Effects of In Vitro Digestion of Polyphenols from Coffee on Binding Parameters to Human Topoisomerase II α
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Complexes of CHAs and Caffeine with TOPIIα Based on ITC
2.2. Characterization of the Complexes of CHAs and Caffeine with TOPIIα Based on MD
2.3. Characterization of the Interactions of Coffee Extracts before and after In Vitro Digestion with TOPIIα Based on ITC
2.4. Characterization of the Interactions of Fractions Obtained from Coffee Extracts before after In Vitro Digestion with TOPIIα Based on ITC and MD
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Isothermal Titration Calorimetry (ITC)
3.3. Docking Simulation
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Schoeffler, A.J.; Berger, J.M. DNA topoisomerases: Harnessing and constraining energy to govern chromosome topology. Q. Rev. Biophys. 2008, 41, 41–101. [Google Scholar] [CrossRef] [PubMed]
- Mc Kie, S.J.; Neuman, K.C.; Maxwell, A. DNA topoisomerases. Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. BioEssays 2021, 43, 2000286. [Google Scholar] [CrossRef]
- Chen, S.H.; Chan, N.-L.; Hsieh, T.-S. New mechanistic and functional insights into DNA topoisomerases. Annu. Rev. Biochem. 2013, 82, 139–170. [Google Scholar] [CrossRef]
- Deweese, J.E.; Osheroff, M.A.; Osheroff, N. DNA topology and topoisomerases. Biochem. Mol. Biol. Educ. 2009, 37, 2–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vann, K.R.; Oviatt, A.A.; Osheroff, N. Topoisomerase II poisons: Converting essential enzymes into molecular scissors. Biochemistry 2021, 60, 1630–1641. [Google Scholar] [CrossRef] [PubMed]
- Wendorff, T.J.; Schmidt, B.H.; Heslop, P.; Austin, C.A.; Berger, J.M. The structure of DNA-bound human topoisomerase II alpha: Conformational mechanisms for coordinating inter-subunit interactions with DNA cleavage. J. Mol. Biol. 2012, 424, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Mc Clendon, A.K.; Osheroff, N. DNA topoisomerase II, genotoxicity, and cancer. Mutat. Res. 2007, 623, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Collins, J.A.; Osheroff, N. 1,2-Naphthoquinone as a poison of human type II topoisomerases. Chem. Res. Toxicol. 2021, 34, 1082–1090. [Google Scholar] [CrossRef]
- Lyu, Y.L.; Lin, C.P.; Azarova, A.M.; Cai, L.; Wang, J.C.; Liu, L.F. Role of topoisomerase II beta in the expression of developmentally regulated genes. Mol. Cell. Biol. 2006, 26, 7929–7941. [Google Scholar] [CrossRef] [Green Version]
- Mokdsi, G.; Harding, M.M. Inhibition of human topoisomerase II by the antitumor metallocenes. J. Inorg. Biochem. 2001, 83, 205–209. [Google Scholar] [CrossRef]
- Calderwood, S.K. A critical role for topoisomerase IIb and DNA double strand breaks in transcription. Transcription 2016, 7, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Ganapathi, R.N.; Ganapathi, M.K. Mechanisms regulating resistance to inhibitors of topoisomerase II. Front. Pharmacol. 2013, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Coffey, R.J.; Osheroff, N.; Neufeld, K.L. Topoisomerase II alpha binding domains of adenomatous polyposis coli influence cell cycle progression and aneuploidy. PLoS ONE 2010, 5, e9994. [Google Scholar] [CrossRef]
- Lynch, B.J.; Guinee, D.G.; Holden, J.A. Human DNA topoisomerase II-alpha: A new marker of cell proliferation in invasive breast cancer. Hum. Pathol. 1997, 28, 1180–1188. [Google Scholar] [CrossRef]
- An, X.; Xu, F.; Luo, R.; Zheng, Q.; Lu, J.; Yang, Y.; Qin, T.; Yuan, Z.; Shi, Y.; Jiang, W.; et al. The prognostic significance of topoisomerase II alpha protein in early stage luminal breast cancer. BMC Cancer 2018, 18, 331. [Google Scholar] [CrossRef] [Green Version]
