Chemical Modification of Polysaccharides: A Review of Synthetic Approaches, Biological Activity and the Structure–Activity Relationship
Abstract
:1. Introduction
2. Methods for the Chemical Modification of Polysaccharides
2.1. Acetylation Modification
2.2. Sulfation Modification
2.2.1. Sulfur Trioxide–Pyridine Method
2.2.2. Concentrated Sulfuric Acid Method
2.2.3. Chlorosulfonic Acid–Pyridine Method
2.2.4. Sulfamic Acid Method
2.3. Phosphorylation Modification
2.3.1. Acid and Anhydride Methods
2.3.2. Phosphorus Oxychloride Method
2.3.3. Phosphate Method
2.3.4. Phosphorus Pentoxide Method
2.4. Selenization Modification
2.4.1. Selenate Method
2.4.2. Other Selenization Methods
2.5. Other Methods for the Chemical Modification of Polysaccharides
3. Biological Activities of Chemically Modified Polysaccharides
3.1. Antioxidant Capacity
3.2. Antitumor Activity
3.3. Antiviral Activity
3.4. Immunomodulatory Activity
3.5. Anti-Inflammatory Activity
Bioactivity | Polysaccharide Sources | Monosaccharide Composition | Monosaccharide Composition of Modified Polysaccharide | Structures | Chemical Modification Methods | Mechanism | Ref. |
---|---|---|---|---|---|---|---|
Antioxidant | Porphyra haitanensis | N/A | N/A | 3-linked β-D-galactosyl residues alternating with 4-linked 3,6-anhydro-a-L-galactose | Benzoylation | Direct scavenging of free radicals | [25,42,64] |
Ulva pertusa | Rha:Xyl:Glc:GlcA = 1.00:0.67:0.13:0.15 | Rha:Xyl:Glc:GlcA = 1.00:0.79:0.04:0.19 | β-D-Glcp A-(1→4)-α-L-Rhap3s and α-L-Idup A-(1→4)-α-L-Rhap3s | Phosphorylation | |||
Blackcurrant fruits | Glc:Rha:Ara:Man:Gal:GalA = 1.00:2.31:13.29:0.95:5.13:1.96 | Glc:Rha:Ara:Man:Gal:GalA = 1.00:4.35:5.65:0.23:6.65:4.35 | There are pyranose rings in polysaccharides | Carboxymethylation | |||
Ulva pertusa | Rha:Xyl:Glc:GlcA = 1.00:0.67:0.13:0.15 | Rha:Xyl:Glc:GlcA = 1.00:0.79:0.04:0.19 | This structure is the same as that of ref. [42] in the previous table | Phosphorylation | Regulation of antioxidant enzyme activity through the Nrf2/ARE pathway | [42,65] | |
Chinese angelica | N/A | N/A | [(→4)-a-d-Glcp-(1→4)-a-d-Glcp-(1→6)-a-d-Glcp-(1→4)-a-d-Glcp-(1→4)-a-d-Glcp-(1→)]n | Selenization | |||
Anti-tumor | E. Japonica | N/A | N/A | →5)-linked-α-L-Araf-(1→, →4)-linked-β-D-Manp-(1→, →2,4)-linked-α-L-Rhap-(1→, →4)-linked-α-D-Xylp-(1→, →4)-linked-β-D-Galp-(1→, →2)-linked-β-D-Galp-(1→, →6)-linked-β-D-Glcp-(1→, α-D-Glcp-(4→, and t-linked-α-L-Araf | Selenization | Blocking tumor angiogenesis | [46] |
E. Japonica | N/A | N/A | This structure is the same as that of ref. [46] in the previous table | Selenization | Induction of apoptosis in tumor cells | [46] | |
Alfalfa | Rha:Xyl:Ara:GalA:Man:Glc = 2.13:3.07:2.77:1.00:1.30:1.10 | N/A | 1→2, 1→4, 1→3, and 1→6 or 1→glycosidic bonds | Selenization | Unspecified | [50] | |
A. sphaerocephala | Ara:Xyl:Man:Glc:Gal = 1.00:4.2:45.9:9.7:11.4 | N/A | N/A | Sulfation | Blocking the tumor cell cycle | [70] | |
Anti-viral | Sargassum ilicifolium | N/A | N/A | N/A | Sulfation | Resists virus adsorption and invasion | [73] |
Codonopsis pilosula | N/A | N/A | (1→3)-linked-β-D-galactopyranosyl, (1→2,3)-linked-β-D-galactopyranosyl and (1→3)-linke-α-D-rhamnopyranosyl residues | Phosphorylation | Inhibition of virus replication | [74] | |
Chuanmingshen violaceum | N/A | N/A | N/A | Sulfation | Activates the immune system and improves resistance to viruses | [75] | |
Immunomodulation | C. paliurus | Ara:Gal:Glc:Rha:xyl:Man:GalA:GlcA = 1.00:1.59:1.18:0.08:0.35:0.48:0.81:0.31 | Ara:Gal:Glc:Rha:Man:GalA:GlcA = 1.00:1.67:1.07:0.15:0.34:1.58:0.16 | N/A | Acetylation | Effect on cytokines | [27] |
Cyclocarya paliurus | Rha:Fuc:Ara:Xyl:Man:Glc:Gal = 0.11:0.07:3.11:0.36:0.24:0.275:3.36 | Rha:Fuc:Ara:Xyl:Man:Glc:Gal = 0.27:0.07:3.51:0.25:0.17:2.41:3.32 | N/A | Sulfation | Regulation of signaling pathways such as MAPK and NF-κB | [77] | |
Cyclocarya paliurus | Rha:Fuc:Ara:Xyl:Man:Glc:Gal = 0.11:0.07:3.11:0.36:0.24:0.275:3.36 | Rha:Fuc:Ara:Xyl:Man:Glc:Gal = 0.27:0.07:3.51:0.25:0.17:2.41:3.32 | N/A | Sulfation | Regulation of intestinal flora | [79] | |
Schisandra | N/A | Man:Glc:Gal = 1:44.8:3.71 | 1,4-α-D-Glcp and 1,4,6-β-D-Glcp | Carboxymethylation | Improves immune organ failure | [80] | |
