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Abstract: The issue of food fraud has become a significant global concern as it affects both the quality
and safety of food products, ultimately resulting in the loss of customer trust and brand loyalty. To
address this problem, we have developed an innovative approach that can tackle various types of
food fraud, including adulteration, substitution, and dilution. Our methodology utilizes an inte-
grated system that combines laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy.
Although both techniques emerged as valuable tools for food analysis, they have until now been
used separately, and their combined potential in food fraud has not been thoroughly tested. The aim
of our study was to demonstrate the potential benefits of integrating Raman and LIBS modalities in a
portable system for improved product classification and subsequent authentication. In pursuit of this
objective, we designed and tested a compact, hybrid Raman/LIBS system, which exhibited distinct
advantages over the individual modalities. Our findings illustrate that the combination of these
two modalities can achieve higher accuracy in product classification, leading to more effective and
reliable product authentication. Overall, our research highlights the potential of hybrid systems for
practical applications in a variety of industries. The integration and design were mainly focused on
the detection and characterization of both elemental and molecular elements in various food products.
Two different sets of solid food samples (sixteen Alpine-style cheeses and seven brands of Arabica
coffee beans) were chosen for the authentication analysis. Class detection and classification were
accomplished through the use of multivariate feature selection and machine-learning procedures.
The accuracy of classification was observed to improve by approximately 10% when utilizing the
hybrid Raman/LIBS spectra, as opposed to the analysis of spectra from the individual methods. This
clearly demonstrates that the hybrid system can significantly improve food authentication accuracy
while maintaining the portability of the combined system. Thus, the successful implementation of a
hybrid Raman-LIBS technique is expected to contribute to the development of novel portable devices
for food authentication in food as well as other various industries.

Keywords: laser-induced breakdown spectroscopy (LIBS); Raman spectroscopy; compact and combined
system; food authentication; simultaneous atomic and molecular analysis

1. Introduction

Food fraud has become a significant worldwide concern, as it often results in food
adulteration and contamination. This can not only harm consumer trust and brand loyalty
but can also lead to foodborne outbreaks due to the introduction of foodborne pathogens
or the toxicity of added ingredients [1–4]. For this reason, various technologies have
been adapted for the analysis of food samples, including vibrational spectroscopy and
mass spectrometry techniques [5]. As adulteration in the food supply chain can happen
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at different stages, e.g., production, packaging, shipping, and distribution, it is crucial
that the measurement technology be portable. Instrument portability can ensure immedi-
ate and effective detection and prevention of intentional or unintentional adulterations.
Hence, new techniques for analyzing food on-site using optical sensors, like the Fourier
transform infrared (FTIR) and compact photoacoustic laser systems, are constantly being
developed [6,7]. These infrared (IR) techniques supply various molecular information to
determine the authenticity and quality of foods. For instance, M. Pan et al. reported a
hand-held FTIR device (TruDefender FTX, Thermo Fisher Scientific, Waltham, MA, USA)
applied for the detection of adulterated olive oils [8].

Laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy systems
have also emerged as promising technologies for food analysis because of their capability
to perform real-time, multiplexed, and in-air measurements. Laser-induced breakdown
spectroscopy (LIBS) is a non-destructive analytical technique that involves using intense
laser pulses to generate plasma and measuring the resulting spectral intensity for ele-
mental analysis. This method can be used for the qualitative analysis of various target
materials [9,10]. A significant advantage of LIBS is that it is capable of real-time analy-
sis of elemental composition with few restrictions. Raman spectroscopy measures the
intensity of Raman scattering and uses it to provide a structural fingerprint, allowing for
the identification of molecules [11,12]. Raman spectroscopy has the advantage of being
non-destructive. Because of these advantages, handheld devices for both LIBS [13] and
Raman spectroscopy [14] approaches are commercially available. However, these devices
were typically developed for material science or pharmaceutical analysis.