- Jamal, Q.M.S. Structural recognition and binding pattern analysis of human topoisomerase II alpha with steroidal drugs: In silico study to switchover the cancer treatment. Asian Pac. J. Cancer Prev. 2020, 21, 1349–1355. [Google Scholar] [CrossRef]
- Ma, Y.; North, B.J.; Shu, J. Regulation of topoisomerase II stability and activity by ubiquitination and SUMOylation: Clinical implications for cancer chemotherapy. Mol. Biol. Rep. 2021, 2021, 6589–6601. [Google Scholar] [CrossRef] [PubMed]
- Matias-Barrios, V.M.; Radaeva, M.; Ho, C.-H.; Lee, J.; Adomat, H.; Lallous, N.; Cherkasov, A.; Dong, X. Optimization of new catalytic topoisomerase II inhibitors as an anti-cancer therapy. Cancers 2021, 13, 3675. [Google Scholar] [CrossRef] [PubMed]
- Shigematsu, H.; Ozaki, S.; Yasui, D.; Yamamoto, H.; Zaitsu, J.; Taniyama, D.; Saitou, A.; Kuraoka, K.; Hirata, T.; Taniyama, K. Overexpression of topoisomerase II alpha protein is a factor for poor prognosis in patients with luminal B breast cancer. Oncotarget 2018, 9, 26701–26710. [Google Scholar] [CrossRef] [Green Version]
- Saturnino, C.; Caruso, A.; Iacopetta, D.; Rosano, C.; Ceramella, J.; Muià, N.; Mariconda, A.; Bonomo, M.G.; Ponassi, M.; Rosace, G.; et al. Inhibition of human topoisomerase II by N,N,N-trimethylethanammonium iodide alkylcarbazole derivatives. ChemMedChem 2018, 13, 2635–2643. [Google Scholar] [CrossRef]
- Nitiss, J.L. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer 2009, 9, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosendahl, A.H.; Perks, C.M.; Zeng, L.; Markkula, A.; Simonsson, M.; Rose, C.; Ingvar, C.; Holly, J.M.; Jernström, H. Caffeine and caffeic acid inhibit growth and modify estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer. Clin. Cancer Res. 2015, 21, 1877–1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Magalhães, C.S.; Takarada, J.E.; Carvalho, N.C.; Carvalho, D.C.; de Andrade, F.L.; Ferreira, E.B.; Luccas, P.O.; Azevedo, L. The coffee protective effect on catalase system in the preneoplastic induced rat liver. J. Chem. 2016, 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Tan, I.T.; Lin, A.Y. Coffee consumption and colorectal cancer prognosis. JAMA Oncol. 2021, 7, 778–779. [Google Scholar] [CrossRef]
- Leavitt, S.; Freire, E. Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr. Opin. Struct. Biol. 2001, 11, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, Y.; Lv, C.; Wang, L.; Ou, J.; Wang, M.; Liu, S. Impact of halogen substituents on interactions between 2-phenyl-2,3-dihydroqulinazolin-4(1H)-one derivatives and human serum albumin. Molecules 2012, 17, 2000–2014. [Google Scholar] [CrossRef]
- Lu, N.; Li, H.; Bai, J.; Yang, Y.; Ou, Y.; Chen, Y.; Du, Y. Ferulic acid inhibits topoisomerase I of mycobacterium tuberculosis. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Bandele, O.J.; Clawson, S.J.; Osheroff, N. Dietary polyphenols as topoisomerase II poisons: B ring and C ring substituents determine the mechanism of enzyme-mediated DNA cleavage enhancement. Chem. Res. Toxicol. 2008, 21, 1253–1260. [Google Scholar] [CrossRef] [Green Version]
- Quideau, S.; Jourdes, M.; Lefeuvre, D.; Montaudon, D.; Saucier, C.; Glories, Y.; Pardon, P.; Pourquier, P. The Chemistry of wine polyphenolic C-glycosidic ellagitannins targeting human topoisomerase II. Chem. Eur. J. 2005, 11, 6503–6513. [Google Scholar] [CrossRef]
- Jain, C.K.; Majumder, H.K.; Roychoudhury, S. Natural compounds as anticancer agents targeting DNA topoisomerases. Curr. Genom. 2017, 18, 75–92. [Google Scholar] [CrossRef] [Green Version]
