Metal–Organic Frameworks as Formose Reaction Catalysts with Enhanced Selectivity
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Simonov, A.N.; Pestunova, O.P.; Matvienko, L.G.; Parmon, V.N. The Nature of Autocatalysis in the Butlerov Reaction. Kinet. Catal. 2007, 48, 245–254. [Google Scholar] [CrossRef]
- Butlerow, A. Bildung einer zuckerartigen Substanz durch Synthese. Ann. Chem. Pharm. 1861, 120, 295–298. [Google Scholar] [CrossRef]
- Delidovich, I.V.; Simonov, A.N.; Taran, O.P.; Parmon, V.N. Catalytic Formation of Monosaccharides: From the Formose Reaction towards Selective Synthesis. ChemSusChem 2014, 7, 1833–1846. [Google Scholar] [CrossRef]
- Omran, A.; Menor-Salvan, C.; Springsteen, G.; Pasek, M. The Messy Alkaline Formose Reaction and Its Link to Metabolism. Life 2020, 10, 125. [Google Scholar] [CrossRef]
- Shigemasa, Y.; Fujitani, T.; Sakazawa, C.; Matsuura, T. Formose Reactions. III. Evaluation of Various Factors Affecting the Formose Reaction. Bull. Chem. Soc. Jpn. 1977, 50, 1527–1531. [Google Scholar] [CrossRef]
- Shigemasa, Y.; Shimao, M.; Sakazawa, C.; Matsuura, T. Formose Reactions. IV. The Formose Reaction in Homogeneous Systems and the Catalytic Functions of Calcium Ion Species. Bull. Chem. Soc. Jpn. 1977, 50, 2138–2142. [Google Scholar] [CrossRef]
- Shigemasa, Y.; Taji, T.; Waki, E.; Nakashima, R. Formose Reactions. XIV. A Selective Formose Reaction in the Presence of a Slight Amount of Calcium Ions. Bull. Chem. Soc. Jpn. 1981, 54, 1403–1409. [Google Scholar] [CrossRef]
- Weiss, A. Homogeneously Catalyzed Condensation of Formaldehyde to Carbohydrates: V. Complexing and PH Behavior with Glucose Cocatalyst. J. Catal. 1977, 48, 354–364. [Google Scholar] [CrossRef]
- Ziemecki, S.B.; LaPierre, R.B.; Weiss, A.H.; Sakharov, M.M. Homogeneously Catalyzed Condensation of Formaldehyde to Carbohydrates: VI. Preparation and Spectroscopic Investigation of Complexes Active in Formaldehyde Condensation. J. Catal. 1977, 50, 455–463. [Google Scholar] [CrossRef]
- Socha, R.F.; Weiss, A.H.; Sakharov, M.M. Homogeneously Catalyzed Condensation of Formaldehyde to Carbohydrates: VII. An Overall Formose Reaction Model. J. Catal. 1981, 67, 207–217. [Google Scholar] [CrossRef]
- Weiss, A.H.; LaPierre, R.B.; Shapira, J. Homogeneously Catalyzed Formaldehyde Condensation to Carbohydrates. J. Catal. 1970, 16, 332–347. [Google Scholar] [CrossRef]
- Weiss, A.H.; Tambawala, H. Homogeneously Catalyzed Formaldehyde Condensation to Carbohydrates: II. Instability and Cannizzaro Effects. J. Catal. 1972, 26, 388–400. [Google Scholar] [CrossRef]
- Weiss, A.H.; John, T. Homogeneously Catalyzed Formaldehyde Condensation to Carbohydrates: III. Concentration Instabilities, Nature of the Catalyst, and Mechanisms. J. Catal. 1974, 32, 216–229. [Google Scholar] [CrossRef]
- Khomenko, T.I.; Golovina, O.A.; Sakharov, M.M.; Krylov, O.V.; Partridge, R.D.; Weiss, A.H. Homogeneously Catalyzed Formaldehyde Condensation to Carbohydrates: IV. Alkaline Earth Hydroxide Catalysts Used with Glycolaldehyde Co-Catalyst. J. Catal. 1976, 45, 356–366. [Google Scholar] [CrossRef]
