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Abstract: Natural polysaccharides are macromolecular substances with great potential owing to
their wide biological activity and low toxicity. However, not all polysaccharides have significant
pharmacodynamic activity; hence, appropriate chemical modification methods can be selected
according to the unique structural characteristics of polysaccharides to assist in enhancing and
promoting the presentation of their biological activities. This review summarizes research progress
on modified polysaccharides, including common chemical modification methods, the change in
biological activity following modification, and the factors affecting the biological activity of chemically
modified polysaccharides. At the same time, the difficulties and challenges associated with the
structural modification of natural polysaccharides are also outlined in this review. Thus, research on
polysaccharide structure modification is critical for improving the development and utilization of
sugar products.

Keywords: polysaccharide; chemical modification; biological activity

1. Introduction

Polysaccharides are natural macromolecular carbohydrates made up of more than
ten monosaccharides joined by different glycosidic bonds. They are one of the essential
components of living organisms with an important role in life processes. Polysaccharides
are widely found in plants, animals, bacteria and microorganisms [1]. Due to their good
antioxidant [2], antitumor [3], immune regulation [4], antiviral [5], anticoagulant [6] and
other biological activities, they have been the focus of scholars in the medical field. Since
1943, polysaccharides have been used as medicines to treat diseases [7] and, up until now,
have gradually been developed into functional foods with the development of technology,
which are well liked by people.

It has been confirmed that the biological activity of polysaccharides is closely related to
their monosaccharide composition, category of glycosidic bond, spatial structure, molecular
weight and branched chain structure [8]. However, not all natural polysaccharides have
good biological activity, and some of them are not biologically active or their biological
activity is relatively weak due to their special structure, decreasing their clinical therapeutic
potential and efficacy. For example, due to their large molecular weight, some polysaccha-
rides are difficult to be absorbed by the human body through the cell membrane, and thus
cannot exert biological activity. It has been reported that appropriate structural modifi-
cation can enhance the biological activity of polysaccharides for therapeutic purposes [9].
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The chemical modification of polysaccharides can change their spatial structure, monosac-
charide composition, monosaccharide molar ratio, molecular weight, as well as substituent
type, position and number, to achieve the purpose of activity enhancement [10–13]. There-
fore, the study of the chemical modification of polysaccharides has been the focus of
polysaccharide analysis in recent years. At present, the commonly chemical modification
methods include acetylation [14], sulfation [15], phosphorylation [16], selenization [17],
carboxymethylation [18] and other chemical modification methods.

Numerous review articles have reported the methods of chemical modification for
polysaccharides and changes in bioactivity [19–22]. However, there are few reports on
the influencing factors of biological activity after chemical modification. The aim of this
paper is to show the methods of chemical modification of polysaccharides, changes in
bioactivity and factors affecting chemically modified polysaccharides, providing a reference
for broadening the application of chemically modified polysaccharides in the field of
pharmaceuticals and functional foods.

2. Methods for the Chemical Modification of Polysaccharides

Chemical modification is a method of modifying the structure of polysaccharides by
introducing different kinds of reactive groups through chemical reagents to obtain deriva-
tized polysaccharides. The chemical modification will cause the original hydroxyl group
of the polysaccharide to be replaced by substituents. For example, the hydroxyl groups
are replaced by groups such as acetyl, sulfate, phosphate, selenate and carboxymethyl
groups. With the introduction of functional groups, information such as the molar ratio,
spatial structure and molecular weight of monosaccharides also undergo corresponding
changes in the polysaccharide. This has improved the problem of the low bioactivity of
natural polysaccharides due to the shortcomings of physicochemical properties, such as
high viscosity, poor water solubility and excessive molecular weight. It is vital for the
research of conformational relationships of polysaccharides to select appropriate chemical
modification methods, which can enhance or alter the biological activity of polysaccharides.

2.1. Acetylation Modification

Acetylation modification is one of the important branched chain modification methods
in polysaccharide chemical modification. Due to the introduction of an acetyl group, the
hydroxyl groups have a nucleophilic substitution with acetic acid or acetic anhydride to
generate acetate products, which can further change the spatial structure of the polysaccha-
rides. This promotes the full expansion of the branched chains of the polysaccharide and
further improves the solubility of the acetylated polysaccharide. This may be one of the rea-
sons why acetylated modified polysaccharides have certain activities enhanced [14,19,23].
The polysaccharide acetylation reaction is shown in Figure 1.
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Typical acetylation reagents include acetic anhydride or acetic acid. The acetylation
reaction is performed by dissolving pre-prepared polysaccharides in organic solvents,
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such as formamide, dimethylformamide and DMSO, and then adding acetic anhydride
or acetic acid reagents. As established, a suitable catalyzator is the key to a successful
acetylation reaction. Common traditional acetylation catalysts mainly include pyridine
and 4-dimethylaminopyridine (4-DMAP), as well as N-bromosuccinimide (NBS) [24,25].
It is worth noting that pyridine has a strong irritating odor and neurotoxicity, and al-
though 4-DMAP has less toxicity than pyridine, it is more expensive and only suitable for
laboratory-level research and development. These issues make them temporarily difficult
to apply to large-scale production, resulting in limited application. However, reviewing
the updated literature, many polysaccharide acetylation modification experiments do not
add catalysts [26,27]. For example, polysaccharides can be directly dissolved in distilled
water, and the pH value of the solution is adjusted to 9 with a NaOH reagent. Then,
acetic anhydride is added, and NaOH is continued to maintain the pH value at 8–10 for
a period of the reaction. Finally, HCl reagent is added to adjust the solution to being
neutral, and acetylated polysaccharides are dialyzed to remove reaction by-products, and
their concentration increased [28]. There are a lack of corresponding experiments for this
phenomenon to clarify the relationship between the addition of catalysts and the degree of
acetylation substitution.