- Kitdumrongthum, S.; Reabroi, S.; Suksen, K.; Tuchinda, P.; Munyoo, B.; Mahalapbutr, P.; Rungrotmongkol, T.; Ounjai, P.; Chairoungdua, A. Inhibition of topoisomerase IIα and induction of DNA damage in cholangiocarcinoma cells by altholactone and its halogenated benzoate derivatives. Biomed. Pharmacother. 2020, 127, 110149. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.M.; Gamblin, S.J.; Harrison, S.C.; Wang, J.C. Structure and mechanism of DNA topoisomerase II. Nature 1996, 379, 225–232. [Google Scholar] [CrossRef]
- Champou, J.J. DNA topisomerases: Structure, function, and mechanism. Annu. Rev. Biochem. 2001, 70, 369–413. [Google Scholar] [CrossRef] [Green Version]
- Corbett, K.D.; Shultzaberger, R.K.; Berger, J.M. The C-terminal domain of DNA gyrase A adopts a DNA-bending β-pinwheel fold. Proc. Natl. Acad. Sci. USA 2004, 101, 7293–7298. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Wu, J.; Liu, W.; Zhu, D.; Hu, Y.; Deng, J.; Zhang, X.-E.; Bi, L.; Wang, D.-C. Crystal structure of DNA gyrase B′ domain sheds lights on the mechanism for T-segment navigation. Nucleic Acids Res. 2009, 37, 5908–5916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozuki, T.; Chikamori, K.; Surleac, M.D.; Micluta, M.A.; Petrescu, A.J.; Norris, E.J.; Elson, P.; Hoeltge, G.A.; Grabowski, D.R.; Porter, A.C.G.; et al. Roles of the C-terminal domains of topoisomerase IIα and topoisomerase IIβ in regulation of the decatenation checkpoint. Nucleic Acids Res. 2017, 45, 5995–6010. [Google Scholar] [CrossRef]
- Grzelczyk, J.; Szwajgier, D.; Baranowska-Wójcik, B.; Budryn, G.; Zakłos-Szyda, M.; Sosnowska, B. Bioaccessibility of coffee bean hydroxycinnamic acids during in vitro digestion influenced by the degree of roasting and activity of intestinal probiotic bacteria, and their activity in Caco-2 and HT29 cells. Food Chem. 2022, 392, 133328. [Google Scholar] [CrossRef]
- Alves, G.; Lobo, L.A.; Domingues, R.M.C.P.; Monteiro, M.; Perrone, D. Bioaccessibility and gut metabolism of free and melanoidin-bound phenolic compounds from coffee and bread. Front Nutr. 2021, 8, 708928. [Google Scholar] [CrossRef]
- Grzelczyk, J.; Szwajgier, D.; Baranowska-Wójcik, E.; Pérez-Sánchez, H.; Carmena-Bargueño, M.; Sosnowska, B.; Budryn, G. Effect of inhibiting butyrylcholinesterase activity using fractionated coffee extracts digested in vitro in gastrointestinal tract: Docking simulation and calorimetric studies. Nutrients 2023, 15, 2366. [Google Scholar] [CrossRef]
- Grzelczyk, J.; Budryn, G.; Peña-García, J.; Szwajgier, D.; Gałązka-Czarnecka, I.; Oracz, J.; Pérez-Sánchez, H. Evaluation of the inhibition of monoamine oxidase A by bioactive coffee compounds protecting serotonin degradation. Food Chem. 2021, 30, 129108. [Google Scholar] [CrossRef]
- Szwajgier, D.; Paduch, R.; Kukuła-Koch, W.; Polak-Berecka, M.; Waśko, A. Study on biological activity of bread enriched with natural polyphenols in terms of growth inhibition of tumor intestine cells. J. Med. Food 2020, 23, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Luniewski, W.; Wietrzyk, K.; Godlewska, J.; Switalska, M.; Piskozub, M.; Peczynska-Czoch, W.; Kaczmarek, L. New derivatives of 11-methyl-6-[2-(dimethylamino)ethyl]-6H-indolo[2,3-b]quinoline as cytotoxic DNA topoisomerase II inhibitors. Bioorganic Med. Chem. Lett. 2012, 22, 6103–6107. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron 1980, 36, 3219–3228. [Google Scholar] [CrossRef]
Compound | ∆H (kJ/mol) ITC | ∆G (kJ/mol) ITC | ∆G (kJ/mol) Docking Simulation | ∆S (J/mol×K) ITC |
---|---|---|---|---|
Caffeic acid | −9.04 ± 0.25 a | −33.54 ± 1.09 a | −26.37 | 0.08 ± 0.0 a |
Ferulic acid | −17.33 ± 0.15 b | −71.18 ± 1.15 b | −25.96 | 0.02 ± 0.00 b |
Monochlorogenic acids | ||||
3-O-Caffeoylquinic acid | −9.09 ± 0.35 a | −33.54 ± 1.25 a | −43.96 | 0.08 ± 0.02 a |
