrossRef]
- Giovannoni, S.; Matteini, M.; Moles, A. Studies and developments concerning the problem of altered lead pigments in wall painting. Stud. Conserv. 1990, 35, 21–25. [Google Scholar]
- Mortimore, J.L.; Marshall, L.-J.R.; Almond, M.J.; Hollins, P.; Matthews, W. Analysis of red and yellow ochre samples from Clearwell Caves and Çatalhöyük by vibrational spectroscopy and other techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Xing, P.; Ma, B.; Wang, C.; Chen, Y. Extraction and separation of zinc, lead, silver, and bismuth from bismuth slag. Physicochem. Probl. Miner. Process. 2019, 55, 173–183. [Google Scholar]
- Monico, L.; Sorace, L.; Cotte, M.; de Nolf, W.; Janssens, K.; Romani, A.; Miliani, C. Disclosing the Binding Medium Effects and the Pigment Solubility in the (Photo)reduction Process of Chrome Yellows (PbCrO4/PbCr1–xSxO4). ACS Omega 2019, 4, 6607–6619. [Google Scholar] [CrossRef]
- Hedegaard, S.B.; Delbey, T.; Brøns, C.; Rasmussen, K.L. Painting the Palace of Apries II: Ancient pigments of the reliefs from the Palace of Apries, Lower Egypt. Herit. Sci. 2019, 7, 54. [Google Scholar] [CrossRef]
- Yong, L. Copper trihydroxychlorides as pigments in China. Stud. Conserv. 2012, 57, 106–111. [Google Scholar] [CrossRef]
- Tomasini, E.P.; Landa, C.R.; Siracusano, G.; Maier, M.S. Atacamite as a natural pigment in a South American colonial polychrome sculpture from the late XVI century. J. Raman Spectrosc. 2013, 44, 637–642. [Google Scholar] [CrossRef]
- Nord, A.G.; Tronner, K. The Frequent Occurrence of Atacamite in Medieval Swedish Murals. Stud. Conserv. 2018, 63, 477–481. [Google Scholar] [CrossRef]
- Dei, L.; Ahle, A.; Baglioni, P.; Dini, D.; Ferroni, E. Green degradation products of azurite in wall paintings: Identification and conservation treatment. Stud. Conserv. 1998, 43, 80–88. [Google Scholar]
- Lluveras, A.; Boularand, S.; Andreotti, A.; Vendrell-Saz, M. Degradation of azurite in mural paintings: Distribution of copper carbonate, chlorides and oxalates by SRFTIR. Appl. Phys. A 2010, 99, 363–375. [Google Scholar] [CrossRef]
- Švarcová, S.; Hradil, D.; Hradilová, J.; Kočí, E.; Bezdička, P. Micro-analytical evidence of origin and degradation of copper pigments found in Bohemian Gothic murals. Anal. Bioanal. Chem. 2009, 395, 2037–2050. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, F.C.; Groat, L.A. The crystal structure and chemical composition of cumengéite. Miner. Mag. 1986, 50, 157–162. [Google Scholar] [CrossRef]
- Abdul-Samad, F.; Thomas, J.H.; Williams, P.A.; Bideaux, R.A.; Symes, R.F. Mode of formation of some rare copper(II) and lead(II) minerals from aqueous solution, with particular reference to deposits at tiger, Arizona. Transit. Met. Chem. 1982, 7, 32–37. [Google Scholar] [CrossRef]
- Rahmouni, K.; Takenouti, H.; Hajjaji, N.; Srhiri, A.; Robbiola, L. Protection of ancient and historic bronzes by triazole derivatives. Electrochim. Acta 2009, 54, 5206–5215. [Google Scholar] [CrossRef]
- Serghini-Idrissi, M.; Bernard, M.C.; Harrif, F.Z.; Joiret, S.; Rahmouni, K.; Srhiri, A.; Takenouti, H.; Vivier, V.; Ziani, M. Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochim. Acta 2005, 50, 4699–4709. [Google Scholar] [CrossRef]
- Frost, R.L.; Čejka, J.; Sejkora, J.; Plášil, J.; Bahfenne, S.; Palmer, S.J. Raman microscopy of the mixite mineral BiCu6(AsO4)3(OH)6·3H2O from the Czech Republic. J. Raman Spectrosc. 2010, 41, 566–570. [Google Scholar] [CrossRef]