Many researchers have shown that food can be authenticated using either LIBS or
Raman spectroscopy. In particular, LIBS is gradually gaining popularity for real-time
component analysis of various foods, for example, meat [15], milk [10], red wines [16],
and fruits [5]. Raman spectroscopy has been used to carry out non-invasive analysis of
beverages [17], dairy [18], oils [19], and cereals [20]. Although these techniques have pro-
duced satisfactory results, there is still a need for further improvement in their classification
performance. For example, Zhang et al. [21] reported that a classification accuracy of
over 80% was achieved using a support vector machine (SVM) to identify coffee varieties.
Problems with relatively low classification accuracy for certain similar food groups were
shown in our previous study. We reported that an average classification accuracy of about
85% was achieved with Alpine-style cheeses and coffee. In contrast, the classification of
spices was possible with 95% accuracy [22].

Recently, a combination of LIBS and Raman systems has been demonstrated for the
purpose of joint elemental and molecular analysis. These two optical methods share
similar advantages, such as standoff detection, optical excitation, and potential for portabil-
ity [23,24]. Yet, the application of such a combination for food analysis is still in its infancy.
Miniaturizing instruments for handheld usage is limited by the complexity of their design.
LIBS and Raman spectroscopy devices typically require an intensified charged coupled
detector (ICCD)-based spectrometer, which has a large footprint and is better suited for
a benchtop instrument [25,26]. In addition, the need for two distinct spectrometers for
separate identification of the LIBS and Raman signals results in a significant increase in the
cost and complexity of the system [27,28]. As a result, few studies have focused on food
authentication applications. For example, Zhao et al. [29] reported that quantifying calcium
in infant formula using LIBS and Raman required two spectrometers, a 1064 nm pulsed
laser for LIBS and a 532 nm continuous laser for Raman. When it comes to combined LIBS
and Raman systems, the focus remains mainly on mineral analysis because the power of
the LIBS modality is leveraged to its fullest in this area [30,31]. Finally, data processing
(chemometrics) is not currently optimized when handling combined systems in various
analyses. Recent studies have utilized various data-fusion and feature selection methods to
improve the performance of classification models [24,32,33].

For instance, Hoehse et al. merged spectra by aligning the X-axis, resulting in a
uniform scale that allowed the LIBS and Raman spectra to be seamlessly integrated [28].
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Zhao et al. [29] analyzed two different data fusion strategies involving concatenation
and coaddition.

Here, we present the development and evaluation of a compact hybrid Raman/LIBS
system (Hy-R-LIBS) and compare its performance in the context of food analysis with each
conventional system. System validation was first performed using polystyrene (PS) beads,
and the results were compared with data obtained from commercial equipment. Next,
spectral analysis and classification were conducted using actual food samples. Specifically,
the performance of two widely used classifiers was compared and analyzed when they
were utilized with a multivariate feature selection approach, including two different data
fusion methods.

We demonstrate that the elastic net (ENET) approach is the preferred technique for
improving the classification performance when employing combined LIBS and Raman
spectra. Our portable device has advanced detection capabilities, making it a promising
tool for in-field food analysis. Further development and widespread use of compact
combined LIBS/Raman detectors could lead to the emergence of new protocols for food
product classification.

