Hybrid Raman and Laser-Induced Breakdown Spectroscopy for Food Authentication Applications
Abstract
:1. Introduction
2. Results
2.1. System Validation
2.2. LIBS Measurement Results
2.3. Raman Spectroscopy Results
2.4. Classification Results
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. System Description
4.3. Classification Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gahukar, R. Food adulteration and contamination in India: Occurrence, implication and safety measures. Int. J. Basic Appl. Sci. 2013, 3, 47. [Google Scholar] [CrossRef]
- Choudhary, A.; Gupta, N.; Hameed, F.; Choton, S. An overview of food adulteration: Concept, sources, impact, challenges and detection. Int. J. Chem. Stud. 2020, 8, 2564–2573. [Google Scholar] [CrossRef]
- Bansal, S.; Singh, A.; Mangal, M.; Mangal, A.K.; Kumar, S. Food adulteration: Sources, health risks, and detection methods. Crit. Rev. Food Sci. Nutr. 2017, 57, 1174–1189. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, T.M.; Holroyd, S.E. The use of near infrared spectroscopy for determination of adulteration and contamination in milk and milk powder: Updating knowledge. J. Near Infrared Spectrosc. 2013, 21, 341–349. [Google Scholar] [CrossRef]
- Markiewicz-Keszycka, M.; Cama-Moncunill, X.; Casado-Gavalda, M.P.; Dixit, Y.; Cama-Moncunill, R.; Cullen, P.J.; Sullivan, C. Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review. Trends Food Sci. Technol. 2017, 65, 80–93. [Google Scholar] [CrossRef]
- Fiorani, L.; Artuso, F.; Giardina, I.; Lai, A.; Mannori, S.; Puiu, A. Photoacoustic Laser System for Food Fraud Detection. Sensors 2021, 21, 4178. [Google Scholar] [CrossRef] [PubMed]
- Cebi, N.; Bekiroglu, H.; Erarslan, A.; Rodriguez-Saona, L. Rapid Sensing: Hand-Held and Portable FTIR Applications for On-Site Food Quality Control from Farm to Fork. Molecules 2023, 28, 3727. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Sun, S.; Zhou, Q.; Chen, J. A Simple and Portable Screening Method for Adulterated Olive Oils Using the Hand-Held FTIR Spectrometer and Chemometrics Tools. J. Food Sci. 2018, 83, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Werheit, P.; Fricke-Begemann, C.; Gesing, M.; Noll, R. Fast single piece identification with a 3D scanning LIBS for aluminium cast and wrought alloys recycling. J. Anal. At. Spectrom. 2011, 26, 2166–2174. [Google Scholar] [CrossRef]
- Sezer, B.; Durna, S.; Bilge, G.; Berkkan, A.; Yetisemiyen, A.; Boyaci, I.H. Identification of milk fraud using laser-induced breakdown spectroscopy (LIBS). Int. Dairy J. 2018, 81, 1–7. [Google Scholar] [CrossRef]
- Sobhani, Z.; Zhang, X.; Gibson, C.; Naidu, R.; Megharaj, M.; Fang, C. Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): Down to 100 nm. Water Res. 2020, 174, 115658. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Li, H.; Li, M.; Cao, X.; She, Y.; Chen, Z. Advances in Surface-Enhanced Raman Scattering-Based Aptasensors for Food Safety Detection. J. Agric. Food Chem. 2021, 69, 14049–14064. [Google Scholar] [CrossRef] [PubMed]
- Senesi, G.S.; Harmon, R.S.; Hark, R.R. Field-portable and handheld laser-induced breakdown spectroscopy: Historical review, current status and future prospects. Spectrochim. Acta Part B At. Spectrosc. 2021, 175, 106013. [Google Scholar] [CrossRef]
- Gnyba, M.; Smulko, J.; Kwiatkowski, A.; Wierzba, P. Portable Raman spectrometer—Design rules and applications. Bull. Pol. Acad. Sci. Tech. Sci. 2011, 59, 325–329. [Google Scholar] [CrossRef]
- Bilge, G.; Velioglu, H.M.; Sezer, B.; Eseller, K.E.; Boyaci, I.H. Identification of meat species by using laser-induced breakdown spectroscopy. Meat Sci. 2016, 119, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Moncayo, S.; Rosales, J.D.; Izquierdo-Hornillos, R.; Anzano, J.; Caceres, J.O. Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS). Talanta 2016, 158, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhong, P.; Jiang, A.; Shen, X.; Li, X.; Xu, Z.; Shen, Y.; Sun, Y.; Lei, H. Raman spectroscopy coupled with chemometrics for food authentication: A review. TrAC Trends Anal. Chem. 2020, 131, 116017. [Google Scholar] [CrossRef]