2.2. Sulfation Modification

Sulfated polysaccharides refer to polysaccharides that contain sulfate groups on the
sugar chain. It has been reported that various marine algal species contain sulfated polysac-
charides [6]. In recent years, it has been found that sulfated polysaccharides have higher
biological activity in terms of anticoagulation, antitumor and antioxidant activity compared
to non-sulfated polysaccharides, which has attracted attention and made it one of the best
choices for treating diseases [29,30]. However, in some species of marine polysaccharides,
sulfated polysaccharides have better efficacy but lower content, which is difficult for use
in large-scale clinical treatments. Therefore, it is urgent to synthesize sulfated polysaccha-
rides using artificial chemical methods. As early as 1988, a Japanese scholar introduced
sulfate groups to polysaccharides and found that the antiviral ability was enhanced, which
established the basis for the artificial modification of sulfated polysaccharides [31]. At
present, researchers’ interest in the synthesis of sulfated polysaccharides is mainly focused
on methods such as concentrated sulfuric acid, chlorosulfate–pyridine and sulfur trioxide–
pyridine methods [32]. However, after collecting articles from the past decade, it was found
that the sulfamic acid method also seems to be helpful for the sulfation modification of
polysaccharides [33,34]. In addition, the regional selective sulfation of polysaccharides is a
very active research direction, ensuring the controllability and predictability of the intro-
duction of sulfuric acid groups into polysaccharides and clarifying the structure–activity
relationship [35].

2.2.1. Sulfur Trioxide–Pyridine Method

The sulfur trioxide–pyridine method is a milder sulfation modification method. First,
the polysaccharide is completely dissolved in DMSO by stirring. Then, the esterification
reagent prepared by adding a mixture of sulfur trioxide–pyridine dissolved in formamide is
added, heated and stirred for a while. After the reaction is completed, the desired product
is obtained via dialysis and freeze-drying (Figure 2) [36]. The product obtained using this
method has a higher DS and is easy to operate and control. However, sulfur trioxide is
relatively expensive and only suitable for small-scale production in the laboratory.
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2.2.2. Concentrated Sulfuric Acid Method

The concentrated sulfuric acid method is one of the classic sulfation methods. First,
concentrated sulfuric acid and N-butanol are mixed in proportion, followed by adding
ammonium sulfate and stirring in an ice-water bath. Then, the polysaccharide samples
are added and stirred at a certain temperature, neutralized, precipitated with alcohol and
freeze-dried to obtain the final products [37]. The concentrated sulfuric acid method has the
advantages of producing a stable reaction and having low toxicity and low cost. However,
it is less used nowadays mainly because concentrated sulfuric acid has strong acidity, which
can easily cause polysaccharide carbonization and sugar-chain degradation.

2.2.3. Chlorosulfonic Acid–Pyridine Method

The chlorosulfonic acid–pyridine method (CSA/Pyr) is currently the most widely used
sulfation modification method, with the advantages of easy operation, high product yield
and high DS. This method involves dissolving polysaccharides in formamide (or DMSO)
and reacting with esterification reagents (chlorosulfonic acid–pyridine) under ice-water
bath conditions for a period of time to obtain the products [38].

As a strongly oxidizing agent, chlorosulfonic acid is unstable and will react violently
when exposed to water. In addition, it is flammable and highly toxic. The pyridine reagent
also has a highly irritating odor. Nonetheless, this strategy is the best choice compared to
the other two methods. Therefore, it is necessary to develop a less toxic and safer alternative
to chlorosulfonic acid–pyridine sulfation.

2.2.4. Sulfamic Acid Method

Compared to the preceding methods of sulfation, sulfamic acid seems to have received
less attention. First, the polysaccharide sample is crushed and placed in a beaker, and then
sulfamic acid and N, N-dimethylformamide are added. The mixture is then reacted in
a water bath at 100 ◦C for 5 h. After the reaction is completed, the product is placed for
cooling, neutralized with NaOH, dialyzed and freeze-dried to obtain the target product [33].
In addition, some scholars have used the amino sulfonic acid method to optimize the Box–
Behnken process of guar gum galactomannan. The optimal process occurs upon adding
34 mmol of sulfamic acid to 1 g guar gum galactomannan at 85 ◦C for 2.6 h [34]. The results
indicate that the reaction conditions for preparing the product using the amino sulfonic
acid method are mild and that the reagent toxicity is low. However, its drawbacks are still
obvious. The disadvantage of the sulfation reaction using the sulfamic acid method is that
the reaction activity is low. Therefore, catalysts such as pyridine, urea and acetamide are
usually required for catalytic reactions. At the same time, it is easily accompanied by the
side reactions of carbamate. In recent years, the development of the amino sulfonic acid
method has not been sufficient, so the sample size is smaller compared to the previous
three methods.
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2.3. Phosphorylation Modification

In nature, phosphorylated polysaccharides are mostly found in animal and plant
species, with phosphate esters as the main form. However, because of their low content,
limited variety and difficulty in extraction and isolation, they are generally synthesized ar-
tificially using chemical modification methods [39]. Under suitable conditions, polysaccha-
rides can react with phosphorylation reagents so that the side chains and phosphorylation
groups exist in a covalent manner. In addition, common contemporary phosphorylation
modification methods mainly include phosphoric acid and its anhydride method, phos-
phorus oxychloride method, phosphate salt method and phosphorus pentoxide method.

2.3.1. Acid and Anhydride Methods

The acid and acid anhydride methods were applied earlier in the modification of
polysaccharide phosphorylation, whose reaction process is relatively simple. Briefly,
polysaccharide powder is dissolved in a mixture of urea and DMSO. Then, phospho-
ric acid is added, and it is reacted at 100 ◦C for 6 h. In the end, the product is dialyzed
and lyophilized (Figure 3) [40]. This method has the advantages of simple operational
steps, universal instrument applicability and low cost. However, due to the intense phos-
phoric acid reaction process, which generates a large amount of heat, it can lead to the
degradation of polysaccharides and lower yield of the target product, so it currently has
few applications.
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2.3.2. Phosphorus Oxychloride Method

The phosphorus oxychloride method, also known as the phosphoryl chloride method,
is a method for synthesizing highly substituted phosphorylated products. Its advantages
include a rapid reaction time, simple operation and high DS [41]. First, the polysaccharide
powder is dissolved in DMF, and a mixture of phosphorus oxychloride (POCl3) with
pyridine is slowly added under the condition of an ice-water bath to react at a specific
temperature and time. After that, phosphorylated polysaccharides are obtained through
alcohol precipitation, centrifugation and freeze-drying [16]. Although the phosphorus
oxychloride method is widely used, it also has certain drawbacks, such as a relatively
violent reaction and highly toxic byproducts, and the reaction will also be accompanied by
the production of irritating gases.