4-O-Caffeoylquinic acid | −9.17 ± 0.15 a | −33.62 ± 1.33 a | −44.38 | 0.08 ± 0.01 a |
5-O-Caffeoylquinic acid | −9.21 ± 0.35 a | −33.49 ± 1.39 a | −42.70 | 0.08 ± 0.01 a |
Dichlorogenic acids | ||||
3,5-Di-O-caffeoylquinic acid | −8.00 ± 0.45 c,a | −33.87 ± 1.39 a | −49.40 | 0.08 ± 0.02 a |
4,5-Di-O-caffeoylquinic acid | −1.78 ± 0.15 d | −37.64 ± 1.35 c | −57.35 | 0.12 ± 0.02 c |
Dihydrocaffeic acid | −6.49 ± 0.29 e | −34.42 ± 1.33 d | −51.33 | 0.09 ± 0.03 d |
Other compounds | ||||
Caffeine | −6.28 ± 0.45 e | −34.50 ± 1.15 d | −19.28 | 0.09 ± 0.01 d |
5-(Hydroxymethyl)furfural | nd | nd | - | nd |
Acrylamide | nd | nd | - | nd |
Type of Coffee Extract | ∆H (kJ/mol) | ∆G (kJ/mol) | ∆S (J/mol×K) |
---|---|---|---|
Before in vitro digestion | |||
Green Arabica | −9.59 ± 0.49 a | −33.41 ± 1.45 a | 0.32 ± 0.09 a |
Light roasted Arabica | −9.21 ± 0.39 a | −33.49 ± 1.39 a | 0.33 ± 0.02 a |
Dark roasted Arabica | −9.63 ± 0.33 a | −33.45 ± 1.35 a | 0.32 ± 0.06 a |
Green Robusta | −13.82 ± 0.39 b | −38.23 ± 1.33 b | 0.33 ± 0.01 a |
Light roasted Robusta | −10.06 ± 0.35 c | −33.62 ± 1.39 a | 0.32 ± 0.02 a |
Dark roasted Robusta | −10.37 ± 0.35 c | −34.92 ± 1.39 a | 0.33 ± 0.03 a |
Gastric Phase | |||
Green Arabica | −7.45 ± 0.33 d | −31.82 ± 1.49 c | 0.08 ± 0.00 b |
Light roasted Arabica | −7.29 ± 0.39 d | −31.40 ± 1.35 c | 0.08 ± 0.00 b |
Dark roasted Arabica | −7.24 ± 0.25 d | −31.61 ± 1.22 c | 0.08 ± 0.01 b |
Green Robusta | −26.17 ± 1.05 e | −34.16 ± 1.15 a | 0.03 ± 0.00 c |
Light roasted Robusta | −13.94 ± 0.55 b | −34.12 ± 1.15 a | 0.07 ± 0.01 c |
Dark roasted Robusta | −7.33 ± 0.35 d | −34.04 ± 1.45 a | 0.09 ± 0.01 b |
Small Intestine Phase | |||
Green Arabica | −1.63 ± 0.49 e | −37.56 ± 1.10 b | 0.12 ± 0.01 d |
Light roasted Arabica | −1.62 ± 0.35 e | −37.22 ± 1.09 b | 0.11 ± 0.00 d |
Dark roasted Arabica | −1.58 ± 0.05 e | −31.61 ± 1.09 c | 0.10 ± 0.02 d |
Green Robusta | −2.37 ± 0.15 f | −38.48 ± 1.33 b | 0.12 ± 0.00 d |
Light roasted Robusta | −1.79 ± 0.15 e | −38.31 ± 1.33 b | 0.12 ± 0.01 d |
Dark roasted Robusta | −1.71 ± 0.25 e | −38.18 ± 1.25 b | 0.12 ± 0.01 d |
Large Intestine Phase after 4 h | |||
Green Arabica | −1.09 ± 0.49 e | −37.56 ± 1.19 b | 0.12 ± 0.01 d |
Light roasted Arabica | −0.96 ± 0.29 g | −35.71 ± 1.2 a | 0.11 ± 0.01 d |
Dark roasted Arabica | −0.81 ± 0.15 g | −33.83 ± 1.34 c | 0.11 ± 0.00 d |
Green Robusta | −2.11 ± 0.49 f | −40.07 ± 1.05 d | 0.12 ± 0.01 d |
Light roasted Robusta | −1.88 ± 0.35 e | −39.61 ± 1.15 d | 0.12 ± 0.01 d |
Dark roasted Robusta | −1.79 ± 0.39 e | −37.85 ± 1.22 a | 0.12 ± 0.01 d |
Large Intestine Phase after 10 h | |||
Green Arabica | −0.92 ± 0.10 g | −36.51 ± 2.35 b | 0.11 ± 0.00 d |
Light roasted Arabica | −0.88 ± 0.05 g | −36.34 ± 2.33 b | 0.11 ± 0.00 d |
Dark roasted Arabica | −0.79 ± 0.03 g | −33.49 ± 2.25 a | 0.11 ± 0.00 d |
Green Robusta | −1.77 ± 0.15 e | −39.90 ± 2.05 a | 0.12 ± 0.01 d |
Light roasted Robusta | −1.70 ± 0.33 e | −38.23 ± 2.15 b | 0.12 ± 0.03 d |
Dark roasted Robusta | −1.01 ± 0.19 e | −38.10 ± 2.09 b | 0.12 ± 0.02 d |
Large Intestine Phase + probiotic bacteria after 4 h | |||
Green Arabica | −1.68 ± 0.19 e | −36.93 ± 1.49 b | 0.11 ± 0.01 d |
Light roasted Arabica | −1.64 ± 0.33 e | −36.38 ± 1.33 b | 0.11 ± 0.01 d |
Dark roasted Arabica | −1.58 ± 0.59 e | −35.80 ± 1.95 b | 0.11 ± 0.02 d |
Green Robusta | −9.13 ± 1.05 a | −42.33 ± 2.25 d | 0.11 ± 0.00 d |
Light roasted Robusta | −6.36 ± 0.45 | −42.20 ± 2.19 d | 0.12 ± 0.01 d |
Dark roasted Robusta | −2.14 ± 0.15 f | −41.87 ± 2.05 d | 0.13 ± 0.00 d |
Large Intestine Phase + probiotic bacteria after 10 h | |||
Green Arabica | −1.67 ± 0.45 e | −35.34 ± 1.15 b | 0.11 ± 0.00 d |