2. Results
2.1. System Validation

Figure 1 shows the normalized Raman (Figure 1a) and LIBS (Figure 1b) spectra from
PS beads. Figure 1 compares spectra from the proposed instrument (solid line) and the
corresponding reference instruments (dashed line). Ten single-shot data with ten different
measurement locations (1 mm interval) on the target were averaged to generate Raman
spectra from Hy-R-LIBS. As shown in Figure 1a, both instruments generated the Raman
C-C breathing (984 cm−1), C-C stretch (1158 cm−1), and C=C stretch (1584 cm−1) bands in
polystyrene (PS) bead samples [34]. The absence of a clearly distinguishable CH2 band in
the Hy-R-LIBS spectrum can be attributed to the higher fluorescence background in our
proposed system produced when utilizing shorter wavelengths of the excitation source [35].
Although the resolution and sensitivity of the commercial reference instrument were much
higher owing to the sensitivity of the ICCD, the spectrum obtained with the compact
CCD spectrometer displayed comparably similar bands, with only a minor spectral shift
(2.3 cm−1 of averaged three peaks) attributable to the different excitation wavelength of the
laser source.
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Figure 1b reports the demonstration of LIBS capability. The molecular bands, such
as CN (388.2 nm) and C2 band (swan band, such as 516.2 nm), were clearly observed
for both Hy-R-LIBS and the commercially available handheld LIBS instrument. In addi-
tion, the spectral resolution and sensitivity of the two instruments were also comparable.
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These molecular peaks (CN and C2) are frequently detected in polymer samples using
LIBS [36,37]. However, compared to the Raman instrument, the atomic spectrum of LIBS
cannot identify the molecular structure of the target. It should be noted that an elemental
peak of Na (588.9 nm) was also detected. This was an unexpected finding. However, a small
amount of sodium borohydride might be present in the sample, as this substance is used
to prevent oxidative degradation of the polymer when manufacturing the beads [38–40].
Furthermore, simultaneous detection was also performed using PS beads, as shown in
Supplementary Figure S1. It was observed that C2 (LIBS) and C-C peaks (Raman) over-
lapped at around the 562 nm range. It is important to note that the Na (588.9 nm) peak,
potentially caused by air or contamination, needs to be subtracted from the line profile by
using a Lorentzian function. This is necessary as the peak may overlap with the proposed
Raman spectra in the range of about 1820 cm−1 [41].

2.2. LIBS Measurement Results

Figure 2 shows averaged LIBS spectra obtained from (Figure 2a) 16 Alpine-style
cheeses and (Figure 2b) 7 Arabica coffee varieties. The spectra were all measured under the
same conditions using the Hy-R-LIBS. A total of 100 spectra were averaged in these plots,
and each single spectrum was used for the classification procedure. For easier visualization
of the spectra, only three representative cheese sample data are shown. The full spectra
for all 16 samples can be found in Supplementary Figure S2. Note that the 16 different
cheese samples used in this study can be classified into three general groups (Gruyère
cheese (C11), US-manufactured Gruyère-style cheese (C16), and other Alpine-style cheese
(C6)). CN band, Ca ionic, Ca atomic, C2 band, and Na atomic peaks were detected in all
samples at relatively lower pulse energy compared to our previous study using a benchtop
LIBS system (handling laser pulse energy of 62 mJ) [42]. These dominant peaks are visibly
similar except for minor variations within food types or the same food group. It was also
observed that elemental peaks such as Ca and Na were much higher in food samples
than molecular bands obtained by LIBS. The same measurements were repeated using the
commercial LIBS instrument mentioned above. The results of this measurement showing
both normalized spectra are shown in Supplementary Figure S4.
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2.3. Raman Spectroscopy Results

The results of Raman spectroscopic measurements conducted on cheese samples and
coffee varieties are shown in Figures 3a and 3b, respectively. All the spectra shown are
averages of 100 individual spectra obtained with our custom-built instrument. Figure 3a
shows that distinctive Raman peaks could be detected depending on the food product
types, while only minor differences were noticed within the same food group. Because
cheese contains lipids and protein, several Raman bands are typically observed [43]. These
bands can be different or shifted under different processing conditions, such as different
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additives. Hence, several fat-related bands were observed using Hy-R-LIBS, as shown in
Figure 3a. The 890 cm−1 band is supposed to be a phospholipid headgroup. The 1287 cm−1

band is likely to be caused by CH2 twisting in the phospholipids, while the 1432 cm−1 band
can be attributed to CH2 scissoring from cholesterol. The band at 1670 cm−1 is typically due
to C=C stretching in the phospholipids [44]. However, protein bands could not be detected
because of the limited detection range of the spectrometer used in the proposed system.
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Next, coffee varieties were analyzed, and as shown in Figure 3b, three dominant
Raman bands can be clearly observed. These bands were most commonly present in the
Arabica samples and can be attributed to the aromatic and phenolic acids, which are impor-
tant constituents of coffee [45]. The band at about 1440 cm−1 is caused by CH3 deformation
vibrations [45,46]. The bands at about 1570 and 1650 cm−1 correspond to the carbon C=C
stretching of 1,3-cyclohexadiene and cyclohexene, respectively [46,47]. For comparison, an
additional Raman test was repeated using a commercial instrument. The Raman measure-
ment results for the cheese and coffee varieties shown in Supplementary Figure S5a and
Figiure S5b, respectively, demonstrate the same bands as observed in Figure 3.