2.3.3. Phosphate Method

At present, the phosphate method is a commonly used method for phosphorylation
modification. Compared with other methods, the phosphate method has the superiority
of not easily degrading polysaccharides. However, the disadvantages are also obvious,
such as the low reaction activity of polysaccharides when phosphorylated, which results
in the DS and yield of products being relatively low. Commonly used phosphates are
sodium tripolyphosphate (STPP) and sodium trimetaphosphate (STMP) in phosphorylation
modification [42]. Specifically, polysaccharide powder is dissolved in distilled water,
and STPP and STMP are added in a 6:1 ratio and according to optimal phosphorylation
conditions. The reaction lasts for 6 h at 80 ◦C, and the target product is obtained via
neutralization, dialysis and freeze-drying at the end of the reaction [43].
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2.3.4. Phosphorus Pentoxide Method

Chitosan (CSSA) alkylated with stearic acid is mixed with pre-cooled methanesulfonic
acid. After process optimization, the best ratio is selected to add to it four times the
proportion of phosphorus pentoxide (P2O5) to that of CSSA. Then, the mixture is stirred at
0–5 ◦C for 1 h. Finally, the target product is obtained via ether precipitation, centrifugation,
neutralization or dialysis [44]. However, P2O5 has a strong acidity which can easily cause
the degradation of polysaccharides during the reaction process and also lead to a low DS
of the products. Therefore, its current application is limited.

2.4. Selenization Modification

Selenided polysaccharides are formed by the combination of polysaccharides and
inorganic selenium through covalent bonds. Numerous studies have shown that selenided
polysaccharides have stronger biological activity and better absorption properties than
original polysaccharides and inorganic selenium [45–47]. Selenided polysaccharides exist
only in trace amounts in natural microorganisms and plants. However, due to their
low content and limited variety, selenium polysaccharides’ development and utilization
are limited. Until now, the synthesis of selenium polysaccharides was often carried out
through artificial synthesis, with the aim of increasing the bioavailability of selenium
polysaccharides and thus expanding their application scope. There are many common
types of chemical modification methods for selenium polysaccharides at present, mainly
divided into two categories, i.e., the selenate method and the selenium oxychloride method.

2.4.1. Selenate Method

The method of using selenite and its salts as selenide reagents is called the selenate
method, and common selenite salts include sodium selenite. Therefore, according to
different reaction systems, it can be divided into the nitric acid sodium selenite method
(NA-SS) [46], the glacial acetic acid sodium selenite method (GA-SS) [48], the nitric acid
selenite method (NA-SA) [49] and the glacial acetic acid selenite method (GA-SA) [48].
BaCl2 is often used as a catalyst in the GA-SA method due to its strong coordination with
hydroxyl groups. Among them, the NA-SS method is currently the most widely used
selenization method due to its simple operation and high degree of selenization. Briefly,
the specific operation process consists of dissolving polysaccharide powder in nitric acid at
25 ◦C, followed by the addition of Na2SeO3 and maintaining the mixture in an oil bath at
70 ◦C for 10 h. After the reaction, the selenized polysaccharide is obtained via neutralization,
dialysis and freeze-drying [50]. The NA-SS method modifies the polysaccharides as shown
in Figure 4.
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2.4.2. Other Selenization Methods

In addition to the selenate method, there is also the selenium oxychloride method
(SeOCl2) for the chemical modification of polysaccharides [51]. However, the application
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of this reaction is currently limited because SeOCl2 is unstable and easily decomposes
compared with the selenate method and is accompanied by irritating toxic gases. Except
for the chemical synthesis of selenated polysaccharides, selenium polysaccharide can also
be artificially synthesized via plant [52] and microbial transformations [53].

2.5. Other Methods for the Chemical Modification of Polysaccharides

In addition to the common chemical modification methods mentioned above, other
methods for the chemical modification of polysaccharides consist of carboxymethylat-
ing [54], benzoylating [55], alkylating [56], hydroxypropylating [57], etc. As is well estab-
lished, the pharmacological activity of most compounds depends on their structure. Chem-
ical modifications of polysaccharides have become one of the main focuses in the field of
polysaccharide research. They are used to modify the internal structure of polysaccharides,
thereby improving biological activity and clarifying their conformational relationships. The
advantages and disadvantages of chemical modification methods for polysaccharides are
presented in Table 1.
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Table 1. The advantages and disadvantages of several common methods for polysaccharide chemical modification.