Light roasted Arabica | −1.61 ± 0.49 e | −34.00 ± 1.49 c | 0.10 ± 0.00 d |
Dark roasted Arabica | −1.60 ± 0.35 e | −33.87 ± 1.35 c | 0.10 ± 0.02 d |
Green Robusta | −8.16 ± 0.55 d | −41.66 ± 1.33 d | 0.11 ± 0.01 d |
Light roasted Robusta | −6.03 ± 0.39 d | −41.37 ± 1.39 d | 0.11 ± 0.01 d |
Dark roasted Robusta | −2.72 ± 0.45 f | −40.95 ± 1.45 d | 0.12 ± 0.02 d |
Type of Coffee Fraction | ∆H (kJ/mol) | ∆G (kJ/mol) | ∆S (J/mol×K) | |
---|---|---|---|---|
Before in vitro digestion | ||||
Green Arabica | Monochlorogenic acids | −1.28 ± 0.45 a | −22.73 ± 1.45 a | 0.07 ± 0.00 a |
Dichlorogenic acids | −1.25 ± 0.09 a | −22.90 ± 1.02 a | 0.07 ± 0.00 a | |
Caffeine | −1.01 ± 0.15 a | −22.73 ± 1.39 a | 0.07 ± 0.00 a | |
Light roasted Arabica | Monochlorogenic acids | −1.26 ± 0.18 a | −23.11 ± 1.33 a | 0.07 ± 0.00 a |
Dichlorogenic acids | −1.24 ± 0.39 a | −22.86 ± 1.45 a | 0.07 ± 0.00 a | |
Caffeine | −1.35 ± 0.45 a | −29.39 ± 2.15 b | 0.09 ± 0.00 b | |
Dark roasted Arabica | Monochlorogenic acids | −0.75 ± 0.01 b | −23.24 ± 1.19 a | 0.07 ± 0.00 a |
Dichlorogenic acids | −0.52 ± 0.05 b | −19.51 ± 1.18 a | 0.06 ± 0.00 a | |
Caffeine | −1.01 ± 0.09 a | −30.23 ± 2.21 c | 0.09 ± 0.00 b | |
Green Robusta | Monochlorogenic acids | −2.40 ± 0.15 c | −35.80 ± 2.25 d | 0.10 ± 0.00 b |
Dichlorogenic acids | −1.44 ± 0.02 a | −23.24 ± 1.19 a | 0.07 ± 0.00 a | |
Caffeine | −1.12 ± 0.10 a | −22.52 ± 1.15 a | 0.07 ± 0.00 a | |
Light roasted Robusta | Monochlorogenic acids | −1.35 ± 0.05 a | −23.40 ± 2.26 a | 0.07 ± 0.00 a |
Dichlorogenic acids | −1.37 ± 0.01 a | −29.60 ± 3.21 b | 0.09 ± 0.00 b | |
Caffeine | −1.35 ± 0.01 a | −29.43 ± 1.12 b | 0.09 ± 0.00 b | |
Dark roasted Robusta | Monochlorogenic acids | −1.37 ± 0.01 a | −29.56 ± 3.33 b | 0.09 ± 0.00 b |
Dichlorogenic acids | −1.36 ± 0.02 a | −29.52 ± 2.19 b | 0.09 ± 0.00 b | |
Caffeine | −1.35 ± 0.03 a | −29.43 ± 2.22 b | 0.09 ± 0.00 b | |
Gastric Phase | ||||
Green Arabica | Monochlorogenic acids | −0.78 ± 0.02 b | −33.14 ± 2.10 c | 0.10 ± 0.00 b |
Dichlorogenic acids | −1.83 ± 0.01 a | −29.54 ± 1.00 b | 0.09 ± 0.00 b | |
Caffeine | −1.60 ± 0.02 a | −29.91 ± 2.20 b | 0.09 ± 0.00 b | |
Light roasted Arabica | Monochlorogenic acids | −0.87 ± 0.02 b | −32.84 ± 1.15 c | 0.10 ± 0.00 b |
Dichlorogenic acids | −1.63 ± 0.01 a | −29.83 ± 1.45 b | 0.09 ± 0.00 b | |
Caffeine | −1.52 ± 0.09 a | −30.04 ± 1.39 c | 0.09 ± 0.00 b | |
Dark roasted Arabica | Monochlorogenic acids | −0.46 ± 0.04 b | −34.56 ± 2.28 c | 0.11 ± 0.00 b |
Dichlorogenic acids | −0.48 ± 0.00 b | −34.48 ± 3.25 c | 0.11 ± 0.00 b | |
Caffeine | −0.60 ± 0.01 b | −33.85 ± 3.05 c | 0.11 ± 0.00 b | |
Green Robusta | Monochlorogenic acids | −1.63 ± 0.09 a | −29.83 ± 2.09 b | 0.09 ± 0.00 b |
Dichlorogenic acids | −1.67 ± 0.12 a | −29.79 ± 1.15 b | 0.09 ± 0.00 b | |
Caffeine | −1.78 ± 0.01 a | −29.62 ± 1.11 b | 0.09 ± 0.00 b | |
Light roasted Robusta | Monochlorogenic acids | −1.60 ± 0.10 a | −29.91 ± 1.09 b | 0.09 ± 0.00 b |
Dichlorogenic acids | −1.52 ± 0.09 a | −29.54 ± 1.45 b | 0.09 ± 0.00 b | |
Caffeine | −1.67 ± 0.08 a | −29.79 ± 1.33 b | 0.09 ± 0.00 b | |
Dark roasted Robusta | Monochlorogenic acids | −0.52 ± 0.00 b | −34.23 ± 1.19 c | 0.11 ± 0.00 b |
Dichlorogenic acids | −0.34 ± 0.02 b | −34.02 ± 1.45 c | 0.11 ± 0.00 b | |
Caffeine | −0.35 ± 0.01 b | −32.97 ± 1.39 c | 0.10 ± 0.00 b | |
Small Intestine Phase | ||||
Green Arabica | Monochlorogenic acids | −16.91 ± 0.45 f | −27.59 ± 1.95 b | 0.47 ± 0.01 c |
Dichlorogenic acids | −17.21 ± 0.55 f | −33.79 ± 1.81 c | 0.53 ± 0.02 c | |
Caffeine | −16.12 ± 0.39 f | −26.92 ± 1.45 b | 0.87 ± 0.01 d | |
Light roasted Arabica | Monochlorogenic acids | −14.00 ± 0.29 e | −26.71 ± 1.55 b | 0.02 ± 0.00 a |