Anti-inflammatory | Morchella angusticeps Peck | Ara:Man:Glc:Gal = 1.00:2.37:4.79:3.09 | N/A | (1→4)-α-D-glucose, (1→6)-α-D-galactose, (1→2)-α-D-mannose, and (1→5)-α-D-arabinose; and the branches were found to be (→2→6)-α-D-mannose, (1→2→6)-α-Dglucose, and (1→2→6)-β-D-galactose | Acetylation | Inhibition of NF-κB and MAPK signaling pathways | [26] |
Pholiota nameko | Man:Glc:Gal:Ara:Rha = 6.4:38.6:27.1:20.5:7.4 | Man:Glc:Gal:Ara:Rha = 7.3:44.9:23.6:15.7:8.5 | The main chains were1,4-linked Glcp, 1,6-linked Galp, 1,2- linked Rhap, and 1.6-linked Manp with terminals of t-linked Glcp, t-linked Araf The side chains change from 1,4,6-linked Galp, 1,2,5-linked Araf to 1,4,6-linked Galp | Phosphorylation | Inhibition of PI3K/AKT signaling pathway | [82] | |
Morchella angusticeps Peck | Ara:Man:Glc:Gal = 1.00:2.37:4.79:3.09 | N/A | Its structure is the same as that of ref. [26] in the previous table | Acetylation | Inhibition of NO and PGE2 production | [26] | |
Codium fragile | N/A | N/A | N/A | Sulfation | Affects cytokine secretion | [83] |
3.6. Other Biological Activities
4. Factors Affecting the Bioactivity of Chemically Modified Polysaccharides
4.1. Introduction of Different Chemical Modification Groups
4.2. DS and Substituent Position
4.3. Monosaccharide Molar Ratio and Glycosidic Bond Link Order
4.4. Molecular Weight (MW)
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mu, S.; Yang, W.J.; Huang, G.L. Antioxidant activities and mechanisms of polysaccharides. Chem. Biol. Drug Des. 2021, 97, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, Y.C.; Jiang, Y.; Chu, W.H. Antioxidant, and Immunomodulatory Properties of Acidic Exopolysaccharide From Marine Rhodotorula RY1801. Front. Nutr. 2021, 8, 710668. [Google Scholar] [CrossRef] [PubMed]
- Kokoulin, M.S.; Kuzmich, A.S.; Romanenko, L.A.; Menchinskaya, E.S.; Mikhailov, V.V.; Chernikov, O.V. Sulfated O-polysaccharide with anticancer activity from the marine bacterium Poseidonocella sedimentorum KMM 9023T. Carbohydr. Polym. 2018, 202, 157–163. [Google Scholar] [CrossRef]
- Kim, Y.S.; Hwang, J.; Lee, S.G.; Jo, H.Y.; Oh, M.J.; Liyanage, N.M.; Je, J.G.; An, H.J.; Jeon, Y.J. Structural characteristics of sulfated polysaccharides from Sargassum horneri and immune-enhancing activity of polysaccharides combined with lactic acid bacteria. Food Funct. 2022, 13, 8214–8227. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Zheng, R.L.; Wu, H.L.; Chen, D.Y.; Su, J.Y.; Xu, T.T.; Wu, H.B.; Xiang, W.Z.; Li, Y.H.; Zhu, B. Inhibition of enterovirus 71 infection by polysaccharides extracted from Picochlorum sp. 122 via the AKT and ATM/ATR signaling pathways. Arch. Virol. 2021, 166, 3269–3274. [Google Scholar] [CrossRef]
- Chagas, F.D.; Lima, G.C.; Santos, V.I.; Costa, L.E.; Sousa, W.M.; Sombra, V.G.; Araújo, D.F.; Barros, F.C.; Soriano, E.M.; Feitosa, J.P.; et al. Sulfated polysaccharide from the red algae Gelidiella acerosa: Anticoagulant, antiplatelet and antithrombotic effects. Int. J. Biol. Macromol. 2020, 159, 415–421. [Google Scholar] [CrossRef]
- Huang, H.L.; Huang, G.L. Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides. Chem. Biol. Drug Des. 2020, 96, 1209–1222. [Google Scholar] [CrossRef]
- Liu, H.L.; Liu, X.L.; Yue, L.; Jiang, Q.X.; Xia, W.S. Synthesis, characterization and bioactivities of N, O-carbonylated chitosan. Int. J. Biol. Macromol. 2016, 91, 220–226. [Google Scholar] [CrossRef]
- Chen, F.; Huang, G.L. Extraction, derivatization and antioxidant activity of bitter gourd polysaccharide. Int. J. Biol. Macromol. 2019, 141, 14–20. [Google Scholar] [CrossRef]
- Deng, Q.F.; Wang, X.; Chen, H.G.; Zhao, C.; Gong, X.J.; Zhao, X. Structural characterization, modification and hepatoprotective effects of polysaccharide from Mori Fructus. Int. J. Biol. Macromol. 2020, 153, 357–363. [Google Scholar] [CrossRef]
- Li, J.X.; Huang, G.L. Extraction, purification, separation, structure, derivatization and activities of polysaccharide from Chinese date. Process Biochem. 2021, 110, 231–242. [Google Scholar] [CrossRef]
- Zhou, N.; Long, H.R.; Wang, C.H.; Yu, L.; Zhao, M.M.; Liu, X.L. Research progress on the biological activities of selenium polysaccharides. Food Funct. 2020, 11, 4834–4852. [Google Scholar] [CrossRef] [PubMed]