Modification Modification Method Reagents Advantages Disadvantages References

Acetylation Acetic anhydride (acetic acid)
method

Acetic anhydride (or acetic
acid), pyridine (or 4-DMAP),

formamide

Simple operation steps and
short response time

Pyridine is highly irritating
and neurotoxic; 4-DMAP is
expensive and difficult to be

exploited on a large scale

[24,25]

Sulfation

Sulfamic acid method Sulfamic acid, N,
N-dimethylformamide

Mild reactions and low
toxicity

Lower product DS and more
side effects [33,34]

Sulfur trioxide-pyridine
method

Sulfur trioxide, pyridine,
formamide

Simple operation and high
product DS

Sulfur trioxide is more
expensive and only suitable
for small-scale production

[36]

Concentrated sulfuric acid
method

Concentrated sulfuric acid
(CSA), n-butanol, ammonium

sulfate

The reaction is stable, less
toxic and less costly

CSA is too acidic, which can
easily cause polysaccharide

carbonization and sugar
chain degradation

[37]

Chlorosulfate-pyridine
method

Chlorosulfonic acid, pyridine,
formamide

Easy operation, high product
yield, high DS

Chlorosulfonic acid is
unstable and acutely toxic [38]

Phosphorylation

Acid and Anhydride Method Phosphoric acid (phosphoric
anhydride), DMSO

Simple operation, low
equipment requirements

The exothermic reaction is
prone to polysaccharide

degradation
[40]

Phosphorous oxychloride POCl3
Rapid reaction time, simple

operation, high DS

More toxic by-products,
irritating gases from the

reaction
[16,41]

Phosphate method
Sodium tripolyphosphate

(STPP), Sodium
trimetaphosphate (STMP)

Easy to operate and less
prone to polysaccharide

degradation

Low reaction activity, low DS
and yield [42,43]

Phosphorus pentoxide
method Methanesulfonic acid, P2O5 Short reaction time

P2O5 is more acidic and
prone to polysaccharide

degradation
[44]

Selenization

Selenate method Nitric acid (or glacial acetic
acid), sodium selenite Lower cost Long reaction time and

complex steps [50]

Selenium Oxychloride
Method

Selenium Oxychloride
(SeOCl2) Simple operation steps

SeOCl2 is easily decomposed,
and the reaction will produce

irritating and toxic gases
[51]
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3. Biological Activities of Chemically Modified Polysaccharides
3.1. Antioxidant Capacity

Free radicals are metabolic products in the body, and active oxygen radicals such as
superoxide anion (O2−) and hydroxyl radical (·OH) and –NO groups are produced during
normal life activities. An appropriate amount of reactive oxygen radicals will participate
during normal life activities, but excessive accumulation of free radicals will lead to the
occurrence of lipid peroxidation [58–60]. It can lead to a series of diseases such as chronic
kidney disease [61], cancer [62] and cardiovascular disease [63]. Therefore, it is of great
significance to search for natural antioxidants with low toxicity. In recent years, relevant
studies have shown that chemically modified polysaccharides have the advantages of good
antioxidant activity, low toxicity and being extensive medicinal resources, which have
become a research hotspot in the scientific community.

The DPPH and superoxide anion systems can effectively evaluate the antioxidant
activity of substances under in vitro antioxidant conditions. The latest research results
show that the ability of polysaccharides (PYPs) from Porphyra yezoensis to scavenge DPPH
and hydroxyl radicals increases with the introduction of sulfate groups. The reason may be
that with the increase in sulfuric acid groups, the hydrogen atoms on the end-group carbon
become active, increasing their own nucleophilic properties and thus enhancing the antiox-
idant capacity [33]. Due to the introduction of carboxymethyl groups, carboxymethylated
polysaccharides (CRNPs) from blackcurrant fruits have stronger anti-lipid peroxidation
capacity and free radical-scavenging abilities than original polysaccharides [64]. In addi-
tion, chemically modified polysaccharides also have outstanding antioxidant effects in vivo.
With the introduction of selenium, selenified Chinese angelica polysaccharides (CAPs) are
able to increase superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activi-
ties, significantly reducing the content of malondialdehyde (MDA) and reactive oxygen
species (ROS) in liver tissues, and they have a significant antioxidant effect [65]. Sulfated
polysaccharides (SMP) from Mesona chinensis Benth have good free radical-scavenging
performance, which can reduce the content of MDA and improve the activity of SOD.
Therefore, they exhibit excellent results in the ability to protect cells from oxidative stress
(Figure 5) [66]. The biological activity and related mechanisms of chemically modified
polysaccharides are shown in Table 2.
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3.2. Antitumor Activity

Tumor disease is one of the most life-threatening and incurable diseases, which has
attracted wide attention from researchers [67]. Most existing chemical drugs for cancer
treatment also cause very serious damage to normal cells. Natural plant polysaccharides
and their derivatives have a greater future prospect due to their good antitumor activity
and low toxic side effects [68,69].
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In vitro cellular experiments have shown that selenized polysaccharide (EJP90-1-
Se) from Eriobotrya japonica with the introduction of the selenium element significantly
inhibited cancer cell proliferation by inducing apoptosis. Further verification using a
zebrafish model showed that EJP90-1–Se had a stronger inhibition of HepG2 proliferation
and angiogenesis than polysaccharide (EJP90-1) from E. japonica [46]. Previous in vitro
experiments have shown that sulfated polysaccharides (ASPs) from Artemisia sphaerocephala
can significantly inhibit HeLa cells and HepG2. Meanwhile, according to the cell cycle,
ASPs can block H22 cells in the S phase, thereby achieving antitumor effects through cell
apoptosis. With other antitumor drugs, no direct cytotoxic effect on mouse fibroblast
L929 was observed, while ASPs were antitumor [70]. It has been reported that sulfated
polysaccharides may also achieve antitumor effects by reducing tumor microvascular
density (MVD) and inhibiting the expression of vascular endothelial factor [71]. According
to the latest research, phosphorylated polysaccharides are effectively modified to enhance
antitumor activity. The mechanism may be to increase the activity of Cyt-c, Caspase-3
and Caspase-9, to induce cell apoptosis and also to arrest the cell cycle in the S phase
(Figure 6) [72]. In addition, it has also been shown that sulfated polysaccharides can
stimulate the activity of lymphocytes, increase macrophage phagocytosis and improve the
production of large amounts of cytokines in macrophages. This can activate the immune
response, thus possessing good proliferative activity against HONE1 cells [37]. The reason
for enhanced immunity is that sulfuric acid groups increase contact with immune cell
receptors by combining oxygen and electrostatic attraction, enhance the immune response
and then inhibit the proliferation of tumor cells.Molecules 2023, 28, x FOR PEER REVIEW  11  of  24 
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3.3. Antiviral Activity