- Matsumoto, T.; Yamamoto, H.; Inoue, S. Selective Formation of Triose from Formaldehyde Catalyzed by Thiazolium Salt. J. Am. Chem. Soc. 1984, 106, 4829–4832. [Google Scholar] [CrossRef]
- Shigemasa, Y.; Okano, A.; Saimoto, H.; Nakashima, R. The Favored Formation of Dl-Glycero-Tetrulose in the Formose Reaction. Carbohydr. Res. 1987, 162, c1–c3. [Google Scholar] [CrossRef]
- Zellner, N.E.B.; McCaffrey, V.P.; Butler, J.H.E. Cometary Glycolaldehyde as a Source of Pre-RNA Molecules. Astrobiology 2020, 20, 1377–1388. [Google Scholar] [CrossRef]
- Cody, G.D.; Heying, E.; Alexander, C.M.O.; Nittler, L.R.; Kilcoyne, A.L.D.; Sandford, S.A.; Stroud, R.M. Establishing a Molecular Relationship between Chondritic and Cometary Organic Solids. Proc. Natl. Acad. Sci. USA 2011, 108, 19171–19176. [Google Scholar] [CrossRef]
- Kebukawa, Y.; David Kilcoyne, A.L.; Cody, G.D. Exploring the Potential Formation of Organic Solids in Chondrites and Comets through Polymerization of Interstellar Formaldehyde. Astrophys. J. 2013, 771, 19. [Google Scholar] [CrossRef]
- Furukawa, Y.; Chikaraishi, Y.; Ohkouchi, N.; Ogawa, N.O.; Glavin, D.P.; Dworkin, J.P.; Abe, C.; Nakamura, T. Extraterrestrial Ribose and Other Sugars in Primitive Meteorites. Proc. Natl. Acad. Sci. USA 2019, 116, 24440–24445. [Google Scholar] [CrossRef]
- Haas, M.; Lamour, S.; Christ, S.B.; Trapp, O. Mineral-Mediated Carbohydrate Synthesis by Mechanical Forces in a Primordial Geochemical Setting. Commun. Chem. 2020, 3, 140. [Google Scholar] [CrossRef] [PubMed]
- Paschek, K.; Kohler, K.; Pearce, B.K.D.; Lange, K.; Henning, T.K.; Trapp, O.; Pudritz, R.E.; Semenov, D.A. Possible Ribose Synthesis in Carbonaceous Planetesimals. Life 2022, 12, 404. [Google Scholar] [CrossRef] [PubMed]
- Hansma, H.G. Potassium at the Origins of Life: Did Biology Emerge from Biotite in Micaceous Clay? Life 2022, 12, 301. [Google Scholar] [CrossRef] [PubMed]
- Ferus, M.; Pietrucci, F.; Saitta, A.M.; Ivanek, O.; Knizek, A.; Kubelík, P.; Krus, M.; Juha, L.; Dudzak, R.; Dostál, J.; et al. Prebiotic Synthesis Initiated in Formaldehyde by Laser Plasma Simulating High-Velocity Impacts. Astron. Astrophys. 2019, 626, A52. [Google Scholar] [CrossRef]
- Jalbout, A.F. Prebiotic Synthesis of Simple Sugars by an Interstellar Formose Reaction. Orig. Life Evol. Biosph. 2008, 38, 489–497. [Google Scholar] [CrossRef]
- Jalbout, A.F.; Abrell, L.; Adamowicz, L.; Polt, R.; Apponi, A.J.; Ziurys, L.M. Sugar Synthesis from a Gas-Phase Formose Reaction. Astrobiology 2007, 7, 433–442. [Google Scholar] [CrossRef]
- Civiš, S. TiO2-Catalyzed Synthesis of Sugars from Formaldehyde in Extraterrestrial Impacts on the Early Earth. Sci. Rep. 2016, 6, 23199. [Google Scholar] [CrossRef]
- Michitaka, T.; Imai, T.; Hashidzume, A. Formose Reaction Controlled by a Copolymer of N,N-Dimethylacrylamide and 4-Vinylphenylboronic Acid. Polymers 2017, 9, 549. [Google Scholar] [CrossRef]