- Chakka, V.P.; Zhou, T. Carboxymethylation of polysaccharides: Synthesis and bioactivities. Int. J. Biol. Macromol. 2020, 165, 2425–2431. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.Y.; Zhang, J.H.; Yang, H.L.; Yang, Z.F.; Xue, H.B.; Wu, F.; Wang, Z.Y.; Xie, L.; Chen, Y.Y. Acetylation modification and antioxidant activity of polysaccharides from Agrocybe cylindracea. J. Food Meas.Charact. 2022, 16, 1911–1919. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Xiong, Q.; Yu, Y.; Peng, L.C. Sulfated modification, characterization, and potential bioactivities of polysaccharide from the fruiting bodies of Russula virescens. Int. J. Biol. Macromol. 2020, 154, 1438–1447. [Google Scholar] [CrossRef]
- Xiong, X.; Huang, G.L.; Huang, H.L. The antioxidant activities of phosphorylated polysaccharide from native ginseng. Int. J. Biol. Macromol. 2019, 126, 842–845. [Google Scholar] [CrossRef] [PubMed]
- Fiorito, S.; Epifano, F.; Preziuso, F.; Taddeo, V.A.; Genovese, S. Selenylated plant polysaccharides: A survey of their chemical and pharmacological properties. Phytochemistry 2018, 153, 1–10. [Google Scholar] [CrossRef]
- Duan, Z.H.; Duan, W.W.; Li, F.P.; Li, Y.Q.; Luo, P.; Liu, H.Z. Effect of carboxymethylation on properties of fucoidan from Laminaria japonica: Antioxidant activity and preservative effect on strawberry during cold storage. Postharvest Biol. Technol. 2019, 151, 127–133. [Google Scholar] [CrossRef]
- Xie, L.M.; Shen, M.Y.; Hong, Y.Z.; Ye, H.D.; Huang, L.X.; Xie, J.H. Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydr. Polym. 2020, 229, 115436. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Y.J.; Sun, P.L.; Zhang, F.M.; Linhardt, R.J.; Zhang, A.Q. Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action. Int. J. Biol. Macromol. 2019, 132, 970–977. [Google Scholar] [CrossRef]
- Wang, Z.J.; Xie, J.H.; Shen, M.Y.; Nie, S.P.; Xie, M.Y. Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities. Trends Food Sci. Technol. 2018, 74, 147–157. [Google Scholar] [CrossRef]
- Xue, H.K.; Li, P.C.; Bian, J.Y.; Gao, Y.C.; Song, Y.M.; Tan, J.Q. Extraction, purification, structure, modification, and biological activity of traditional Chinese medicine polysaccharides: A review. Front. Nutr. 2022, 9, 2022–2045. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.H.; Zhang, F.; Wang, Z.J.; Shen, M.Y.; Nie, S.P.; Xie, M.Y. Preparation, characterization and antioxidant activities of acetylated polysaccharides from Cyclocarya paliurus leaves. Carbohydr. Polym. 2015, 133, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Yang, Y.; Zhang, Y.Y.; Duan, L.S.; Zhou, C.L.; Ni, Y.Y.; Liao, X.J.; Li, Q.H.; Hu, X.S. Effect of acetylation on antioxidant and cytoprotective activity of polysaccharides isolated from pumpkin (Cucurbita pepo, lady godiva). Carbohydr. Polym. 2013, 98, 686–691. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Zhang, Q.B.; Wang, J.; Shi, X.L.; Song, H.F.; Zhang, J.J. In vitro antioxidant activities of acetylated, phosphorylated and benzoylated derivatives of porphyran extracted from Porphyra haitanensis. Carbohydr. Polym. 2009, 78, 449–453. [Google Scholar] [CrossRef]
- Yang, Y.X.; Chen, J.L.; Lei, L.; Li, F.H.; Tang, Y.; Yuan, Y.; Zhang, Y.Q.; Wu, S.R.; Yin, R.; Ming, J. Acetylation of polysaccharide from Morchella angusticeps peck enhances its immune activation and anti-inflammatory activities in macrophage RAW264.7 cells. Food Chem. Toxicol. 2019, 125, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xie, J.H.; Jia, S.; Huang, L.X.; Wang, Z.J.; Li, C.; Xie, M.Y. Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7. Int. J. Biol. Macromol. 2017, 98, 576–581. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Sun, J.F.; Jin, L.; Zong, T.Q.; Duan, Y.Q.; Zhou, H.L.; Zhou, W.; Li, G. Acetylation Modification, Characterization, and Anticomplementary Activity of Polysaccharides from Rhododendron dauricum Leaves. Polymers 2022, 14, 3130. [Google Scholar] [CrossRef]
- Mazepa, E.; Biscaia, S.M.; Bellan, D.L.; Trindade, E.S.; Simas, F.F. Structural characteristics of native and chemically sulfated polysaccharides from seaweed and their antimelanoma effects. Carbohydr. Polym. 2022, 289, 119436. [Google Scholar] [CrossRef]
- Rizkyana, A.D.; Ho, T.C.; Roy, V.C.; Park, J.S.; Kiddane, A.T.; Kim, G.D.; Chun, B.S. Sulfation and characterization of polysaccharides from Oyster mushroom (Pleurotus ostreatus) extracted using subcritical water. J. Supercrit. Fluids 2022, 179, 105412. [Google Scholar] [CrossRef]