- Berrie, B.H.; Leona, M.; McLaughlin, R. Unusual pigments found in a painting by Giotto (c. 1266–1337) reveal diversity of materials used by medieval artists. Herit. Sci. 2016, 4, 1. [Google Scholar] [CrossRef]
- Simoen, J.; De Meyer, S.; Vanmeert, F.; De Keyser, N.; Avranovich, E.; Van der Snickt, G.; Van Loon, A.; Keune, K.; Janssens, K. Combined Micro- and Macro scale X-ray powder diffraction mapping of degraded Orpiment paint in a 17th century still life painting by Martinus Nellius. Herit. Sci. 2019, 7, 83. [Google Scholar] [CrossRef]
- Keune, K.; Mass, J.; Mehta, A.; Church, J.; Meirer, F. Analytical imaging studies of the migration of degraded orpiment, realgar, and emerald green pigments in historic paintings and related conservation issues. Herit. Sci. 2016, 4, 10. [Google Scholar] [CrossRef]
- Vermeulen, M.; Nuyts, G.; Sanyova, J.; Vila, A.; Buti, D.; Suuronen, J.-P.; Janssens, K. Visualization of As(iii) and As(v) distributions in degraded paint micro-samples from Baroque- and Rococo-era paintings. J. Anal. At. Spectrom. 2016, 31, 1913–1921. [Google Scholar] [CrossRef]
- Costa, F.R.; Silva, J.M. Factors governing the formation of the β-PbO2 phase electroformed galvanostatically on the carbon cloth substrate. Química Nova 2012, 35, 962–967. [Google Scholar] [CrossRef]
- Parsons, R.; Bard, A.J.; Parsons, R.; Jordan, J. Standard Potentials in Aqueous Solution, 1st ed.; M. Dekker: New York, NY, USA, 1985. [Google Scholar]
- Wang, Y.I.N.; Xie, Y.; Li, W.; Wang, Z.; Giammar, D.E. Formation of Lead(IV) Oxides from Lead(II) Compounds. Environ. Sci. Technol. 2010, 44, 8950–8956. [Google Scholar] [CrossRef] [PubMed]
- Risold, D.; Nagata, J.I.; Suzuki, R.O. Thermodynamic description of the Pb-O system. J. Phase Equilib. 1998, 19, 213–233. [Google Scholar] [CrossRef]
- Costantini, I.; Lottici, P.P.; Bersani, D.; Pontiroli, D.; Casoli, A.; Castro, K.; Madariaga, J.M. Darkening of lead- and iron-based pigments on late Gothic Italian wall paintings: Energy dispersive X-ray fluorescence, μ-Raman, and powder X-ray diffraction analyses for diagnosis: Presence of β-PbO2 (plattnerite) and α-PbO2 (scrutinyite). J. Raman Spectrosc. 2020, 51, 680–692. [Google Scholar] [CrossRef]
- Hradil, D.; Hradilová, J.; Kočí, E.; Švarcová, S.; Bezdička, P.; Maříková-Kubková, J. Unique pre-romanesque murals in Kostoľani Pod Tríbečom, Slovakia: The painting technique and causes of damage. Archaeometry 2013, 55, 691–706. [Google Scholar] [CrossRef]
- Avranovich Clerici, E.; De Meyer, S.; Van de Snickt, G.; Janssens, K. Synchrotron X-ray powder diffraction study of lead white oxidation by sodium hypochlorite. In Proceedings of the Painting as a Story 6th lnterdisciplinary ALMA Conference, Brno, Czech Republic, 1–3 June 2017; pp. 13–27. [Google Scholar]
- Pozo-Antonio, J.S.; Cardell, C.; Comite, V.; Fermo, P. Characterization of black crusts developed on historic stones with diverse mineralogy under different air quality environments. Environ. Sci. Pollut. Res. 2022, 29, 29438–29454. [Google Scholar] [CrossRef]
- Colombini, M.P.; Modugno, F.; Menicagli, E.; Fuoco, F.; Giacomelli, A. GC-MS characterization of proteinaceous and lipid binders in UV aged polychrome artifacts. Microchem. J. 2000, 67, 291–300. [Google Scholar] [CrossRef]
- Bonelli, R. Francesco d’Assisi Chiese e Conventi; Electa: Milan, Italy, 1982. [Google Scholar]