2.4. Classification Results

Figure 4 summarizes the classification results of 16 cheese samples and 7 coffee vari-
eties using a multinomial logistic regression model with an elastic net (ENET) regularizer.
Three different input settings, including individually performed Raman and LIBS spectra
and combined spectra, were compared. It was demonstrated that the classification accuracy
for both cheeses and coffee could be significantly improved by at least 5% when the com-
bined LIBS and Raman spectra were used. For example, the average classification accuracy
achieved was 94.34% when combined LIBS and Raman data from coffee varieties were
used, compared with only 85.17% obtained with LIBS alone. One of the confusion matrices
for all cheese and coffee samples is shown in Supplementary Figures S6 and S7. In addition,
a proposed fusion 2 (coaddition) method using both LIBS and Raman spectra showed about
a 1–2% increase in classification accuracy compared with the simple fusion (concatenation)
method. This implies that an appropriate feature selection resulting in fewer features is
necessary for the ENET, along with a support vector machine (SVM)-based classifier to help
reduce noise and effects of overfitting. For instance, the number of input variables after
ENET used with concatenation and coaddition were 155 and 104, respectively. The total
number of selected features and classification results are summarized in Tables 1 and 2.
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Table 1. The total number of selected features after an analysis of variance (ANOVA) and ENET
and classification accuracies from two different classifiers using cheese samples. Note that v, n, and
% indicate the number of input variables, number of selected features, and classification accuracy,
respectively. The mean and standard deviation of the diagonal of the cross-validation matrix were
also computed in this study.

Method Raman
(v = 600)

LIBS
(v = 2000) Fusion 1 Fusion 2

(v = 2600)

ANOVA (n) 200 200 - 200
ENET (n) 57 98 155 104
SVM (%) 79.67 (0.90) 84.66 (0.42) 90.57 (1.01) 91.48 (0.70)
ENET (%) 80.42 (0.63) 85.40 (0.55) 90.72 (0.97) 92.05 (0.67)

Table 2. The total number of selected features after ANOVA and ENET and classification accuracies
from two different classifiers using coffee varieties.

Method Raman
(v = 600)

LIBS
(v = 2000) Fusion 1 Fusion 2

(v = 2600)

ANOVA (n) 200 200 - 200
ENET (n) 81 46 127 76
SVM (%) 82.74 (0.64) 85.15 (0.64) 92.28 (0.56) 94.20 (0.70)
ENET (%) 82.11 (0.94) 85.17 (1.20) 93.06 (0.58) 94.34 (0.81)

The SVM classifier was selected as the basic benchmark in this study. The classification
results of cheese samples and coffee varieties by SVM are summarized in Tables 1 and 2,
respectively. As with the ENET classifier, combined LIBS and Raman spectra could enhance
classification accuracies from the SVM classifier. It was also shown that the ENET classifier
showed slightly better classification performance than the SVM classifier employing ENET-
based feature selection.

3. Discussion

This system is a prototype designed for future commercialization. The current di-
mensions of the chassis that contain all the system components (including two lasers) are
15 × 10 × 5 cm. Similarly, Alvarez-Llamas et al. [48] reported a system in which all laser
and optical components were mounted in a single module with an overall dimension of
about 25 × 10 × 5 cm. This makes it possible for the instrument to be configured into a
portable device. The overall size can be further reduced if the employed diode-pumped
solid-state (DPSS) laser were smaller. A single pulsed laser operating at 532 nm can be used
to excite both Raman and LIBS signals. However, owing to the need for a highly sensitive
detector such as an ICCD spectrometer, the use of a pulsed laser for Raman analysis is
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expected to be limited in a portable system. Matroodi et al. [49] reported the simultaneous
recording of Raman and LIBS achieved with 5- and 35-mJ pulses generated by a single laser.
However, the signal was acquired using an ICCD.

The classification performance results are summarized in Figure 4. Interestingly,
similar single-method classification accuracies of about 85% in both the cheese and the
coffee were measured using LIBS spectra only in our previous study [42], even though that
system had higher laser output (e.g., a pulse energy of 62 mJ within the same spectral range
of 350–600 nm).