- Mizumoto, K.; Sugawara, I.; Ito, W.; Kodama, T.; Hayami, M.; Mori, S. Sulfated homopolysaccharides with immunomodulating activities are more potent anti-HTLV-III agents than sulfated heteropolysaccharides. J. Exp. Med. 1988, 58, 145–151. [Google Scholar]
- Caputo, H.E.; Straub, J.E.; Grinstaff, M.W. Design, synthesis, and biomedical applications of synthetic sulphated polysaccharides. Chem. Soc. Rev. 2019, 48, 2338–2365. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.F.; He, Y.X.; Tang, X.Z.; Li, N.Y. Sulfation, structural analysis, and anticoagulant bioactivity of ginger polysaccharides. J. Food Sci. 2020, 85, 2427–2434. [Google Scholar] [CrossRef] [PubMed]
- Kazachenko, A.S.; Malyar, Y.N.; Vasilyeva, N.Y.; Borovkova, V.S.; Issaoui, N. Optimization of guar gum galactomannan sulfation process with sulfamic acid. Biomass Conv. Bioref. 2021, 13, 10041–10050. [Google Scholar] [CrossRef]
- Bedini, E.; Laezza, A.; Parrilli, M.; Iadonisi, A. A review of chemical methods for the selective sulfation and desulfation of polysaccharides. Carbohydr. Polym. 2017, 174, 1224–1239. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.W.; Huang, W.B.; Sun, X.Y.; Xiong, P.; Ouyang, J.M. Antioxidant activity of sulfated Porphyra yezoensis polysaccharides and their regulating effect on calcium oxalate crystal growth. Mater. Sci. Eng. C 2021, 128, 112338. [Google Scholar] [CrossRef]
- Jiang, J.; Meng, F.Y.; He, Z.; Ning, Y.L.; Li, X.H.; Song, H.; Wang, J.; Rui, J. Sulfated modification of longan polysaccharide and its immunomodulatory and antitumor activity in vitro. Int. J. Biol. Macromol. 2014, 67, 323–329. [Google Scholar] [CrossRef]
- Wang, Z.H.; Cai, T.Q.; He, X.P. Characterization, sulfated modification and bioactivity of a novel polysaccharide from Millettia dielsiana. Int. J. Biol. Macromol. 2018, 117, 108–115. [Google Scholar] [CrossRef]
- Xia, S.L.; Zhai, Y.C.; Wang, X.; Fan, Q.R.; Dong, X.Y.; Chen, M.; Han, T. Phosphorylation of polysaccharides: A review on the synthesis and bioactivities. Int. J. Biol. Macromol. 2021, 184, 946–954. [Google Scholar] [CrossRef]
- Chen, X.Y.; Xu, X.J.; Zhang, L.N.; Zeng, F.B. Chain conformation and anti-tumor activities of phosphorylated (1→3)-β-d-glucan from Poria cocos. Carbohydr. Polym. 2009, 78, 581–587. [Google Scholar] [CrossRef]
- Wang, J.L.; Wang, Y.X.; Xu, L.; Wu, Q.Q.; Wang, Q.; Kong, W.B.; Liang, J.Y.; Yao, J.; Zhang, J. Synthesis and structural features of phosphorylated Artemisia sphaerocephala polysaccharide. Carbohydr. Polym. 2018, 181, 19–26. [Google Scholar] [CrossRef]
- Jiang, N.F.; Li, B.X.; Wang, X.Q.; Xu, X.N.; Liu, X.L.; Li, W.D.; Chang, X.T.; Li, H.; Qi, H.M. The antioxidant and antihyperlipidemic activities of phosphorylated polysaccharide from Ulva pertusa. Int. J. Biol. Macromol. 2020, 145, 1059–1065. [Google Scholar] [CrossRef]
- Li, H.P.; Feng, Y.B.; Sun, W.X.; Kong, Y.; Jia, L. Antioxidation, anti-inflammation and anti-fibrosis effect of phosphorylated polysaccharides from Pleurotus djamor mycelia on adenine-induced chronic renal failure mice. Int. J. Biol. Macromol. 2021, 170, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Le-Vinh, B.; Le, N.M.; Nazir, I.; Matuszczak, B.; Bernkop-Schnürch, A. Chitosan based micelle with zeta potential changing property for effective mucosal drug delivery. Int. J. Biol. Macromol. 2019, 133, 647–655. [Google Scholar] [CrossRef]
- Shao, C.T.; Zhong, J.W.; Liu, J.W.; Yang, Y.Y.; Li, M.L.; Yu, Y.; Xu, Y.Q.; Wang, L.B. Preparation, characterization and bioactivities of selenized polysaccharides from Lonicera caerulea L. fruits. Int. J. Biol. Macromol. 2023, 225, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Zhang, H.; Shi, L.J.; Li, Y.; Tuerhong, M.; Abudukeremu, M.; Cui, J.L.; Li, Y.H.; Jin, D.Q.; Xu, J.; et al. Structure features, selenylation modification, and improved anti-tumor activity of a polysaccharide from Eriobotrya japonica. Carbohydr. Polym. 2021, 273, 118496. [Google Scholar] [CrossRef]
- Zhan, Q.P.; Chen, Y.; Guo, Y.F.; Wang, Q.; Wu, H.; Zhao, L.Y. Effects of selenylation modification on the antioxidative and immunoregulatory activities of polysaccharides from the pulp of Rose laevigata Michx fruit. Int. J. Biol. Macromol. 2022, 206, 242–254. [Google Scholar] [CrossRef]