Dichlorogenic acids | −15.85 ± 0.15 f | −27.30 ± 1.39 b | 0.97 ± 0.03 d | |
Caffeine | −17.04 ± 0.10 f | −33.70 ± 1.49 c | 0.97 ± 0.02 d | |
Dark roasted Arabica | Monochlorogenic acids | −9.38 ± 0.02 d | −27.42 ± 1.55 b | 0.26 ± 0.02 e |
Dichlorogenic acids | −6.53 ± 0.09 d | −23.70 ± 1.15 a | 0.42 ± 0.01 c | |
Caffeine | −12.73 ± 0.10 e | −34.42 ± 1.25 c | 0.02 ± 0.00 a | |
Green Robusta | Monochlorogenic acids | −30.14 ± 0.45 g | −39.98 ± 1.35 d | 0.76 ± 0.01 f |
Dichlorogenic acids | −18.07 ± 0.55 f | −27.42 ± 1.49 b | 0.21 ± 0.02 e | |
Caffeine | −17.14 ± 0.39 f | −33.75 ± 1.15 c | 0.59 ± 0.00 c | |
Light roasted Robusta | Monochlorogenic acids | −16.98 ± 0.22 f | −33.62 ± 1.25 c | 0.73 ± 0.0 f |
Dichlorogenic acids | −15.51 ± 0.29 f | −27.05 ± 1.35 b | 0.24 ± 0.01 e | |
Caffeine | −17.00 ± 0.15 f | −33.62 ± 2.09 c | 0.66 ± 0.0 f | |
Dark roasted Robusta | Monochlorogenic acids | −15.70 ± 0.39 f | −27.09 ± 1.25 b | 0.77 ± 0.03 f |
Dichlorogenic acids | −12.62 ± 0.05 e | −26.92 ± 1.54 b | 0.16 ± 0.02 b | |
Caffeine | −16.98 ± 0.10 f | −33.58 ± 2.19 c | 0.59 ± 0.01 c | |
Large Intestine Phase after 4 h | ||||
Green Arabica | Monochlorogenic acids | −2.21 ± 0.09 c | −37.26 ± 1.15 d | 0.11 ± 0.00 b |
Dichlorogenic acids | −1.52 ± 0.02 a | −38.31 ± 1.59 d | 0.12 ± 0.00 b | |
Caffeine | −1.88 ± 0.01 a | −37.72 ± 2.23 d | 0.12 ± 0.00 b | |
Light roasted Arabica | Monochlorogenic acids | −2.16 ± 0.05 c | −37.35 ± 1.09 d | 0.11 ± 0.00 b |
Dichlorogenic acids | −1.65 ± 0.04 a | −38.06 ± 1.21 d | 0.12 ± 0.00 b | |
Caffeine | −1.74 ± 0.01 a | −37.93 ± 2.19 d | 0.12 ± 0.00 b | |
Dark roasted Arabica | Monochlorogenic acids | −1.93 ± 0.02 a | −37.64 ± 2.03 d | 0.12 ± 0.00 b |
Dichlorogenic acids | −1.54 ± 0.03 a | −38.27 ± 1.55 d | 0.12 ± 0.00 b | |
Caffeine | −1.77 ± 0.01 a | −37.89 ± 1.65 d | 0.12 ± 0.00 b | |
Green Robusta | Monochlorogenic acids | −3.81 ± 0.02 c | −35.84 ± 1.36 d | 0.10 ± 0.00 b |
Dichlorogenic acids | −8.16 ± 0.02 d | −33.83 ± 2.29 c | 0.09 ± 0.00 b | |
Caffeine | −1.87 ± 0.01 c | −37.72 ± 1.05 d | 0.12 ± 0.00 b | |
Light roasted Robusta | Monochlorogenic acids | −2.46 ± 0.10 c | −37.01 ± 1.95 d | 0.11 ± 0.00 b |
Dichlorogenic acids | −3.86 ± 0.01 c | −35.80 ± 1.15 c | 0.10 ± 0.00 b | |
Caffeine | −2.41 ± 0.15 c | −37.05 ± 2.89 d | 0.11 ± 0.00 b | |
Dark roasted Robusta | Monochlorogenic acids | −5.53 ± 0.45 e | −34.88 ± 1.49 c | 0.10 ± 0.00 b |
Dichlorogenic acids | −1.83 ± 0.15 a | −37.81 ± 1.55 d | 0.12 ± 0.00 b | |
Caffeine | −1.91 ± 0.01 a | −37.68 ± 1.75 d | 0.11 ± 0.00 b | |
Large Intestine Phase after 10 h | ||||
Green Arabica | Monochlorogenic acids | −0.75 ± 0.00 b | −32.95 ± 1.39 c | 0.09 ± 0.00 b |
Dichlorogenic acids | −1.13 ± 0.09 a | −28.54 ± 1.05 b | 0.09 ± 0.00 b | |
Caffeine | −1.25 ± 0.05 a | −28.91 ± 1.10 b | 0.09 ± 0.00 b | |
Light roasted Arabica | Monochlorogenic acids | −0.55 ± 0.02 b | −31.84 ± 1.02 c | 0.10 ± 0.00 b |
Dichlorogenic acids | −1.12 ± 0.02 a | −28.83 ± 1.01 b | 0.09 ± 0.00 b | |
Caffeine | −1.19 ± 0.02 a | −29.04 ± 1.43 c | 0.09 ± 0.00 b | |
Dark roasted Arabica | Monochlorogenic acids | −0.05 ± 0.01 b | −33.56 ± 2.35 c | 0.11 ± 0.00 b |
Dichlorogenic acids | −0.01 ± 0.01 b | −33.48 ± 2.12 c | 0.11 ± 0.00 b | |
Caffeine | −0.08 ± 0.00 b | −32.85 ± 2.15 c | 0.11 ± 0.00 b | |
Green Robusta | Monochlorogenic acids | −1.73 ± 0.03 a | −28.83 ± 1.09 b | 0.09 ± 0.00 b |
Dichlorogenic acids | −1.55 ± 0.09 a | −28.79 ± 1.21 b | 0.09 ± 0.00 b | |
Caffeine | −1.38 ± 0.05 a | −28.62 ± 1.35 b | 0.09 ± 0.00 b | |
Light roasted Robusta | Monochlorogenic acids | −1.18 ± 0.03 a | −28.91 ± 1.15 b | 0.09 ± 0.00 b |
Dichlorogenic acids | −1.52 ± 0.05 a | −28.54 ± 1.12 b | 0.09 ± 0.00 b | |