The antiviral mechanism of chemically modified polysaccharides mainly operates
through the inhibition of virus replication, enhancement of immune function and pre-
vention of virus adsorption and invasion. Sulfated polysaccharide (SP) from Sargassum
ilicifolium can prevent the adsorption and entry of viruses, thus achieving an antiviral
effect. At the same time, SP is much less toxic compared to other antiviral drugs [73].
Some scholars have successfully synthesized phosphorylated polysaccharides (pCPPSs)
from Codonopsis pilosula, and in vitro and in vivo experiments have shown that pCPPS
was able to block the formation of autophagosomes, thereby inhibiting the replication
of the duck hepatitis A virus (DHAV) genome and achieving antiviral effects [74]. In
addition, enhancement of the body’s immune response is also one of the antiviral mecha-
nisms of chemically modified polysaccharides. Sulfated polysaccharides (sCVPSs) from
Chuanmingshen violaceum can significantly reduce the virus titer in the thymus, spleen,
brain and lungs of diseased chickens. The detection of serum interferon α and γ concen-
trations allowed for the conclusion that the antiviral effect of sCVPS was due to immune
enhancement [75].

3.4. Immunomodulatory Activity

Immune function is a defense system for the body to maintain the relative stability of
the internal environment and remove invading body antigens. Plant polysaccharides can
perform immunomodulatory functions in the following method: regulating the secretion of
cytokines, regulating signaling pathways such as mitogen-activated protein kinase (MAPK)
and nuclear factor-κB (NF-κB), regulating intestinal flora and ameliorating organ failure.

In the short term, it has been elucidated by RNA-seq that sulfated polysaccharide (S-
CYP) from Chinese yam can achieve immune regulation by regulating the MAPK signaling
pathway. At the same time, it can synergistically enhance immune function by increasing
the secretion of cytokines [76]. In addition, it has been shown that sulfated polysaccharides
also have the ability to stimulate an increase in NF-κBp65 protein and simultaneously
block the action of TLR2/4, thereby passing through the NF-κB signaling pathway for
immune regulation [77]. The most common ways of immune regulation modalities for
chemically modified polysaccharides include the stimulation of macrophage activity and
enhancement of cytokine secretion [27,78]. A small amount of research has shown that
sulfated polysaccharides can enhance immune function by promoting the repair of intesti-
nal mechanical barriers and regulating intestinal microflora. Compared to unmodified
polysaccharides, sulfated modified polysaccharides have significantly increased immune
regulatory activity [79]. Similarly, carboxymethylated polysaccharide (CSP) from Schisandra
chinensis inhibited the thymic and splenic atrophy induced by dioxins such as 3, 3′, 4, 4′,
5-pentachlorobiphenyl (PCB 126). Moreover, it showed higher immunomodulatory activity
compared to unmodified polysaccharides (Figure 7) [80].
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Figure 7. Preparation and characterization of carboxymethylated polysaccharides and their in-
tervention in the immunotoxicity of polychlorinated biphenyls. This figure was adapted from
Zhao et al. [80].

3.5. Anti-Inflammatory Activity

The development of inflammation is an extremely complex process, and inflammation
is usually a natural protective response of the body. However, long-term inflammation
or inflammation that attacks oneself is harmful and can lead to a series of diseases in the
body [81]. Therefore, the development of safe and effective anti-inflammatory drugs cur-
rently has a broad clinical application value. Natural macromolecular polysaccharides have
received widespread attention from scientists because of their significant anti-inflammatory
effects and high safety profile.

It has been reported that phosphorylated polysaccharide (PPN) from Pholiota nameko
has anti-inflammatory effects on lipopolysaccharide (LPS)-induced RAW 264.7 cells through
inhibition of the PI3K/AKT/mTOR pathway. Furthermore, the anti-inflammatory effect is
consistently superior to that of polysaccharides without phosphorylation modification at
the same concentration [82]. On the other hand, some studies have shown that acetylated
polysaccharides also have good anti-inflammatory activity, for which the mechanism
is to enhance anti-inflammatory activity through the NF-κB and p38/MAPK signaling
pathways, as well as a strong ability to inhibit nitric oxide (NO) production [26]. Not
only do artificially synthesized modified polysaccharides have good anti-inflammatory
activity, but naturally occurring sulfated polysaccharides also have the same effect. Sulfated
polysaccharide (CFCE-PS) from Codium fragile was able to dose-dependently reduce the
levels of inflammatory factors in LPS-induced RAW264.7 cells, including NO, TNF-α, IL-1β,
IL-6, etc. [83].
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Table 2. Structure, biological activity and mechanism of chemically modified polysaccharides.

Bioactivity Polysaccharide Sources Monosaccharide Composition Monosaccharide Composition of
Modified Polysaccharide Structures

Chemical
Modification

Methods
Mechanism Ref.

Antioxidant

Porphyra haitanensis N/A N/A
3-linked β-D-galactosyl residues

alternating with 4-linked
3,6-anhydro-a-L-galactose

Benzoylation

Direct scavenging of free
radicals

[25,42,64]
Ulva pertusa Rha:Xyl:Glc:GlcA =

1.00:0.67:0.13:0.15
Rha:Xyl:Glc:GlcA =
1.00:0.79:0.04:0.19

β-D-Glcp A-(1→4)-α-L-Rhap3s and
α-L-Idup A-(1→4)-α-L-Rhap3s Phosphorylation

Blackcurrant fruits Glc:Rha:Ara:Man:Gal:GalA =
1.00:2.31:13.29:0.95:5.13:1.96

Glc:Rha:Ara:Man:Gal:GalA =
1.00:4.35:5.65:0.23:6.65:4.35

There are pyranose rings in
polysaccharides Carboxymethylation

Ulva pertusa Rha:Xyl:Glc:GlcA =
1.00:0.67:0.13:0.15

Rha:Xyl:Glc:GlcA =
1.00:0.79:0.04:0.19

This structure is the same as that of
ref. [42] in the previous table Phosphorylation