- Arroyo-Cerezo, A.; Jiménez-Carvelo, A.M.; González-Casado, A.; Ruisánchez, I.; Cuadros-Rodríguez, L. The potential of the spatially offset Raman spectroscopy (SORS) for implementing rapid and non-invasive in-situ authentication methods of plastic-packaged commodity foods—Application to sliced cheeses. Food Control 2023, 146, 109522. [Google Scholar] [CrossRef]
- Arroyo-Cerezo, A.; Jimenez-Carvelo, A.M.; González-Casado, A.; Koidis, A.; Cuadros-Rodríguez, L. Deep (offset) non-invasive Raman spectroscopy for the evaluation of food and beverages—A review. LWT 2021, 149, 111822. [Google Scholar] [CrossRef]
- Hwang, J.; Kang, S.; Lee, K.; Chung, H. Enhanced Raman spectroscopic discrimination of the geographical origins of rice samples via transmission spectral collection through packed grains. Talanta 2012, 101, 488–494. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, T.; Liu, F.; He, Y. Identification of Coffee Varieties Using Laser-Induced Breakdown Spectroscopy and Chemometrics. Sensors 2017, 18, 95. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Shin, S.; Gondhalekar, C.; Patsekin, V.; Bae, E.; Robinson, J.P.; Rajwa, B. Rapid Food Authentication Using a Portable Laser-Induced Breakdown Spectroscopy System. Foods 2023, 12, 402. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Misra, A.K.; Lucey, P.G.; Lentz, R.C. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Shameem, K.M.M.; Choudhari, K.S.; Bankapur, A.; Kulkarni, S.D.; Unnikrishnan, V.K.; George, S.D.; Kartha, V.B.; Santhosh, C. A hybrid LIBS-Raman system combined with chemometrics: An efficient tool for plastic identification and sorting. Anal. Bioanal. Chem. 2017, 409, 3299–3308. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Song, C.; Lin, X.; Gao, X. Identification of meat species by combined laser-induced breakdown and Raman spectroscopies. Spectrochim. Acta Part B At. Spectrosc. 2022, 194, 106456. [Google Scholar] [CrossRef]
- Han, D.; Kim, D.; Choi, S.; Yoh, J.J. A novel classification of polymorphs using combined LIBS and Raman spectroscopy. Curr. Opt. Photonics 2017, 1, 402–411. [Google Scholar]
- Lu, Y.; Li, Y.; Li, Y.; Wang, Y.; Wang, S.; Bao, Z.; Zheng, R. Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2015, 110, 63–69. [Google Scholar] [CrossRef]
- Hoehse, M.; Paul, A.; Gornushkin, I.; Panne, U. Multivariate classification of pigments and inks using combined Raman spectroscopy and LIBS. Anal. Bioanal. Chem. 2012, 402, 1443–1450. [Google Scholar] [CrossRef]
- Zhao, M.; Markiewicz-Keszycka, M.; Beattie, R.J.; Casado-Gavalda, M.P.; Cama-Moncunill, X.; O’Donnell, C.P.; Cullen, P.J.; Sullivan, C. Quantification of calcium in infant formula using laser-induced breakdown spectroscopy (LIBS), Fourier transform mid-infrared (FT-IR) and Raman spectroscopy combined with chemometrics including data fusion. Food Chem. 2020, 320, 126639. [Google Scholar] [CrossRef]
- Lalla, E.A.; Konstantinidis, M.; Lymer, E.; Gilmour, C.M.; Freemantle, J.; Such, P.; Cote, K.; Groemer, G.; Martinez-Frias, J.; Cloutis, E.A. Combined spectroscopic analysis of terrestrial analogs from a simulated astronaut mission using the laser-induced breakdown spectroscopy (LIBS) Raman sensor: Implications for Mars. Appl. Spectrosc. 2021, 75, 1093–1113. [Google Scholar] [CrossRef]
- Guo, G.; Liu, K.; Wang, J.; Wang, S.; Lin, Q.; Ding, Y.; Tian, D.; Duan, Y. Integrated instrumentation for combined laser-induced breakdown and Raman spectroscopy. Instrum. Sci. Technol. 2019, 47, 355–373. [Google Scholar] [CrossRef]
- Sushkov, N.I.; Galbacs, G.; Fintor, K.; Lobus, N.V.; Labutin, T.A. A novel approach for discovering correlations between elemental and molecular composition using laser-based spectroscopic techniques. Analyst 2022, 147, 3248–3257. [Google Scholar] [CrossRef] [PubMed]