- Hashidzume, A.; Imai, T.; Deguchi, N.; Tanibayashi, T.; Ikeda, T.; Michitaka, T.; Kuwahara, S.; Nakahata, M.; Kamon, Y.; Todokoro, Y. Selective Formose Reaction under Microwave Irradiation. Review, 2022; preprint. [Google Scholar] [CrossRef]
- Zhang, D.; Jarava-Barrera, C.; Bontemps, S. Selective Reductive Dimerization of CO2 into Glycolaldehyde. ACS Catal. 2021, 11, 4568–4575. [Google Scholar] [CrossRef]
- Colón-Santos, S.; Cooper, G.J.T.; Cronin, L. Taming the Combinatorial Explosion of the Formose Reaction via Recursion within Mineral Environments. ChemSystemsChem 2019, 1, e1900014. [Google Scholar] [CrossRef]
- Hashidzume, A.; Imai, T.; Deguchi, N.; Tanibayashi, T.; Ikeda, T.; Michitaka, T.; Kuwahara, S.; Nakahata, M.; Kamon, Y.; Todokoro, Y. Preferential Formation of Specific Hexose and Heptose in the Formose Reaction under Microwave Irradiation. RSC Adv. 2023, 13, 4089–4095. [Google Scholar] [CrossRef] [PubMed]
- Omran, A. Plausibility of the Formose Reaction in Alkaline Hydrothermal Vent Environments. Orig. Life Evol. Biosph. 2020. [CrossRef] [PubMed]
- Yamashita, K.; Wakao, N.; Nango, M.; Tsuda, K. Formose Reaction by Polymer-supported Thiazolium Salts. J. Polym. Sci. 1992, 30, 2247–2250. [Google Scholar] [CrossRef]
- Tajima, H.; Niitsu, T.; Inoue, H. Polymerization of Formaldehyde by an Immobilized Thiamine Catalyst on Cation-Exchange Resin. J. Chem. Eng. Jpn. 1999, 32, 776–782. [Google Scholar] [CrossRef]
- Pallmann, S. Schreibersite: An Effective Catalyst in the Formose Reaction Network. New J. Phys. 2018, 15, 055003. [Google Scholar] [CrossRef]
- Usami, K.; Okamoto, A. Hydroxyapatite: Catalyst for a One-Pot Pentose Formation. Org. Biomol. Chem. 2017, 15, 8888–8893. [Google Scholar] [CrossRef]
- Tajima, H.; Tabata, K.; Niitsu, T.; Inoue, H. The Formose Reaction on a Synthetic Zeolite Impregnated with Thiazolium Catalyst. J. Chem. Eng. Jpn. 2002, 35, 564–568. [Google Scholar] [CrossRef]
- Trigerman, S.; Biron, E.; Weiss, A.H. Formaldehyde Base Catalysis by NaX Zeolite. React. Kinet. Catal. Lett. 1977, 6, 269–274. [Google Scholar] [CrossRef]
- Weiss, A.H.; Trigerman, S. Zinc Oxide as a Formose Catalyst. React. Kinet. Catal. Lett. 1980, 14, 259–263. [Google Scholar] [CrossRef]
- Ricardo, A. Borate Minerals Stabilize Ribose. Science 2004, 303, 196. [Google Scholar] [CrossRef]
- Lambert, J.B.; Gurusamy-Thangavelu, S.A.; Ma, K. The Silicate-Mediated Formose Reaction: Bottom-Up Synthesis of Sugar Silicates. Science 2010, 327, 984–986. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Benner, S.A. Comment on “The Silicate-Mediated Formose Reaction: Bottom-Up Synthesis of Sugar Silicates”. Science 2010, 329, 902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tan, Y.; Song, W.-J. Zeolitic Imidazolate Frameworks for Use in Electrochemical and Optical Chemical Sensing and Biosensing: A Review. Microchim. Acta 2020, 187, 234. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Liu, D.; Zhang, J. The Application of ZIF-67 and Its Derivatives: Adsorption, Separation, Electrochemistry and Catalysts. J. Mater. Chem. A 2018, 6, 1887–1899. [Google Scholar] [CrossRef]