It was anticipated that relying solely on the LIBS technique would have limitations in
identifying food samples. The same was observed with Raman spectroscopy when used
alone. The classification performance using Raman spectra was only about 80%, which was
lower by 5% compared to the results from LIBS. This subpar classification performance
may be attributed to the relatively narrow Raman spectral range as compared to that of
LIBS. To improve the classification of cheeses by Raman, it is highly probable that a broader
spectral range would be beneficial. This is because there is a major band associated with
lipid vibration that is likely to occur around 2900 cm−1 [50].

The ENET method was employed for the classification of two food-product categories.
The ENET approach has already been demonstrated to show both excellent feature se-
lection and classification performance in various spectroscopic research studies [51,52].
The accuracy of classification based on the proposed ENET classifier increased by about
10% for both samples when employing the hybrid Raman and LIBS systems. The SVM
classifier yielded similar, slightly inferior results (see Tables 1 and 2). These results showed
that combining both elemental and molecular information can significantly improve the
classification performance in foods. Consequently, such a combination in a single platform
could be a critical improvement in portable optical-based food fraud detection. Our results
agree with a report of Hoehse et al., who also reported that the predicted classification of
pigments was enhanced by merging the LIBS and Raman datasets [28].

The impact of the data fusion method was also investigated in this study. Two sim-
ple conventional data-assembling strategies were employed (fusion 1: concatenation; fu-
sion 2: coaddition) [53,54]. Note that these two methods selected a different number of
features when paired with ENET, as shown in Tables 1 and 2. The fusion 2 method yielded
higher classification performances when the number of features used in the classifier was
lower in this study. Similarly, Zhao et al. [29] reported that the results achieved by coad-
dition (283 spectral variables) were slightly more accurate than those achieved by the
concatenation (828 spectral variables) in a partial least squares regression (PLSR) model de-
veloped using both Raman and FT-IR spectra. According to J. Moros et al. [53], combining
LIBS-Raman data through coaddition yields a simpler output that results in more successful
classification compared to using the concatenation method. Therefore, the coaddition of
Raman and LIBS datasets combined with the ENET approach provides the best option for
the classification of the targets.

4. Materials and Methods
4.1. Sample Preparation

Polystyrene beads (PS, No. 441147, Sigma-Aldrich, St. Louis, MO, USA) were se-
lected as a reference material for the validation test comparing the proposed system and
commercial instruments in this study. The average molecular weight of PS is about 350,000.

Two different solid food examples were chosen for the analysis of food authentica-
tion: 16 Alpine-style cheese samples (representing from Ch1 to Ch16 in this study) and
7 commercially available Arabica coffee brands (representing from C1 to C7 in this study).
The aforementioned food categories exhibited the least accurate classification rate in our
prior investigation using LIBS; therefore, they were designated for the follow-up study.
Sample sources and information pertaining to the cheese and coffee samples can be found
in our previous manuscript. We encourage interested readers to refer to this publication for
further information [42].
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4.2. System Description

Figure 5 shows a schematic of Hy-R-LIBS consisting of a delay generator (DG), a
mirror (M), a dichroic mirror (DM), a focusing lens (FL), a collection lens (CL), a notch
filter (NF), an optical fiber (OF), and a motorized 3-axis stage (XYZ). This system also
contained a pulsed laser (laser 1; MicroJewel DPSS laser, Quantum Composers, Bozeman,
MT, USA) for LIBS, a continuous wave (CW) laser (laser 2; CP532, Thorlabs, Newton, NJ,
USA) for Raman, and a visible (VIS)-range spectrometer (VIS; Avaspec Mini, Avantes,
Apeldoorn, The Netherlands) for the detection of both LIBS and Raman. The pulsed laser
had a pulse width of 6 ns and a pulse energy of 10 mJ, while the CW laser had a power of
5 mW. The theoretical laser beam spot size of the pulsed and CW lasers at the focal point
was approximately 50 µm and 10 µm, respectively. A compact spectrometer provided a
spectrum in the 350–625 nm range with 0.33 nm of spectral resolution. The gate width of
the spectrometer for LIBS was set to 1.05 ms with a 1.0 µs gate delay, and the exposure
time for Raman was chosen as 0.5 sec. Two collection lenses (with a focal length of 50 mm
and an f-number of 0.5) were positioned at an approximately 45◦ angle from the incoming
laser beam’s direction and linked using an optical fiber with a core diameter of 600 µm
(FC-UVIR200-2, Avantes).
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Figure 5. A schematic diagram of the Hy-R-LIBS system. The proposed system includes Laser 1 and
Laser 2, a mirror (M), dichroic mirror (DM), focal lens (FL), two collection lenses (CLs), notch filter
(NF), optical fiber (OF), visible range spectrometer (VIS), and delay generator (DG).