Caffeine | −1.14 ± 0.03 a | −28.79 ± 1.24 b | 0.09 ± 0.00 b | |
Dark roasted Robusta | Monochlorogenic acids | −0.45 ± 0.01 b | −33.23 ± 1.23 c | 0.11 ± 0.00 b |
Dichlorogenic acids | −0.26 ± 0.00 b | −33.02 ± 1.39 c | 0.11 ± 0.00 b | |
Caffeine | −0.11 ± 0.00 b | −31.97 ± 1.05 c | 0.10 ± 0.00 b | |
Large Intestine Phase + probiotic bacteria after 4 h | ||||
Green Arabica | Monochlorogenic acids | −11.28 ± 0.49 e | −31.78 ± 1.05 c | 0.18 ± 0.00 b |
Dichlorogenic acids | −10.75 ± 0.55 e | −31.11 ± 1.17 c | 0.73 ± 0.03 f | |
Caffeine | −9.34 ± 0.15 d | −30.90 ± 2.23 c | 0.61 ± 0.03 f | |
Light roasted Arabica | Monochlorogenic acids | −10.47 ± 0.15 e | −31.28 ± 1.26 c | 0.18 ± 0.02 b |
Dichlorogenic acids | −8.42 ± 0.45 d | −31.11 ± 2.24 c | 0.26 ± 0.02 e | |
Caffeine | −11.32 ± 0.49 e | −37.76 ± 2.35 d | 0.38 ± 0.01 e | |
Dark roasted Arabica | Monochlorogenic acids | −6.25 ± 0.32 d | −31.61 ± 2.58 c | 0.87 ± 0.01 d |
Dichlorogenic acids | −4.35 ± 0.33 c | −27.88 ± 2.65 b | 0.96 ± 0.02 d | |
Caffeine | −10.56 ± 0.39 d | −31.48 ± 1.22 c | 0.54 ± 0.01 c | |
Green Robusta | Monochlorogenic acids | −20.10 ± 0.01 | −44.17 ± 2.55 e | 0.72 ± 0.012 f |
Dichlorogenic acids | −12.04 ± 0.05 e | −31.61 ± 1.94 c | 0.17 ± 0.00 b | |
Caffeine | −11.47 ± 0.10 e | −37.97 ± 2.87 d | 0.56 ± 0.02 c | |
Light roasted Robusta | Monochlorogenic acids | −11.33 ± 0.11 e | −37.81 ± 1.45 d | 0.65 ± 0.02 f |
Dichlorogenic acids | −8.49 ± 0.02 d | −38,60. ± 1.98 d | 0.23 ± 0.01 e | |
Caffeine | −11.43 ± 0.05 e | −37.93 ± 2.22 d | 0.56 ± 0.01 c | |
Dark roasted Robusta | Monochlorogenic acids | −11.36 ± 0.01 e | −37.89 ± 1.39 d | 0.65 ± 0.012 f |
Dichlorogenic acids | −10.56 ± 0.15 e | −31.48 ± 1.55 c | 0.54 ± 0.01 c | |
Caffeine | −11.32 ± 0.10 d | −37.81 ± 1.25 d | 0.52 ± 0.01 c | |
Large Intestine Phase + probiotic bacteria after 10 h | ||||
Green Arabica | Monochlorogenic acids | −7.62 ± 0.39 d | −34.04 ± 1.05 c | 0.09 ± 0.00 b |
Dichlorogenic acids | −1.81 ± 0.33 a | −37.85 ± 1.22 d | 0.12 ± 0.00 b | |
Caffeine | −8.16 ± 0.45 d | −33.83 ± 2.29 c | 0.08 ± 0.00 a | |
Light roasted Arabica | Monochlorogenic acids | −1.69 ± 0.05 a | −38.02 ± 2.39 d | 0.12 ± 0.00 b |
Dichlorogenic acids | −1.56 ± 0.02 a | −38.23 ± 1.18 d | 0.12 ± 0.00 b | |
Caffeine | −2.62 ± 0.45 c | −36.84 ± 1.45 d | 0.11 ± 0.00 b | |
Dark roasted Arabica | Monochlorogenic acids | −1.39 ± 0.03 a | −38.56 ± 1.35 d | 0.12 ± 0.00 b |
Dichlorogenic acids | −1.44 ± 0.02 a | −38.48 ± 2.45 d | 0.12 ± 0.00 b | |
Caffeine | −8.37 ± 0.11 d | −33.79 ± 2.49 c | 0.08 ± 0.00 a | |
Green Robusta | Monochlorogenic acids | −9.13 ± 0.22 d | −37.14 ± 1.39 d | 0.11 ± 0.00 b |
Dichlorogenic acids | −9.17 ± 0.09 d | −33.54 ± 1.61 c | 0.08 ± 0.00 a | |
Caffeine | −7.00 ± 0.25 d | −33.91 ± 1.75 c | 0.08 ± 0.00 a | |
Light roasted Robusta | Monochlorogenic acids | −8.16 ± 0.12 d | −33.83 ± 2.82 c | 0.08 ± 0.00 a |
Dichlorogenic acids | −8.33 ± 0.09 d | −33.79 ± 2.55 c | 0.08 ± 0.00 a | |
Caffeine | −8.92 ± 0.45 d | −33.62 ± 1.55 c | 0.08 ± 0.00 a | |
Dark roasted Robusta | Monochlorogenic acids | −8.00 ± 0.57 d | −33.91 ± 2.59 c | 0.08 ± 0.00 a |
Dichlorogenic acids | −2.35 ± 0.49 c | −33.54 ± 1.49 c | 0.08 ± 0.00 a | |
Caffeine | −2.49 ± 0.25 c | −35.97 ± 1.55 d | 0.11 ± 0.00 b |
Sequence | ∆G (kJ/mol) | Interaction | ||
---|---|---|---|---|
Hydrogen | Hydrophobic | Salt Bridges | ||
3CQA; 4CQA; 5CQA | −47.61 | Thr49 (2.25 Å, 1.93 Å), Arg162 (2.71 Å, 1.94 Å), Asn163 (2.04 Å), Pro371 (2.14 Å, 2.09 Å), Phe373 (1.94 Å, 1.98 Å), Gln376 (1.99 Å) | Arg162 (3.47 Å), Tyr165 (3.66 Å), Thr372 (3.81 Å), Gln376 (3.93) | Arg162 (3.66 Å) |