Regulation of antioxidant
enzyme activity through
the Nrf2/ARE pathway

[42,65]

Chinese angelica N/A N/A
[(→4)-a-d-Glcp-(1→4)-a-d-Glcp-
(1→6)-a-d-Glcp-(1→4)-a-d-Glcp-

(1→4)-a-d-Glcp-(1→)]n

Selenization

Anti-tumor

E. Japonica N/A N/A

→5)-linked-α-L-Araf-(1→,
→4)-linked-β-D-Manp-(1→,
→2,4)-linked-α-L-Rhap-(1→,
→4)-linked-α-D-Xylp-(1→,
→4)-linked-β-D-Galp-(1→,
→2)-linked-β-D-Galp-(1→,
→6)-linked-β-D-Glcp-(1→,

α-D-Glcp-(4→, and
t-linked-α-L-Araf

Selenization Blocking tumor
angiogenesis [46]

E. Japonica N/A N/A This structure is the same as that of
ref. [46] in the previous table Selenization Induction of apoptosis in

tumor cells [46]

Alfalfa Rha:Xyl:Ara:GalA:Man:Glc =
2.13:3.07:2.77:1.00:1.30:1.10 N/A 1→2, 1→4, 1→3, and 1→6 or

1→glycosidic bonds Selenization Unspecified [50]

A. sphaerocephala Ara:Xyl:Man:Glc:Gal =
1.00:4.2:45.9:9.7:11.4 N/A N/A Sulfation Blocking the tumor cell

cycle [70]

Anti-viral

Sargassum ilicifolium N/A N/A N/A Sulfation Resists virus adsorption
and invasion [73]

Codonopsis pilosula N/A N/A

(1→3)-linked-β-D-galactopyranosyl,
(1→2,3)-linked-β-D-
galactopyranosyl and

(1→3)-linke-α-D-rhamnopyranosyl
residues

Phosphorylation Inhibition of virus
replication [74]

Chuanmingshen violaceum N/A N/A N/A Sulfation
Activates the immune
system and improves
resistance to viruses

[75]

Immunomodulation C. paliurus Ara:Gal:Glc:Rha:xyl:Man:GalA:GlcA
= 1.00:1.59:1.18:0.08:0.35:0.48:0.81:0.31

Ara:Gal:Glc:Rha:Man:GalA:GlcA =
1.00:1.67:1.07:0.15:0.34:1.58:0.16 N/A Acetylation Effect on cytokines [27]
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Table 2. Cont.

Bioactivity Polysaccharide Sources Monosaccharide Composition Monosaccharide Composition of
Modified Polysaccharide Structures

Chemical
Modification

Methods
Mechanism Ref.

Cyclocarya paliurus Rha:Fuc:Ara:Xyl:Man:Glc:Gal =
0.11:0.07:3.11:0.36:0.24:0.275:3.36

Rha:Fuc:Ara:Xyl:Man:Glc:Gal =
0.27:0.07:3.51:0.25:0.17:2.41:3.32 N/A Sulfation

Regulation of signaling
pathways such as MAPK

and NF-κB
[77]

Cyclocarya paliurus Rha:Fuc:Ara:Xyl:Man:Glc:Gal =
0.11:0.07:3.11:0.36:0.24:0.275:3.36

Rha:Fuc:Ara:Xyl:Man:Glc:Gal =
0.27:0.07:3.51:0.25:0.17:2.41:3.32 N/A Sulfation Regulation of intestinal

flora [79]

Schisandra N/A Man:Glc:Gal = 1:44.8:3.71 1,4-α-D-Glcp and 1,4,6-β-D-Glcp Carboxymethylation Improves immune organ
failure [80]

Anti-
inflammatory

Morchella angusticeps Peck Ara:Man:Glc:Gal =
1.00:2.37:4.79:3.09 N/A

(1→4)-α-D-glucose,
(1→6)-α-D-galactose,

(1→2)-α-D-mannose, and
(1→5)-α-D-arabinose; and the

branches were found to be
(→2→6)-α-D-mannose,

(1→2→6)-α-Dglucose, and
(1→2→6)-β-D-galactose

Acetylation Inhibition of NF-κB and
MAPK signaling pathways [26]

Pholiota nameko Man:Glc:Gal:Ara:Rha =
6.4:38.6:27.1:20.5:7.4

Man:Glc:Gal:Ara:Rha =
7.3:44.9:23.6:15.7:8.5

The main chains were1,4-linked
Glcp, 1,6-linked Galp, 1,2- linked
Rhap, and 1.6-linked Manp with

terminals of t-linked Glcp, t-linked
Araf The side chains change from
1,4,6-linked Galp, 1,2,5-linked Araf

to 1,4,6-linked Galp

Phosphorylation Inhibition of PI3K/AKT
signaling pathway [82]

Morchella angusticeps Peck Ara:Man:Glc:Gal =
1.00:2.37:4.79:3.09 N/A Its structure is the same as that of ref.

[26] in the previous table Acetylation Inhibition of NO and PGE2
production [26]

Codium fragile N/A N/A N/A Sulfation Affects cytokine secretion [83]
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3.6. Other Biological Activities

Many pharmacological experiments have shown that both sulfated polysaccharides
naturally present in plants and those obtained via chemical modification have good anti-
coagulant effects [84,85]. Through testing routine coagulation indicators (APTT, TT, PT),
it was found that the products modified by phosphorylation and carboxymethylation
have significant anticoagulant activity compared to original polysaccharides [86]. This
indicates that in addition to the well-known sulfated polysaccharides, the introduction
of other anionic groups into polysaccharides increases their anticoagulant activity, which
can greatly enrich the types of anticoagulants and provide a reference in the search for
naturally active anticoagulants. In addition to this, chemically modified polysaccharides
also have liver-protective effects. Selenizing polysaccharides (sCAPs) from Chinese angel-
ica can significantly reduce the levels of ALP, ALT and AST in the serum of liver-injury
mice. Moreover, sCAP significantly alleviates pathological changes in the liver while also
inhibiting the expression of p-ERK, indicating that selenization modification can enhance
the hepatoprotective effect of sCAP [65]. Sulfated (SLEP) and carboxymethylated (CLEP)
extracellular polysaccharides from Lachnum YM240 can both have a hypolipidemic effect,
but the hypolipidemic effect of CLEP is more significant [87].