Both sequential and simultaneous Hy-R-LIBS spectra can be detected in a single
compact spectrometer. Specifically, for sequential Hy-R-LIBS, the pulsed laser was turned
on to generate a plasma emission signal after the CW laser generated Raman scattering
within a specific acquisition time. For example, LIBS measurement within a gate width
(1.05 ms) was performed after 1 s while completing the Raman signal for 500 ms at the
same focal spots, and both measurements were repeated at different spots in the target. For
simultaneous Hy-R-LIBS, the LIBS emission signal was generated while Raman scattering
was continuously generated by the CW laser. It should be noted that LIBS and Raman’s
results overlapped in the 540–625 nm spectral region, as shown in Supplementary Figure S1.
A specific dichroic mirror that transmits the Near-infrared (NIR) laser but reflects the VIS
laser to the target was used to match the same focal spot. Both LIBS and Raman signals
from the target were collected through shared collection optics into a single spectrometer
where LIBS spectra were registered within the VIS range (350–625 nm), and Raman spectra
were acquired within a range of 750–2800 cm−1 (about 555–625 nm spectral range). The
notch filter blocks the CW laser to prohibit direct reflection from the CW laser source.
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A commercially available handheld LIBS and a benchtop Raman system were selected
as reference instruments. The handheld-LIBS (Z-900, SciAps Inc., Woburn, MA, USA)
consisted of a 1064 nm laser (pulse energy of 5 mJ and pulse width of 1–2 ns), a spectrometer
(spectral range of 190–900 nm), and optical assembly in a handpiece enclosure [55]. A single
LIBS spectrum was measured for 1 ms after a 650 ns gate delay. The Raman spectroscopy
system (Alpha300, WiTec, Ulm, Germany) consisted of a 635 nm laser (power of 15 mW)
and an ICCD spectrometer (iDus 401, Andor, Belfast, UK) [56]. A single Raman spectrum
was acquired during 0.5 sec exposure time.

For each food product, a total of 100 LIBS and 100 Raman spectra were sequentially
collected at 25 different spots in four physically different specimens using a raster area of
approximately 4 × 4 mm. The LIBS measurement was performed right after the Raman
measurement before changing laser spots. For example, a total of 1600 LIBS spectra and
1600 Raman spectra were collected within 16 cheese samples.

4.3. Classification Methods

Figure 6 describes the overall data processing for the classification using separate
Raman or LIBS signals or two different data fusion methods for LIBS and Raman signals
before multivariate feature selection. First, raw Raman spectra were processed by elimi-
nation of the estimated baseline. Second, denoising, normalization, and transformation
were conducted in all collected LIBS and Raman data to reduce the plasma fluctuation
effects [57].
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Several steps of feature selection were conducted before building a classifier. An
analysis of variance (ANOVA) was selected as a method of univariate filtering to remove
the features associated with very small effect sizes [58], and a regularized multinomial
logistic regression model with elastic net (ENET) was used to perform multivariate feature
selection while constructing the classification model [59,60].

Briefly, we define the ENET model as follows:

argmin
βk

{
− 1
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1
2
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where βk is a vector of coefficients, 1(yi = k) is an indicator function that returns 1 when the
class y is equal to kj, and 0 otherwise; xi is the vector of predictors (the spectral features) for
i-th observation; λ and α is the regularization parameter controlling the balance between `1
(LASSO) and `2 (Ridge) regularizations.