- Gao, Z.H.; Chen, J.; Qiu, S.L.; Li, Y.Y.; Wang, D.Y.; Liu, C.; Li, X.P.; Hou, R.R.; Yue, C.J.; Liu, J.; et al. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity. Carbohydr. Polym. 2016, 136, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.T.; Zhang, J.; Yao, J.; Song, S.; Yin, Z.X.; Gao, Q.Y. Selenylation modification can enhance antioxidant activity of Potentilla anserina L. polysaccharide. Int. J. Biol. Macromol. 2013, 58, 320–328. [Google Scholar] [CrossRef]
- Gao, P.Y.; Bian, J.; Xu, S.S.; Liu, C.F.; Sun, Y.Q.; Zhang, G.L.; Li, D.Q.; Liu, X.G. Structure features, selenylation modification, and improved anti-tumor activity of a polysaccharide from Eriobotrya japonica. Int. J. Biol. Macromol. 2020, 149, 207–214. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Hu, J.H.; Liu, S.; Guo, S.J.; Jia, Y.; Li, M.; Kong, W.B.; Liang, J.Y.; Zhang, J.; Wang, J.L. Synthesis of Se-polysaccharide mediated by selenium oxychloride: Structure features and antiproliferative activity. Carbohydr. Polym. 2020, 246, 116545. [Google Scholar] [CrossRef] [PubMed]
- Miletić, D.; Turło, J.; Podsadni, P.; Sknepnek, A.; Szczepańska, A.; Klimaszewska, M.; Malinowska, E.; Lević, S.; Nedović, V.; Nikšić, M. Production of bioactive selenium enriched crude exopolysaccharides via selenourea and sodium selenite bioconversion using Trametes versicolor. Food Biosci. 2021, 42, 101046. [Google Scholar] [CrossRef]
- Dong, Z.; Dong, G.; Lai, F.; Wu, H.; Zhan, Q.P. Purification and comparative study of bioactivities of a natural selenized polysaccharide from Ganoderma Lucidum mycelia. Int. J. Biol. Macromol. 2021, 190, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, J.X.; Wang, X.; Hu, H.W.; Zhang, Y.R.; Liu, T.T.; Zhao, H. Structure characterization and antioxidant activity of carboxymethylated polysaccharide from Pholiota nameko. J. Food Biochem. 2022, 46, e14121. [Google Scholar] [CrossRef]
- Xu, P.; Li, J.L.; Hou, G.H.; Shi, F.; Ye, M. Cardioprotective effect of an exopolysaccharide from Lachnum YM130 and its derivatives on diabetic mice. Process Biochem. 2017, 58, 333–340. [Google Scholar] [CrossRef]
- Akil, Y.; Lorenz, D.; Lehnen, R.; Saake, B. Safe and non-toxic hydroxyalkylation of xylan using propylene carbonate. Eur. Polym. J. 2016, 77, 88–97. [Google Scholar] [CrossRef]
- Sharma, D.; Sharma, P. Taguchi design-based synthesis and structural analysis of Cassia galactomannan hydroxypropyl derivative. Carbohydr. Polym. 2022, 292, 119672. [Google Scholar] [CrossRef]
- DiNardo, A.; Subramanian, J.; Singh, A. Investigation of antioxidant content and capacity in yellow European plums. Int. J. Food Sci. 2018, 18, 99–116. [Google Scholar] [CrossRef]
- Zheng, Y.Z.; Chen, D.F.; Deng, G.; Guo, R.; Fu, Z.M. The antioxidative activity of piceatannol and its different derivatives: Antioxidative mechanism analysis. Phytochemistry 2018, 156, 184–192. [Google Scholar] [CrossRef]
- Neha, K.; Haider, M.R.; Pathak, A.; Yar, M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem. 2019, 178, 687–704. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Farhood, B.; Najafi, M.; Salehi, E.; Goradel, N.H.; Nashtaei, M.S.; Khanlarkhani, N.; Mortezaee, K. Disruption of the redox balance with either oxidative or anti-oxidative overloading as a promising target for cancer therapy. J. Cell. Biochem. 2019, 120, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Chang, Y.C.; Hu, W.L.; Huang, Y.C. Oxidative stress and salvia miltiorrhiza in aging-associated cardiovascular diseases. Oxid. Med. Cell. Longev. 2016, 2016, 4797102. [Google Scholar] [CrossRef] [Green Version]
- Duan, S.Y.; Zhao, M.M.; Wu, B.Y.; Wang, S.J.; Yang, Y.; Xu, Y.Q.; Wang, L.B. Preparation, characteristics, and antioxidant activities of carboxymethylated polysaccharides from blackcurrant fruits. Int. J. Biol. Macromol. 2020, 155, 1114–1122. [Google Scholar] [CrossRef]