Moreover, the potential of marine polysaccharides should not be overlooked. Marine
polysaccharides have attracted much attention because of their abundant sources, special
molecular structures and extensive biological activities [88]. The biological activities of
marine-derived polysaccharides and their derivatives have proved to be anti-thrombotic,
antitumor, antioxidative, immunomodulatory, etc., which have wide application prospects
in functional foods, drugs and other fields [6,29,33,89].

4. Factors Affecting the Bioactivity of Chemically Modified Polysaccharides
4.1. Introduction of Different Chemical Modification Groups

As is well known, the structure of substances determines their function, and when the
structure of polysaccharides changes, their function tends to change as well. For example,
when polysaccharides WPMP-1 and WPMP-2 were extracted from Polygonum multiflorum,
both the methylation and NMR results indicated that the main chain structure of WPMP-1
was composed of 1, 4-Glcp. In contrast, the main chain of WPMP-2 is 1, 3, 5-Araf and 1, 2,
4-Rhap. Therefore, the significant differences in structure also lead to functional differences
between the two purified polysaccharides, such as WPMP-2, showing stronger immune
regulatory activity than WPMP-1 [90].

Recently, a study using 13C NMR technology has characterized the structure of onion
polysaccharide. At the same time, phosphate and acetyl groups were introduced in onion
polysaccharides, and antioxidant analysis was conducted. The results of in vitro antioxi-
dant activity showed that the antioxidant effect of phosphated onion polysaccharide was
the strongest compared to original and acetylated polysaccharides, which approached the
activity of vitamin C [91]. In addition, acetylated (AcP) and carboxymethylated polysac-
charides (CM-Ps) from bitter gourd were successfully prepared by introducing acetyl
and carboxymethyl groups on the main chain of the polysaccharide using bitter gourd
polysaccharide (P) as the raw material. Antioxidant tests were conducted on the three
polysaccharides, with the results showing that CM-Ps had the strongest antioxidant effect.
It was speculated that this may be because, with the introduction of carboxymethyl groups,
the negative charge on the surface of polysaccharide increases, resulting in the construction
of negatively charged hydrophilic surface structures that increase their water solubility
and thus enhance their antioxidant activity [9]. However, the same chemical modifications
applied to different polysaccharides often exhibit vastly different activities, which may be
closely related to the unique structure of the polysaccharides themselves. Therefore, it is
necessary to select appropriate chemical modification methods based on the structure of
polysaccharides themselves during chemical modification [92,93].
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4.2. DS and Substituent Position

The DS (degree of substitution) is an important indicator for evaluating the success of
chemically modified polysaccharides. However, even if polysaccharides with different DS
values are prepared using the same chemical modification method, their activity often varies
greatly. Generally, it is believed that the biological activity of modified polysaccharides is di-
rectly proportional to the size of the DS values, i.e., the larger the DS values are, the greater
the activity is. For example, different DS carboxymethylated blackcurrant fruit polysac-
charides (CRNPs) were prepared from blackcurrant fruits using the carboxymethylation
method. On the other hand, the in vitro antioxidant results indicated that the antioxidant
activity of CRNPs is enhanced compared to unmodified polysaccharides. Under the test
conditions of the in vitro hemolytic protective effect on red blood cells, the activity of
CRNPs also increases with the increase in the DS [64]. In addition, arabinoxylans is ex-
tracted from the seed shell of Plantago, and sulfate is added to obtain products with different
DS values. After in vitro anti-HSV-1 activity testing, it was found that the polysaccharide
with the highest DS had the strongest anti-HSV-1 activity [94]. However, most experiments
show that the relationship between DS values and biological activity does not seem to be
so simple. Briefly, the fruiting bodies of polysaccharides from Russula virescens (SRVP) with
DS values between 0.34 and 0.73 were prepared, and the in vitro activity tests showed that
SRVP1-20 with the DS of 0.68 had the strongest antibacterial and antitumor activity [15].
At the same time, other results can prove this viewpoint as well. Researchers have used
Sagittaria trifolia as a raw material to prepare three sulfated polysaccharides with different
DS values and evaluated their antioxidant activity. The results showed that the antioxidant
activity decreased with the increase in the DS value [95].

In addition to the DS value, the biological activity of chemically modified polysac-
charides is also closely related to the sites of the substituent introduction. Some scholars
modified carrageenans with sulfation via selective sulfation. A total of eleven samples
were prepared. Sample 8 has the same DS as sample 11, but sample 8 is replaced by a
sulfuric acid group at C4, and sample 11 is replaced by a sulfuric acid group at C2. The
results obtained from samples 8 and 11 can indicate that substitution by sulfate groups at
C4 appears to have better anticoagulant activity than substitution at C2 [96].