- Boskovits, M. Pittura umbra e marchigiana tra Medioevo e Rinascimento; Edam: Firenze, Italy, 1973. [Google Scholar]
- Bellosi, L. La decorazione della basilica superiore di Assisi e la pittura romana di fine Duecento. In Roma anno 1300: Atti della IV Settimana di studi di storia dell’arte medievale dell’Università di Roma La Sapienza; Sapienza Università di Roma: Rome, Italy, 1980; pp. 127–139. [Google Scholar]
- Smart, A. Ghiberti’s ‘quasi tutta la parte di sotto’ and Vasari’s attributions to Giotto at Assisi. Renaiss. Mod. Stud. 1963, 5–24. [Google Scholar] [CrossRef]
Plaster Fragment | Location | Description | Elements Identified (XRF) | Crystalline Compounds Identified (XRPD) |
---|---|---|---|---|
CA04 | Saint Matthew | St. Matthew’s blue mantle: yellow ground layer, blue black alteration | S, Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, As, Sr, Ba, Pb, Cr, Zn, Bi | Clinoatacamite, plattnerite, whewellite, gypsum, laurionite, cumengeite, azurite, goethite, mixite, calcite |
CA08 | Saint Matthew | black and blue book on the desk | S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Sr, Ba, Pb, Bi | Azurite, gypsum, plattnerite, calcite, whewellite, clinoatacamite, scrutinyite |
CA14 | Saint Matthew | yellow desk with a stripe | S, Cl, K, Ca, Ti, Mn, Fe, Sr, Sn, Pb, Cr, Sn | Goethite, gypsum, laurionite, plattnerite, whewellite, hematite, calcite, hydrocerussite, crocoite, palmierite, |
CA16 | Unknown | black alteration, likely from dome architecture | S, Cl, Ca, K, Ti, Cr, Mn, Fe, Cu, Sr, Pb | Plattnerite, scrutinyite, hematite, whewellite, gypsum, calcite, weddellite, atacamite, anglesite |
CA18 | Unknown | brown alteration, likely from dome architecture | S, Cl, Ca, K, Ti, Mn, Fe, Sr, Hg | Cinnabar, calomel, cordeorite, whewellite, gypsum, calcite, weddellite, lavrientivite, kenhsuite |
CA20 | Unknown | black-pink alteration, perhaps from architectural detail | S, Cl, Ca, K, Mn, Fe, Sr, Sn, Ba, Pb | Plattnerite, scrutinyite, hematite, weddellite, whewellite, gypsum, calcite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avranovich Clerici, E.; de Meyer, S.; Vanmeert, F.; Legrand, S.; Monico, L.; Miliani, C.; Janssens, K. Multi-Scale X-ray Imaging of the Pigment Discoloration Processes Triggered by Chlorine Compounds in the Upper Basilica of Saint Francis of Assisi. Molecules 2023, 28, 6106. https://doi.org/10.3390/molecules28166106
Avranovich Clerici E, de Meyer S, Vanmeert F, Legrand S, Monico L, Miliani C, Janssens K. Multi-Scale X-ray Imaging of the Pigment Discoloration Processes Triggered by Chlorine Compounds in the Upper Basilica of Saint Francis of Assisi. Molecules. 2023; 28(16):6106. https://doi.org/10.3390/molecules28166106
Chicago/Turabian StyleAvranovich Clerici, Ermanno, Steven de Meyer, Frederik Vanmeert, Stijn Legrand, Letizia Monico, Costanza Miliani, and Koen Janssens. 2023. "Multi-Scale X-ray Imaging of the Pigment Discoloration Processes Triggered by Chlorine Compounds in the Upper Basilica of Saint Francis of Assisi" Molecules 28, no. 16: 6106. https://doi.org/10.3390/molecules28166106
APA StyleAvranovich Clerici, E., de Meyer, S., Vanmeert, F., Legrand, S., Monico, L., Miliani, C., & Janssens, K. (2023). Multi-Scale X-ray Imaging of the Pigment Discoloration Processes Triggered by Chlorine Compounds in the Upper Basilica of Saint Francis of Assisi. Molecules, 28(16), 6106. https://doi.org/10.3390/molecules28166106