- Gao, Z.Z.; Zhang, C.; Tian, W.J.; Liu, K.H.; Hou, R.R.; Yue, C.J.; Wu, Y.; Wang, D.Y.; Liu, J.G.; Hu, Y.L.; et al. The antioxidative and hepatoprotective effects comparison of Chinese angelica polysaccharide (CAP) and selenizing CAP (sCAP) in CCl4 induced hepatic injury mice. Int. J. Biol. Macromol. 2017, 97, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.X.; Huang, M.; Shen, M.Y.; Wen, P.W.; Wu, T.; Hong, Y.Z.; Yu, Q.; Chen, Y.; Xie, J.H. Sulfated modification enhanced the antioxidant activity of Mesona chinensis Benth polysaccharide and its protective effect on cellular oxidative stress. Int. J. Biol. Macromol. 2019, 136, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Pandya, U.; Dhuldhaj, U.; Sahay, N.S. Bioactive mushroom polysaccharides as antitumor: An overview. Nat. Prod. Res. 2019, 33, 2668–2680. [Google Scholar] [CrossRef]
- Chen, L.; Huang, G. Antitumor activity of polysaccharides: An overview. Curr. Drug Targets 2018, 19, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Q.; Li, M.Z.; Yu, M.L.; Shen, M.Y.; Wang, Q.; Yu, Y.; Xie, J.H. Natural polysaccharides exhibit anti-tumor activity by targeting gut microbiota. Int. J. Biol. Macromol. 2019, 121, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Bao, A.J.; Wang, Q.; Guo, H.Y.; Zhang, Y.D.; Liang, J.Y.; Kong, W.B.; Yao, J.; Zhang, J. Sulfation can enhance antitumor activities of Artemisia sphaerocephala polysaccharide in vitro and vivo. Int. J. Biol. Macromol. 2018, 107, 502–511. [Google Scholar] [CrossRef]
- Ding, J.; Jia, W.; Cui, Y.G.; Jin, J.; Zhang, Y.Q.; Xu, L.C.; Liu, Y.H. Anti-angiogenic effect of a chemically sulfated polysaccharide from Phellinus ribis by inhibiting VEGF/VEGFR pathway. Int. J. Biol. Macromol. 2020, 154, 72–81. [Google Scholar] [CrossRef]
- Xie, L.M.; Shen, M.Y.; Huang, R.; Liu, X.; Yu, Y.; Lu, H.Y.; Xie, J.H. Apoptosis of colon cancer CT-26 cells induced polysaccharide from Cyclocarya paliurus and its phosphorylated derivative via intrinsic mitochondrial passway. FSHW 2023, 12, 1545–1556. [Google Scholar] [CrossRef]
- Jyotsna; Vijayakumar, P.; Dhas, T.S.; Mani, R.; Raguraman, V. Antiviral activity of sulfated polysaccharides from Sargassum ilicifolium against fish Betanodavirus infection. Aquac. Int. 2021, 29, 1049–1067. [Google Scholar] [CrossRef]
- Ming, K.; Chen, Y.; Yao, F.K.; Shi, J.T.; Yang, J.J.; Du, H.X.; Wang, X.Y.; Wang, Y.X.; Liu, J.G. Phosphorylated Codonopsis pilosula polysaccharide could inhibit the virulence of duck hepatitis A virus compared with Codonopsis pilosula polysaccharide. Int. J. Biol. Macromol. 2017, 94, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhang, Y.T.; Yin, Z.Q.; Zhao, X.H.; Liang, X.X.; He, C.L.; Yin, L.Z.; Lv, C.; Zhao, L.; Ye, G.; et al. Antiviral effect of sulfated Chuanmingshen violaceum polysaccharide in chickens infected with virulent Newcastle disease virus. Virology 2015, 476, 316–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.X.; Wu, S.H.; Huang, R.; Liu, X.; Shen, M.Y.; Xie, J.H. Immunomodulatory activity and mechanism of Chinese yam polysaccharide after sulfated modification. Ind. Crops Prod. 2023, 197, 116549. [Google Scholar] [CrossRef]
- Han, Y.; Ouyang, K.H.; Li, J.G.; Liu, X.; An, Q.; Zhao, M.; Chen, S.; Li, X.; Ye, X.M.; Zhao, Z.T.; et al. Sulfated modification, characterization, immunomodulatory activities and mechanism of the polysaccharides from Cyclocarya paliurus on dendritic cells. Int. J. Biol. Macromol. 2020, 159, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.B.; Fan, J.; Lin, L.; Liu, Y.J.; Chai, D.K.; Yang, J. Immunomodulatory effects of phosphorylated radix cyathulae officinalis polysaccharides in immunosuppressed mice. Molecules 2019, 24, 4150. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Zhang, Y.; Ouyang, K.H.; Chen, L.L.; Zhao, M.; Wang, W.J. Sulfated Cyclocarya paliurus polysaccharides improve immune function of immunosuppressed mice by modulating intestinal microbiota. Int. J. Biol. Macromol. 2022, 212, 31–42. [Google Scholar] [CrossRef]
- Zhao, T.; Guo, Y.C.; Yan, S.Y.; Li, N.; Ji, H.C.; Hu, Q.H.; Zhang, M.; Li, Q.; Gao, H.; Yang, L.Q.; et al. Preparation, structure characterization of carboxymethylated schisandra polysaccharides and their intervention in immunotoxicity to polychlorinated biphenyls. Process Biochem. 2022, 115, 30–41. [Google Scholar] [CrossRef]
- Hou, C.Y.; Chen, L.L.; Yang, L.Z.; Ji, X.L. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020, 153, 248–255. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.T.; Wang, X.; Zhou, L.Y.; Qi, J.; An, S.Y. Structural characterization, antioxidant activity and anti-inflammatory of the phosphorylated polysaccharide from Pholiota nameko. Front. Nutr. 2022, 9, 976552. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Je, J.G.; Huang, C.X.; Oh, J.Y.; Fu, X.T.; Wang, K.Q.; Ahn, G.; Xu, J.C.; Gao, X.; Jeon, Y.J. Anti-inflammatory effect of sulfated polysaccharides isolated from Codium fragile in vitro in RAW 264.7 macrophages and in vivo in zebrafish. Mar. Drugs 2022, 20, 391. [Google Scholar] [CrossRef]