4.3. Monosaccharide Molar Ratio and Glycosidic Bond Link Order

Monosaccharide composition analysis is the basis for studying the structural properties
and the structure–activity relationships of polysaccharides. Common analytical methods for
determining monosaccharide composition currently include liquid chromatography [10],
liquid chromatography–mass spectrometry (Figure 8) [97], gas chromatography [64] and
gas chromatography–mass spectrometry [41]. A large number of studies have concluded
that the chemical modification of natural polysaccharides generally leads to changes in
the molar percentage of monosaccharide composition, but it does not lead to changes in
monosaccharide composition [42,64,77,82]. Natural polysaccharide from Undaria pinnatifida
(UPPS-B1) and its sulfated derivative (S-UPPS-B1) were used for the determination of
monosaccharide composition by GC–MS. The molar ratio of monosaccharides in UPPS-B1
was Glc, Man, Xyl and Gal at 12.0:8.7:7.9:9.8. After sulfation modification, the proportion
of Xyl, Glc and Gal were significantly decreased, and the antitumor activity of sulfated
polysaccharides was enhanced [98]. However, in rare cases, the chemical modification of
polysaccharides can lead to changes in the composition of monosaccharides. For example,
monosaccharides in the polysaccharide (CP) from Cyclocarya paliurus were Ara, Gal, Glc,
Rha, xyl, Man, GalA and GlcA. Surprisingly, the monosaccharide composition of the
acetylated polysaccharide (AC-CP) from Cyclocarya paliurus was Ara, Gal, Glc, Rha, Man,
GalA and GlcA, without Xyl composition. At the same time, comparing immunoregulatory
activity, AC-CP activity is superior to CP [27].
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of monosaccharide composition and content of individual polysaccharides from edible plants and
fungi. b1: Ganoderma lucidum polysaccharide; b2: Auricularia auricular-judae polysaccharide;
b3: Armillaria mellea polysaccharide; b4: Hericium erinaceus polysaccharide; b5: Panax ginseng
polysaccharide; b6: Aralia elata bud polysaccharide; b7: Platycodon grandiflorum polysaccharide;
b8: Stigma maydis polysaccharide. This figure was adapted from Gao et al. [97].

Additionally, chemical modifications can also lead to a certain degree of alteration
of glycosidic bond linkages. Phosphorylated polysaccharide (PPN) from Pholiota nameko
was prepared via chemical modification of polysaccharide (SPN) from Pholiota nameko. The
methylation results showed that there was no change in the main chain structure of SPN
and PPN, but the side chains of SPN underwent phosphorylation, transitioning from 1, 2,
5-Araf to 1, 2, 4-Glcp linkage. At the same time, the ability of PPN to scavenge free radicals
and its anti-inflammatory effect against LPS-induced RAW 264.7 cells are stronger than
those of SPN [82]. Therefore, the chemical modification of polysaccharides will lead to
changes in monosaccharide composition, molar ratio, glycoside linkage sites and other
structures, further leading to changes in biological activity. However, so far, there is no
exact evidence to show the relationship between polysaccharide structure and activity,
which is still the focus of a future research direction.

4.4. Molecular Weight (MW)

At present, the most common method for the determination of molecular weight in
polysaccharides is high-performance gel permeation chromatography (HPGPC), which
is widely used in the analysis and preparation of polysaccharides due to the advantages
of simple operation and short time [85]. The molecular weights of Enteromorpha prolifera
polysaccharide (PEP) and its enzymatic degradation products (LEP) were 147.8 KDa and
44.8 KDa, respectively. By sulfating PEP and LEP, the products were SPEP (176.3 KDa) and
SLEP (59.9 KDa), respectively. The molecular weight of polysaccharides increased after
sulfated modification. In addition, the antioxidant activities of PEP, LEP, SPEP and SLEP
were measured and compared. The results showed that SLEP had the strongest antiox-
idant activity due to low Mw and high sulfate-group content. Therefore, the molecular
weight and sulfate groups have obvious effects on the antioxidant activity of E. prolifera
polysaccharide [99]. However, in contrast to the previous example, the molecular weight of
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polysaccharide (SGP) from Sphallerocarpus gracilis is 743 KDa, and S-SGP is prepared by
sulfation using the CSA/Pyr method with SGP as the raw material. The results indicate
that the molecular weight of S-SGP is significantly reduced to 212 KDa. In spite of this, the
antioxidant activity of the sulfated modification product S-SGP was instead elevated [100].
According to the current evidence, the biological activity of modified polysaccharides is
related to molecular weight to some extent, but the chemical modification of polysaccha-
rides often leads to changes in the monosaccharide molar ratio, Mw, degree of substitution,
glucoside linkage and other factors. Therefore, there is no direct evidence to show the exact
relationship between molecular weight and biological activity, and the structure–activity
relationship still needs to be further studied.

5. Conclusions and Prospects

At present, the application of chemically modified polysaccharides has been imple-
mented in the biomedical and food industries, along with the cosmetics and materials
industries and antibacterial agent research and development. Therefore, it has high practical
and economic value. However, due to the large molecular weight and complex advanced
structure of polysaccharides, it is also a great challenge to study the structure–activity
relationship of polysaccharides. Changes in the activity of chemically modified polysaccha-
rides are often related to the type, position and quantity of substituent groups (expressed
by DS or content), monosaccharide composition and molecular weight, and the sequence of
glucoside linkage [93,100,101]. This unpredictability in the structure–activity relationship
also leads to the biological activity of some chemical modifications being less than expected
and even to the phenomenon of reduced activity [91,102].

Therefore, polysaccharide modification should not overlook decoration through vari-
ous methods; instead, it should be according to their own unique structure modification.
Despite the promising prospects of chemically modified polysaccharides in recent years,
the following challenges remain: (1) homogeneous purified polysaccharides are rarely used
in polysaccharide modification. A low purity of lead compounds will lead to an unstable
DS and substitution sites after chemical modification and poor experimental reproducibility,
and it will increase the difficulty of studying the structure–activity relationship. (2) At
the same time, the controllability of the reaction is not high, and the DS and molecular
weight of different batches of modified products under the same reaction conditions are
inconsistent, making products difficult to control. Therefore, increasing the controllability
of the DS and molecular weight of the modified products is very important in the study of
the structure–activity relationship of modified polysaccharide products. (3) Catalysts used
in many chemical modification methods have a strong toxicity and too many by-products
that are difficult to separate, resulting in a low yield of target products. (4) At present, the
structure–activity relationship of chemically modified polysaccharides is still relatively
shallow, and the mechanism research is not clear, so it is necessary to deepen the study of
the structure–activity relationship. However, with the continuous development of scientific
research equipment and the gradual development of analytical methods, these problems
will be solved, and the chemical modification of polysaccharide methods will be gradually
improved so that polysaccharides and their modified products will have a wider range of
applicability.
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