Incorporating both `1 and `2 regularization terms in the model produces effective fea-
ture selection. Specifically, the `1 term facilitates the elimination of irrelevant or less crucial
features by inducing coefficients to become zero. Meanwhile, the `2 term penalizes larger
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coefficient values to prevent overfitting and improve the stability of the model. The ENET
regression model was trained by tuning the model parameters (α and λ≥ 0 and performing
repeated 10-fold cross-validation. In addition, two different data fusion approaches for
the LIBS and Raman spectra (concatenation (fusion 1) and coaddition (fusion 2), as shown
in Figure 6), were compared. Note that the number of variables produced by the fusion
1 and the fusion 2 techniques after feature selection could be different. By distinguishing
between more useful and less useful features, the fusion 2 step may result in a smaller
number of variables being produced [61]. Detailed information about the variable numbers
after feature selection for each condition is provided in Tables 1 and 2.

Following the univariate feature selection method, two different classifiers, ENET
and SVM, which are widely used in analysis [62], were executed and compared. Ten
different training and testing sessions were conducted with distinct random seeds to
evaluate performance variability. The sessions were conducted independently to ensure
unbiased results. Finally, the mean and standard deviation from the diagonal value of
a cross-validation matrix were computed to represent the results. All data processing
steps reported in Figure 6 were developed and implemented using custom Matlab and
Python scripts.

5. Conclusions

Combating food fraud on a global scale is a challenge that demands a multidisciplinary
approach. The integration of various methods is crucial for enhancing the reliability and
efficacy of food safety measures. The outcomes of the study indicate that the Hy-R-LIBS
system, coupled with its chemometric strategies, might be employed for food authentication
with promising results.

Using an ENET-based classifier that integrates feature selection and downstream
classification can effectively process both elemental and molecular data on a single platform.
The implementation we reported and the resulting classification performance provide
substantial support for the use of hybrid spectroscopic methods for food classification and,
by extension, the detection of accidental contamination or outright food fraud.

Whether the methods presented are ready to be implemented for commercial use
based on the achieved classification accuracies is a matter of debate. While a desirable
accuracy should ideally approach 100%, practical screening protocols are multilayered,
with early notification systems employed to identify possible candidates for further analysis
using orthogonal bench-top methods, such as mass spectroscopy. Furthermore, in real-life
situations, classifiers are optimized for specificity or sensitivity depending on the scenario
and the cost of false negatives and false positives. The field of clinical diagnostics, where
systems are typically optimized either for specificity or sensitivity, faces similar dilemmas.
Naturally, this leads to a discussion of whether the positive and negative predictive values
(PPV and NPV) should be used as the better metric. However, PPV and NPV are not just
dependent on sensitivity and specificity but also on the prevalence of the tested problem.
Therefore, the level of overall accuracy demonstrated by our prototype cannot determine
whether the methodology outlined here is mature enough for immediate use in the field.
The answer ultimately depends on individual use cases, as they may come with varying
costs related to misclassification and different prevalence of mislabeling or adulteration.
Hence, further evaluation is necessary to determine the practicality of the system.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28166087/s1, Figure S1: The average of ten
simultaneous signals from Hy-R-LIBS system obtained from PS beads; Figure S2: Averaged and
normalized spectra of 16 cheese samples using the LIBS for (a) 8 cheese samples, and (b) 8 other
cheese samples; Figure S3: Averaged spectra of 16 cheese samples using the Raman spectroscopy
system for (a) 8 cheese samples, and (b) 8 other cheese samples; Figure S4: Averaged and normalized
LIBS spectra for (a) all 16 cheese samples, and (b) all 7 coffee varieties obtained using a commercially
available instrument (Z-900); Figure S5: The averaged Raman spectrum for (a) a cheese sample
(Ch6), and (b) a coffee sample (C7) collected using a commercially available instrument (Alpha300);

https://www.mdpi.com/article/10.3390/molecules28166087/s1
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Figure S6: An example of a confusion matrix calculated for all the tested cheese varieties using ENET
classifier; Figure S7: An example of a confusion matrix calculated for the tested coffee varieties using
the ENET classifier.
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