- Li, N.; Liu, X.; He, X.X.; Wang, S.Y.; Cao, S.J.; Xia, Z.; Xian, H.L.; Qin, L.; Mao, W.J. Structure and anticoagulant property of a sulfated polysaccharide isolated from the green seaweed Monostroma angicava. Carbohydr. Polym. 2017, 159, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Chen, R.; Mou, R.R.; Xiang, J.Y.; Zhou, K.; Li, Z.; Zhao, J.H. Purification, structural characterization and anticoagulant activities of four sulfated polysaccharides from sea cucumber Holothuria fuscopunctata. Int. J. Biol. Macromol. 2020, 164, 3421–3428. [Google Scholar] [CrossRef]
- Liu, H.Z.; Li, F.P.; Luo, P. Effect of carboxymethylation and phosphorylation on the properties of polysaccharides from Sepia esculenta ink: Antioxidation and anticoagulation in vitro. Mar. Drugs 2019, 17, 626. [Google Scholar]
- Wang, Y.F.; Su, N.N.; Hou, G.H.; Li, J.L.; Ye, M. Hypoglycemic and hypolipidemic effects of a polysaccharide from Lachnum YM240 and its derivatives in mice, induced by a high fat diet and low dose STZ. Medchemcomm 2017, 8, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Navvabi, A.; Homaei, A.; Navvabi, N.; Michaud, P. Exopolysaccharides from Marine Microalgae. In Marine Biochemistry, 1st ed.; Kim, S.K., Ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Sharifian, S.; Homaei, A. Marine-Derived Polysaccharides: Prospects for Future Pharmaceuticals and Drug Delivery Systems, 1st ed.; Springer: Singapore, 2022; pp. 403–453. [Google Scholar]
- Zhang, Q.; Xu, Y.; Lv, J.J.; Cheng, M.X.; Wu, Y.; Cao, K.; Zhang, X.F.; Mou, X.N.; Fan, Q. Structure characterization of two functional polysaccharides from Polygonum multiflorum and its immunomodulatory. Int. J. Biol. Macromol. 2018, 113, 195–204. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Huang, G.L.; Huang, H.L. Extraction, derivatization and antioxidant activities of onion polysaccharide. Food Chem. 2022, 388, 133000. [Google Scholar] [CrossRef]
- Wen, Y.; Zheng, S.Q.; Su, C.M. A new acidic polysaccharide and its sulfated derivative from cultured Morchella sextelata fruiting bodies and their antioxidant and immunoregulatory activities. Biomass Conv. Bioref. 2022, 1–14. [Google Scholar] [CrossRef]
- Chen, S.H.; Huang, H.L.; Huang, G.L. Extraction, derivatization and antioxidant activity of cucumber polysaccharide. Int. J. Biol. Macromol. 2019, 140, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Pujol, C.A.; Jana, S.; Damonte, E.B.; Ray, B.; Ray, S. Chemically sulfated arabinoxylans from Plantago ovata seed husk: Synthesis, characterization and antiviral activity. Carbohydr. Polym. 2021, 256, 117555. [Google Scholar] [PubMed]
- Zhang, Y.; Liu, Y.H.; Ni, G.Y.; Xu, J.H.; Tian, Y.P.; Liu, X.Y.; Gao, J.; Gao, Q.; Shen, Y.C.; Yan, Z.W. Sulfated modification, basic characterization, antioxidant and anticoagulant potentials of polysaccharide from Sagittaria trifolia. Arab. J. Chem. 2023, 16, 104812. [Google Scholar] [CrossRef]
- De Araújo, C.A.; Noseda, M.D.; Cipriani, T.R.; Gonçalves, A.G.; Duarte, M.E.R.; Ducatti, D.R.B. Selective sulfation of carrageenans and the influence of sulfate regiochemistry on anticoagulant properties. Carbohydr. Polym. 2013, 91, 483–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.N.; Li, Y.; Liang, J.; Chai, J.H.; Kuang, H.X.; Xia, Y.G. Direct acetylation for full analysis of polysaccharides in edible plants and fungi using reverse phase liquid chromatography-multiple reaction monitoring mass spectrometry. J. Pharm. Biomed. Anal. 2023, 222, 115083. [Google Scholar]
- Wang, F.L.; Ji, Y.B.; Yang, B. Sulfated modification, characterization and monosaccharide composition analysis of Undaria pinnatifida polysaccharides and anti-tumor activity. Exp. Ther. Med. 2020, 20, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Chi, Z.; Yu, L.J.; Jiang, F.; Liu, C.G. Sulfated modification, characterization, and antioxidant and moisture absorption/retention activities of a soluble neutral polysaccharide from Enteromorpha prolifera. Int. J. Biol. Macromol. 2017, 105, 1544–1553. [Google Scholar]