- Wadood, S.A.; Nie, J.; Li, C.; Rogers, K.M.; Khan, A.; Khan, W.A.; Qamar, A.; Zhang, Y.; Yuwei, Y. Rice authentication: An overview of different analytical techniques combined with multivariate analysis. J. Food Compos. Anal. 2022, 112, 104677. [Google Scholar] [CrossRef]
- Mazilu, M.; De Luca, A.C.; Riches, A.; Herrington, C.S.; Dholakia, K. Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy. Opt. Express 2010, 18, 11382–11395. [Google Scholar] [CrossRef] [PubMed]
- Post, J.E.; McKeown, D.A.; Heaney, P.J. Raman spectroscopy study of manganese oxides: Tunnel structures. Am. Mineral. 2020, 105, 1175–1190. [Google Scholar] [CrossRef]
- Boyain-Goitia, A.R.; Beddows, D.C.; Griffiths, B.C.; Telle, H.H. Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy. Appl. Opt. 2003, 42, 6119–6132. [Google Scholar] [CrossRef] [PubMed]
- Weidman, M.; Baudelet, M.; Palanco, S.; Sigman, M.; Dagdigian, P.J.; Richardson, M. Nd:YAG-CO(2) double-pulse laser induced breakdown spectroscopy of organic films. Opt. Express 2010, 18, 259–266. [Google Scholar] [CrossRef]
- Pořízka, P.; Klus, J.; Hrdlička, A.; Vrábel, J.; Škarková, P.; Prochazka, D.; Novotný, J.; Novotný, K.; Kaiser, J. Impact of Laser-Induced Breakdown Spectroscopy data normalization on multivariate classification accuracy. J. Anal. At. Spectrom. 2017, 32, 277–288. [Google Scholar] [CrossRef]
- Hocking, M.B. Paper versus polystyrene: A complex choice. Science 1991, 251, 504–505. [Google Scholar] [CrossRef]
- Arshady, R. Beaded polymer supports and gels: I. Manufacturing techniques. J. Chromatogr. A 1991, 586, 181–197. [Google Scholar]
- Palleschi, V. Laser-induced breakdown spectroscopy: Principles of the technique and future trends. ChemTexts 2020, 6, 18. [Google Scholar] [CrossRef]
- Shin, S.; Wu, X.; Patsekin, V.; Doh, I.-J.; Bae, E.; Robinson, J.P.; Rajwa, B. Analytical approaches for food authentication using LIBS fingerprinting. Spectrochim. Acta Part B At. Spectrosc. 2023, 205, 106693. [Google Scholar] [CrossRef]
- Smith, G.P.S.; Holroyd, S.E.; Reid, D.C.W.; Gordon, K.C. Raman imaging processed cheese and its components. J. Raman Spectrosc. 2017, 48, 374–383. [Google Scholar] [CrossRef]
- Gallier, S.; Gordon, K.C.; Jiménez-Flores, R.; Everett, D.W. Composition of bovine milk fat globules by confocal Raman microscopy. Int. Dairy J. 2011, 21, 402–412. [Google Scholar] [CrossRef]
- Keidel, A.; von Stetten, D.; Rodrigues, C.; Maguas, C.; Hildebrandt, P. Discrimination of green arabica and Robusta coffee beans by Raman spectroscopy. J. Agric. Food Chem. 2010, 58, 11187–11192. [Google Scholar] [CrossRef] [PubMed]
- Rubayiza, A.B.; Meurens, M. Chemical discrimination of arabica and robusta coffees by Fourier transform Raman spectroscopy. J. Agric. Food Chem. 2005, 53, 4654–4659. [Google Scholar] [CrossRef] [PubMed]
- Wermelinger, T.; D’Ambrosio, L.; Klopprogge, B.; Yeretzian, C. Quantification of the Robusta fraction in a coffee blend via Raman spectroscopy: Proof of principle. J. Agric. Food Chem. 2011, 59, 9074–9079. [Google Scholar] [CrossRef]
- Alvarez-Llamas, C.; Roux, C.; Musset, O. A compact, high-efficiency, quasi-continuous wave mini-stack diode pumped, actively Q-switched laser source for laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2018, 148, 118–128. [Google Scholar] [CrossRef]
- Matroodi, F.; Tavassoli, S.H. Simultaneous Raman and laser-induced breakdown spectroscopy by a single setup. Appl. Phys. B 2014, 117, 1081–1089. [Google Scholar] [CrossRef]
- Oliveira Kde, S.; Callegaro Lde, S.; Stephani, R.; Almeida, M.R.; de Oliveira, L.F. Analysis of spreadable cheese by Raman spectroscopy and chemometric tools. Food Chem. 2016, 194, 441–446. [Google Scholar] [CrossRef]
- Liu, W.; Li, Q. An efficient elastic net with regression coefficients method for variable selection of spectrum data. PLoS ONE 2017, 12, e0171122. [Google Scholar] [CrossRef] [PubMed]