3CQA; 5CQA; 4CQA | −47.61 | Asp48 (2.04 Å), Pro79 (2.04 Å), Tyr82 (1.84 Å), Lys (2.19 Å), Ala318 (2.16 Å, 2.76 Å), Ser320 (2.86 Å), Thr377 (2.74 Å), Glu379 (1.99 Å) | Pro79 (3.58 Å), Ala318 (3.59 Å), Thr377 (3.26 Å), | Lys83 (3.92 Å), Arg241 (3.72 Å) |
4CQA; 3CQA; 5CQA | −46.82 | Pro79 (2.06 Å), Lys321 (3.51 Å), Asp374 (2.29 Å), Thr377 (1.87 Å), Glu379 (2.28 Å), Asn380 (2.38 Å) | Pro79 (3.67 Å), Lys83 (3.63 Å), Asp374 (3.35 Å), Thr377 (3.18 Å) | Lys321 (2.56 Å) |
4CQA; 5CQA; 3CQA | −46.82 | Pro79 (1.93 Å), Asp374 (2.17 Å), Thr377 (1.83 Å), Glu379 (2.18 Å) | Pro79 (3.60 Å), Lys83 (3.60 Å), Asp (3.29 Å), Thr377 (3.31 Å) | Lys321 (2.63 Å, 4.17 Å) |
5CQA; 3CQA; 4CQA | −44.52 | Pro79 (1.89 Å), Tyr82 (2.98 Å; 2.39 Å, 3.39 Å), Ala318 (1.93 Å), Lys321 (2.05 Å), Thr377 (3.08) | Pro79 (3.50 Å), Asp86 (3.38 Å), Thr377 (3.57 Å) | Lys83 (3.71 Å, 4.75 Å), Arg242 (4.10 Å) |
5CQA; 4CQA; 3CQA | −44.52 | Ile51 (1.74 Å), Tyr82 (3.12 Å), Lys83 (3.43 Å), Asp86 (2.90 Å), Arg241 (3.44 Å), Ala318 (3.36 Å), Lys321 (2.91 Å), Ser375 (2.03 Å), Thr377 (2.04 Å, 2.14 Å), Glu379 (3.00 Å, 2.10 Å) | Tyr82 (3.40 Å, 3.68 Å), Thr377 (3.42 Å), | - |
3,4-DCQA; 3,5,-DCQA; 4,5-DCQA | −54.64 | Asp94 (1.86 Å), Gln97 (3.08 Å), Asn150 (2.48 Å), Glu155 (2.44 Å), Lys156 (2.34 Å), Lys157 (2.07 Å), Val158 (2.06 Å) | Asp94 (3.34 Å), Arg98 (3.57 Å) Lys157 (3.42 Å), Thr159 (3.26 Å) | Arg98 (5.26 Å), Lys157 (4.11 Å, 4.17 Å) |
3,4-DCQA; 4,5,-DCQA; 3,5-DCQA | −54.64 | Gln97 (2.79 Å, 2.93 Å), Arg98 (2.69 Å, 2.28 Å), Ser149 (2.45 Å), Tyr151 (3.30 Å), Lys157 (1.95 Å), Val158 (1.84 Å) | Gln97 (3.57 Å), Arg98 (3.45 Å), Lys157 (3.83 Å, 3.62 Å), Thr159 (3.33 Å) | Arg98 (5.14 Å) Lys157 (3.67 Å) |
3,5-DCQA; 3,4,-DCQA; 4,5-DCQA | −48.70 | Glu133 (2.85 Å, 1.95 Å), Asp162 (1.96 Å, 1.95 Å) | Ile125 (3.32 Å), Val137 (3.19 Å), Leu140 (3.26 Å), Thr147 (3.21 Å) | Agr98 (3.02 Å), Lys157 (5.22 Å) |
3,5-DCQA; 4,5,-DCQA; 3,4-DCQA | −48.70 | Ser148 (1.95 Å), Tyr151 (2.13 Å, 3.16 Å), Lys156 (2.79 Å), Val158 (2.16 Å) | Gln97 (3.99 Å), Asp152 (3.26 Å), Lys157 (3.68 Å) | Agr98 (3.20 Å, 5.34 Å), Lys157 (4.33 Å, 4.74 Å) |
4,5-DCQA; 3,4,-DCQA; 3,5-DCQA | −56.53 | Gln97 (3.14 Å, 3.01 Å), Arg98 (2.72 Å, 2.26 Å), His130 (1.83 Å), Ser149 (2.42 Å), Lys157 (2.27 Å), Val158 (1.92 Å) | Gln97 (3.67 Å), Arg98 (3.52 Å), Leu140 (3.66 Å), Ile141 (3.13 Å), Thr147 (3.99 Å), Lys157 (3.91 Å, 3.62 Å), Thr159 (3.39 Å) | Arg98 (5.35 Å), Lys157 (3.75 Å) |
4,5-DCQA; 3,5,-DCQA; 3,4-DCQA | −56.53 | Leu146 (1.95 Å), Ser148 (3.34 Å, 3.03 Å), Tyr151 (2.45 Å), Asp152 (2.87 Å, 2.06 Å), Glu155 (1.89 Å, 2.18 Å) | Val137 (3.29 Å), Ile141 (3.63 Å), Tyr151 (3.29 Å) | His130 (5.06 Å) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzelczyk, J.; Pérez-Sánchez, H.; Carmena-Bargueño, M.; Oracz, J.; Budryn, G. Effects of In Vitro Digestion of Polyphenols from Coffee on Binding Parameters to Human Topoisomerase II α. Molecules 2023, 28, 5996. https://doi.org/10.3390/molecules28165996
Grzelczyk J, Pérez-Sánchez H, Carmena-Bargueño M, Oracz J, Budryn G. Effects of In Vitro Digestion of Polyphenols from Coffee on Binding Parameters to Human Topoisomerase II α. Molecules. 2023; 28(16):5996. https://doi.org/10.3390/molecules28165996
Chicago/Turabian StyleGrzelczyk, Joanna, Horacio Pérez-Sánchez, Miguel Carmena-Bargueño, Joanna Oracz, and Grażyna Budryn. 2023. "Effects of In Vitro Digestion of Polyphenols from Coffee on Binding Parameters to Human Topoisomerase II α" Molecules 28, no. 16: 5996. https://doi.org/10.3390/molecules28165996
APA StyleGrzelczyk, J., Pérez-Sánchez, H., Carmena-Bargueño, M., Oracz, J., & Budryn, G. (2023). Effects of In Vitro Digestion of Polyphenols from Coffee on Binding Parameters to Human Topoisomerase II α. Molecules, 28(16), 5996. https://doi.org/10.3390/molecules28165996