- Wolf, M.; Hirai, K.; Toyouchi, S.; Daelemans, B.; Fron, E.; Uji-i, H. Host and Guest Joining Forces: A Holistic Approach for Metal–Organic Frameworks in Nonlinear Optics. J. Mater. Chem. C 2022, 10, 9471–9477. [Google Scholar] [CrossRef]
- Wu, J.; Chen, J.; Wang, C.; Zhou, Y.; Ba, K.; Xu, H.; Bao, W.; Xu, X.; Carlsson, A.; Lazar, S.; et al. Metal–Organic Framework for Transparent Electronics. Adv. Sci. 2020, 7, 1903003. [Google Scholar] [CrossRef] [PubMed]
- Dincă, M.; Léonard, F. Metal–Organic Frameworks for Electronics and Photonics. MRS Bull. 2016, 41, 854–857. [Google Scholar] [CrossRef]
- Ren, X.; Liao, G.; Li, Z.; Qiao, H.; Zhang, Y.; Yu, X.; Wang, B.; Tan, H.; Shi, L.; Qi, X.; et al. Two-Dimensional MOF and COF Nanosheets for Next-Generation Optoelectronic Applications. Coord. Chem. Rev. 2021, 435, 213781. [Google Scholar] [CrossRef]
- Falcaro, P.; Ricco, R.; Doherty, C.M.; Liang, K.; Hill, A.J.; Styles, M.J. MOF Positioning Technology and Device Fabrication. Chem. Soc. Rev. 2014, 43, 5513–5560. [Google Scholar] [CrossRef]
- Li, D.; Xu, H.-Q.; Jiao, L.; Jiang, H.-L. Metal-Organic Frameworks for Catalysis: State of the Art, Challenges, and Opportunities. EnergyChem 2019, 1, 100005. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.-Q.; Jiang, H.-L.; Sun, L.-B. Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chem. Rev. 2017, 117, 8129–8176. [Google Scholar] [CrossRef]
- Bavykina, A.; Kolobov, N.; Khan, I.S.; Bau, J.A.; Ramirez, A.; Gascon, J. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem. Rev. 2020, 120, 8468–8535. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Xu, S.; Lin, C.; Ma, X.; Ni, Y.; Cao, S. Novel Functionalization of ZIF-67 for an Efficient Broad-Spectrum Photocatalyst: Formaldehyde Degradation at Room Temperature. New J. Chem. 2022, 46, 2962–2970. [Google Scholar] [CrossRef]
- Mutiah, M.; Rochat, S.; Amura, I.; Burrows, A.D.; Emanuelsson, E.A.C. Immobilisation of L-Proline onto Mixed-Linker Zirconium MOFs for Heterogeneous Catalysis of the Aldol Reaction. Chem. Eng. Process.–Process Intensif. 2021, 161, 108315. [Google Scholar] [CrossRef]
- Zhu, W.; He, C.; Wu, X.; Duan, C. “Click” Post-Synthetic Modification of Metal−organic Frameworks for Asymmetric Aldol Catalysis. Inorg. Chem. Commun. 2014, 39, 83–85. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, X.; Li, M.; Wang, S.; Chen, C. Defect-Engineered Chiral Metal–Organic Frameworks for Efficient Asymmetric Aldol Reaction. Inorg. Chem. 2021, 60, 4362–4365. [Google Scholar] [CrossRef]
- Chen, J.; Yu, H.; Tu, D.; Shen, L. L-Proline Functionalized Metal-Organic Framework PCN-261 as Catalyst for Aldol Reaction. Inorg. Chem. Commun. 2019, 107, 107448. [Google Scholar] [CrossRef]