- Xu, Y.F.; Song, S.; Wei, Y.X.; Wang, F.X.; Zhao, M.; Guo, J.; Zhang, J. Sulfated modification of the polysaccharide from Sphallerocarpus gracilis and its antioxidant activities. Int. J. Biol. Macromol. 2016, 87, 180–190. [Google Scholar] [CrossRef]
- Xie, J.H.; Wang, Z.J.; Shen, M.Y.; Nie, S.P.; Gong, B.; Li, H.S.; Zhao, Q.; Li, W.J.; Xie, J.H. Sulfated modification, characterization and antioxidant activities of polysaccharide from Cyclocarya paliurus. Food Hydrocoll. 2016, 53, 7–15. [Google Scholar] [CrossRef]
- Qi, K.; Xia, G.D.; Huang, G.L.; Huang, H.L. Extraction, chemical modification, and antioxidant activities of Daucus carota polysaccharide. Chem. Biol. Drug Des. 2021, 98, 1098–1103. [Google Scholar] [CrossRef]
Modification | Modification Method | Reagents | Advantages | Disadvantages | References |
---|---|---|---|---|---|
Acetylation | Acetic anhydride (acetic acid) method | Acetic anhydride (or acetic acid), pyridine (or 4-DMAP), formamide | Simple operation steps and short response time | Pyridine is highly irritating and neurotoxic; 4-DMAP is expensive and difficult to be exploited on a large scale | [24,25] |
Sulfation | Sulfamic acid method | Sulfamic acid, N, N-dimethylformamide | Mild reactions and low toxicity | Lower product DS and more side effects | [33,34] |
Sulfur trioxide-pyridine method | Sulfur trioxide, pyridine, formamide | Simple operation and high product DS | Sulfur trioxide is more expensive and only suitable for small-scale production | [36] | |
Concentrated sulfuric acid method | Concentrated sulfuric acid (CSA), n-butanol, ammonium sulfate | The reaction is stable, less toxic and less costly | CSA is too acidic, which can easily cause polysaccharide carbonization and sugar chain degradation | [37] | |
Chlorosulfate-pyridine method | Chlorosulfonic acid, pyridine, formamide | Easy operation, high product yield, high DS | Chlorosulfonic acid is unstable and acutely toxic | [38] | |
Phosphorylation | Acid and Anhydride Method | Phosphoric acid (phosphoric anhydride), DMSO | Simple operation, low equipment requirements | The exothermic reaction is prone to polysaccharide degradation | [40] |
Phosphorous oxychloride | POCl3 | Rapid reaction time, simple operation, high DS | More toxic by-products, irritating gases from the reaction | [16,41] | |
Phosphate method | Sodium tripolyphosphate (STPP), Sodium trimetaphosphate (STMP) | Easy to operate and less prone to polysaccharide degradation | Low reaction activity, low DS and yield | [42,43] | |
Phosphorus pentoxide method | Methanesulfonic acid, P2O5 | Short reaction time | P2O5 is more acidic and prone to polysaccharide degradation | [44] | |
Selenization | Selenate method | Nitric acid (or glacial acetic acid), sodium selenite | Lower cost | Long reaction time and complex steps | [50] |
Selenium Oxychloride Method | Selenium Oxychloride (SeOCl2) | Simple operation steps | SeOCl2 is easily decomposed, and the reaction will produce irritating and toxic gases | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Ren, Q.; Wang, S.; Gao, J.; Shen, C.; Zhang, S.; Wang, Y.; Guan, F. Chemical Modification of Polysaccharides: A Review of Synthetic Approaches, Biological Activity and the Structure–Activity Relationship. Molecules 2023, 28, 6073. https://doi.org/10.3390/molecules28166073
Liu T, Ren Q, Wang S, Gao J, Shen C, Zhang S, Wang Y, Guan F. Chemical Modification of Polysaccharides: A Review of Synthetic Approaches, Biological Activity and the Structure–Activity Relationship. Molecules. 2023; 28(16):6073. https://doi.org/10.3390/molecules28166073
Chicago/Turabian StyleLiu, Tianbo, Qianqian Ren, Shuang Wang, Jianing Gao, Congcong Shen, Shengyu Zhang, Yanhong Wang, and Feng Guan. 2023. "Chemical Modification of Polysaccharides: A Review of Synthetic Approaches, Biological Activity and the Structure–Activity Relationship" Molecules 28, no. 16: 6073. https://doi.org/10.3390/molecules28166073
APA StyleLiu, T., Ren, Q., Wang, S., Gao, J., Shen, C., Zhang, S., Wang, Y., & Guan, F. (2023). Chemical Modification of Polysaccharides: A Review of Synthetic Approaches, Biological Activity and the Structure–Activity Relationship. Molecules, 28(16), 6073. https://doi.org/10.3390/molecules28166073