- Stephen, K.E.; Homrighausen, D.; DePalma, G.; Nakatsu, C.H.; Irudayaraj, J. Surface enhanced Raman spectroscopy (SERS) for the discrimination of Arthrobacter strains based on variations in cell surface composition. Analyst 2012, 137, 4280–4286. [Google Scholar] [CrossRef] [PubMed]
- Moros, J.; Javier Laserna, J. Unveiling the identity of distant targets through advanced Raman-laser-induced breakdown spectroscopy data fusion strategies. Talanta 2015, 134, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, N.; Galtier, O.; Ollivier, D.; Vanloot, P.; Artaud, J. Comparison between NIR, MIR, concatenated NIR and MIR analysis and hierarchical PLS model. Application to virgin olive oil analysis. Anal. Chim. Acta 2010, 666, 23–31. [Google Scholar] [CrossRef]
- Rao, A.P.; Jenkins, P.R.; Auxier Ii, J.D.; Shattan, M.B. Comparison of machine learning techniques to optimize the analysis of plutonium surrogate material via a portable LIBS device. J. Anal. At. Spectrom. 2021, 36, 399–406. [Google Scholar] [CrossRef]
- Bond, C.; Li, H.; Rate, A.W. Land Use Pattern Affects Microplastic Concentrations in Stormwater Drains in Urban Catchments in Perth, Western Australia. Land 2022, 11, 1815. [Google Scholar] [CrossRef]
- Guezenoc, J.; Gallet-Budynek, A.; Bousquet, B. Critical review and advices on spectral-based normalization methods for LIBS quantitative analysis. Spectrochim. Acta Part B At. Spectrosc. 2019, 160, 105688. [Google Scholar] [CrossRef]
- Lu, S.; Shen, S.; Huang, J.; Dong, M.; Lu, J.; Li, W. Feature selection of laser-induced breakdown spectroscopy data for steel aging estimation. Spectrochim. Acta Part B At. Spectrosc. 2018, 150, 49–58. [Google Scholar] [CrossRef]
- Algamal, Z.Y.; Lee, M.H. Applying penalized binary logistic regression with correlation based elastic net for variables selection. J. Mod. Appl. Stat. Methods 2015, 14, 15. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Ying, X. An Overview of Overfitting and Its Solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Choi, J.-H.; Shin, S.; Moon, Y.; Han, J.H.; Hwang, E.; Jeong, S. High spatial resolution imaging of melanoma tissue by femtosecond laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2021, 179, 106090. [Google Scholar] [CrossRef]
Method | Raman (v = 600) | LIBS (v = 2000) | Fusion 1 | Fusion 2 (v = 2600) |
---|---|---|---|---|
ANOVA (n) | 200 | 200 | - | 200 |
ENET (n) | 57 | 98 | 155 | 104 |
SVM (%) | 79.67 (0.90) | 84.66 (0.42) | 90.57 (1.01) | 91.48 (0.70) |
ENET (%) | 80.42 (0.63) | 85.40 (0.55) | 90.72 (0.97) | 92.05 (0.67) |
Method |
Raman (v = 600) |
LIBS (v = 2000) | Fusion 1 |
Fusion 2 (v = 2600) |
---|---|---|---|---|
ANOVA (n) | 200 | 200 | - | 200 |
ENET (n) | 81 | 46 | 127 | 76 |
SVM (%) | 82.74 (0.64) | 85.15 (0.64) | 92.28 (0.56) | 94.20 (0.70) |
ENET (%) | 82.11 (0.94) | 85.17 (1.20) | 93.06 (0.58) | 94.34 (0.81) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.; Doh, I.-J.; Okeyo, K.; Bae, E.; Robinson, J.P.; Rajwa, B. Hybrid Raman and Laser-Induced Breakdown Spectroscopy for Food Authentication Applications. Molecules 2023, 28, 6087. https://doi.org/10.3390/molecules28166087
Shin S, Doh I-J, Okeyo K, Bae E, Robinson JP, Rajwa B. Hybrid Raman and Laser-Induced Breakdown Spectroscopy for Food Authentication Applications. Molecules. 2023; 28(16):6087. https://doi.org/10.3390/molecules28166087
Chicago/Turabian StyleShin, Sungho, Iyll-Joon Doh, Kennedy Okeyo, Euiwon Bae, J. Paul Robinson, and Bartek Rajwa. 2023. "Hybrid Raman and Laser-Induced Breakdown Spectroscopy for Food Authentication Applications" Molecules 28, no. 16: 6087. https://doi.org/10.3390/molecules28166087
APA StyleShin, S., Doh, I. -J., Okeyo, K., Bae, E., Robinson, J. P., & Rajwa, B. (2023). Hybrid Raman and Laser-Induced Breakdown Spectroscopy for Food Authentication Applications. Molecules, 28(16), 6087. https://doi.org/10.3390/molecules28166087