- Wu, D.; Chen, J.; Tu, D.; Zhuang, Y.; Shen, L. L-Proline Functionalized Pillar-Layered MOF as a Heterogeneous Catalyst for Aldol Addition Reaction. Inorg. Chem. Commun. 2020, 119, 108052. [Google Scholar] [CrossRef]
- Feng, X.; Jena, H.S.; Leus, K.; Wang, G.; Ouwehand, J.; Van Der Voort, P. L-Proline Modulated Zirconium Metal Organic Frameworks: Simple Chiral Catalysts for the Aldol Addition Reaction. J. Catal. 2018, 365, 36–42. [Google Scholar] [CrossRef]
- Demuynck, A.L.W.; Goesten, M.G.; Ramos-Fernandez, E.V.; Dusselier, M.; Vanderleyden, J.; Kapteijn, F.; Gascon, J.; Sels, B.F. Induced Chirality in a Metal-Organic Framework by Postsynthetic Modification for Highly Selective Asymmetric Aldol Reactions. ChemCatChem 2014, 6, 2211–2214. [Google Scholar] [CrossRef]
- Nguyen, L.T.L.; Le, K.K.A.; Truong, H.X.; Phan, N.T.S. Metal–Organic Frameworks for Catalysis: The Knoevenagel Reaction Using Zeolite Imidazolate Framework ZIF-9 as an Efficient Heterogeneous Catalyst. Catal. Sci. Technol. 2012, 2, 521–528. [Google Scholar] [CrossRef]
- Demirel, Ö.H. Metal Organic Frameworks at Interfaces. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2020. [Google Scholar]
- Haas, M.; Lamour, S.; Trapp, O. Development of an Advanced Derivatization Protocol for the Unambiguous Identification of Monosaccharides in Complex Mixtures by Gas and Liquid Chromatography. J. Chromatogr. A 2018, 1568, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Zweckmair, T.; Böhmdorfer, S.; Bogolitsyna, A.; Rosenau, T.; Potthast, A.; Novalin, S. Accurate Analysis of Formose Reaction Products by LC–UV: An Analytical Challenge. J. Chromatogr. Sci. 2014, 52, 169–175. [Google Scholar] [CrossRef]
- Cheng, J.; Guo, H.; Yang, X.; Mao, Y.; Qian, L.; Zhu, Y.; Yang, W. Phosphotungstic Acid-Modified Zeolite Imidazolate Framework (ZIF-67) as an Acid-Base Bifunctional Heterogeneous Catalyst for Biodiesel Production from Microalgal Lipids. Energy Convers. Manag. 2021, 232, 113872. [Google Scholar] [CrossRef]
- Naz, F.; Mousavi, B.; Luo, Z.; Jabbour, C.; Heynderickx, P.M.; Chaemchuen, S.; Verpoort, F. Switching from Linear to Cyclic Δ-Polyvalerolactone Synthesized via Zeolitic Imidazolate Framework as a Catalyst: A Promising Approach. Appl. Organomet. Chem. 2019, 33, e4890. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef]
- Hobday, C.L. Understanding the Adsorption Process in ZIF-8 Using High Pressure Crystallography and Computational Modelling. Nat. Commun. 2018, 9, 1429. [Google Scholar] [CrossRef]
- Matatagui, D.; Sainz-Vidal, A.; Gràcia, I.; Figueras, E.; Cané, C.; Saniger, J. Improving Sensitivity of a Chemoresistive Hydrogen Sensor by Combining ZIF-8 and ZIF-67 Nanocrystals. Proceedings 2017, 4, 462. [Google Scholar]
- Liu, L.; Zhang, D.; Liu, J. Computer Aided Design of Water-Resistant Adsorbent for Formaldehyde Abatement; IOP Publishing: Bristol, UK, 2019; Volume 609, p. 042108. [Google Scholar]
- Milo, R.; Jorgensen, P.; Moran, U.; Weber, G.; Springer, M. BioNumbers—The Database of Key Numbers in Molecular and Cell Biology. Nucleic Acids Res. 2010, 38, D750–D753. [Google Scholar] [CrossRef] [PubMed]
- Dhakshinamoorthy, A.; Alvaro, M.; Corma, A.; Garcia, H. Delineating Similarities and Dissimilarities in the Use of Metal Organic Frameworks and Zeolites as Heterogeneous Catalysts for Organic Reactions. Dalton Trans. 2011, 40, 6344–6360. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, Z.; Zhang, Q.; Jin, B.; Peng, R. Zeolite Imidazolate Frameworks-67 Precursor to Fabricate a Highly Active Cobalt-Embedded N-Doped Porous Graphitized Carbon Catalyst for the Thermal Decomposition of Ammonium Perchlorate. ACS Omega 2021, 6, 25440–25446. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wei, F.; Yu, G.; Sui, Y. Co3O4 Electrode Prepared by Using Metal-Organic Framework as a Host for Supercapacitors. J. Nanomater. 2015, 16, 80. [Google Scholar]
- Yin, H.; Kim, H.; Choi, J.; Yip, A.C. Thermal Stability of ZIF-8 under Oxidative and Inert Environments: A Practical Perspective on Using ZIF-8 as a Catalyst Support. Chem. Eng. J. 2015, 278, 293–300. [Google Scholar] [CrossRef]
Catalyst | C3 | C4 | C5 | C6 |
---|---|---|---|---|
Ca(OH)2 | 12 | 15 | 10 | 63 |
ZIF-67 exchanged 1:2 | 50 | 47 | 3 | -- |
ZIF-8 | 41 | 58 | 1 | -- |
Catalyst | Metal | Conc. (ppm) | Amount of Metal Dissolved (%) |
---|---|---|---|
ZIF-67 | Co | 11.5 | 0.3 |
ZIF-67 exchanged 1:1 | Co | 8.4 | 0.2 |
ZIF-67 exchanged 1:2 | Co | 13.3 | 0.3 |
ZIF-8 | Zn | 25.6 | 0.5 |
Catalyst | Fresh | Recovered |
---|---|---|
ZIF-67 | Conversion 76% | Conversion 70% |
ZIF-67 exchanged 1:1 | Conversion 76% | Conversion 61% |
ZIF-67 exchanged 1:2 | Conversion 60% | Conversion 49% |
ZIF-8 | Conversion 81% | Conversion 75% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balloi, V.; Diaz-Perez, M.A.; Lara-Angulo, M.A.; Villalgordo-Hernández, D.; Narciso, J.; Ramos-Fernandez, E.V.; Serrano-Ruiz, J.C. Metal–Organic Frameworks as Formose Reaction Catalysts with Enhanced Selectivity. Molecules 2023, 28, 6095. https://doi.org/10.3390/molecules28166095
Balloi V, Diaz-Perez MA, Lara-Angulo MA, Villalgordo-Hernández D, Narciso J, Ramos-Fernandez EV, Serrano-Ruiz JC. Metal–Organic Frameworks as Formose Reaction Catalysts with Enhanced Selectivity. Molecules. 2023; 28(16):6095. https://doi.org/10.3390/molecules28166095
Chicago/Turabian StyleBalloi, Valentina, Manuel Antonio Diaz-Perez, Mayra Anabel Lara-Angulo, David Villalgordo-Hernández, Javier Narciso, Enrique V. Ramos-Fernandez, and Juan Carlos Serrano-Ruiz. 2023. "Metal–Organic Frameworks as Formose Reaction Catalysts with Enhanced Selectivity" Molecules 28, no. 16: 6095. https://doi.org/10.3390/molecules28166095
APA StyleBalloi, V., Diaz-Perez, M. A., Lara-Angulo, M. A., Villalgordo-Hernández, D., Narciso, J., Ramos-Fernandez, E. V., & Serrano-Ruiz, J. C. (2023). Metal–Organic Frameworks as Formose Reaction Catalysts with Enhanced Selectivity. Molecules, 28(16), 6095. https://doi.org/10.3390/molecules28166095