Diverse Coordination Chemistry of the Whole Series Rare-Earth L-Lactates: Synthetic Features, Crystal Structure, and Application in Chemical Solution Deposition of Ln2O3 Thin Films
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of RE Lactates
2.2. Crystal Structures of RE Lactates
2.2.1. Crystal Structures of Type 1-Ln (Ln = La, Pr)
2.2.2. Crystal Structures of Type 2-Ln (Ln = La, Ce, Pr)
2.2.3. Crystal Structures of Types 3-Ln and 4-Ln (Ln = Sm–Lu, Y)
2.3. Thermal Decomposition of RE Lactates
2.4. Ln2O3 Thin Films
3. Materials and Methods
3.1. Synthesis and Crystal Growth of RE Lactates
- [La(H2O)2Lact3]∞ (1-La). Calc. for C9H19LaO11 (%): La, 31.42; C, 24.45; H, 4.33. Found (%): La, 31.3; C, 24.8; H, 4.5. FTIR (ATR, ν, cm−1): 3338sh, 3264, 2992w, 2935vw, 2876vw (νOH, νCH); 1705w; 1698w; 1668w (δH2O); 1590sh, 1557s (νasCOO); 1486sh, 1477sh, 1465 (δasCH3); 1439vw; 1425w, 1391 (νsCOO, δCOH); 1375w; 1365, 1359sh, 1351sh (δsCH3); 1319; 1284; 1242s; 1130s; 1117s; 1093; 1055; 1037; 937; 864; 815; 773, 765 (δCOO); 660.
- [Ce(H2O)2Lact3]∞ (1-Ce). Calc. for C9H19CeO11 (%): Ce, 31.60; C, 24.38; H, 4.32. Found (%): Ce, 31.5; C, 24.3; H, 4.3. FTIR (ATR, ν, cm−1): 3335sh, 3256, 2993w, 2936vw, 2877vw (νOH, νCH); 1705w; 1695sh; 1664w (δH2O); 1588sh, 1557s (νasCOO); 1485sh, 1478sh, 1464 (δasCH3); 1439w; 1425w, 1388 (νsCOO, δCOH); 1364, 1359, 1351 (δsCH3); 1318; 1283; 1243s; 1126s; 1117s; 1093; 1055; 1036; 937; 864; 815; 774, 764 (δCOO); 660.
- [Pr(H2O)2Lact3]∞ (1-Pr). Calc. for C9H19O11Pr (%): Pr, 31.73. Found (%): Pr, 31.6. FTIR (ATR, ν, cm−1): 3338sh, 3255, 2995w, 2939vw, 2879vw (νOH, νCH); 1704vw; 1694vw; 1662w (δH2O); 1591sh, 1558 (νasCOO); 1480, 1466 (δasCH3); 1440w; 1426w, 1391 (νsCOO, δCOH); 1375w; 1365, 1358, 1352sh (δsCH3); 1330; 1319; 1284; 1245s; 1130s; 1118s; 1094; 1056; 1037; 938; 865; 817; 774, 764 (δCOO); 660.
- [La2(H2O)5Lact6]∙H2O (2-La). Calc. for C18H42La2O24 (%): La, 30.19; C, 23.49; H, 4.60. Found (%): La, 30.4; C, 23.6; H, 4.5. FTIR (ATR, ν, cm−1): 3562sh, 3303sh, 3170, 2985vw, 2941vw (νOH, νCH); 1665w, 1653sh, 1645sh (δH2O); 1568s (νasCOO); 1475 (δasCH3); 1424sh, 1395 (νsCOO, δCOH); 1378sh; 1363 (δsCH3); 1320, 1277sh, 1268; 1232w; 1127; 1116s; 1089; 1041s; 932; 865; 845w; 774 (δCOO); 663.
- [Ce2(H2O)5Lact6]∙H2O (2-Ce). Calc. for C18H42Ce2O24 (%): Ce, 30.37; C, 23.43; H, 4.59. Found (%): Ce, 31.2; C, 23.0; H, 4.6. FTIR (ATR, ν, cm−1): 3319sh, 3203, 2986w, 2941vw (νOH, νCH); 1662vw, 1645sh (δH2O); 1564s (νasCOO); 1471vw, 1465sh, 1456sh (δasCH3); 1423sh, 1395 (νsCOO, δCOH); 1387sh; 1377sh; 1362 (δsCH3); 1319; 1280sh; 1266w; 1230sh; 1124sh; 1116s; 1089; 1041s; 932; 865; 845w; 819w; 774 (δCOO); 707sh; 660.
- [Pr2(H2O)5Lact6]∙H2O (2-Pr). Calc. for C18H42O24Pr2 (%): Pr, 30.49. Found (%): Pr, 30.6. FTIR (ATR, ν, cm−1): 3569vw, 3328sh, 3199, 2985vw, 2941vw (νOH, νCH); 1660, 1650sh (δH2O); 1567s, 1556sh (νasCOO); 1475 (δasCH3); 1426sh, 1398 (νsCOO, δCOH); 1389sh; 1384sh; 1376sh; 1363 (δsCH3); 1320; 1306sh; 1279w; 1266; 1126; 1116s; 1090; 1042s; 933w; 866; 848w; 816wv; 774 (δCOO); 711sh; 663.
- [Nd2(H2O)5Lact6]∙H2O (2-Nd). Calc. for C18H42Nd2O24 (%): Nd, 30.99. Found (%): Nd, 32.0. FTIR (ATR, ν, cm−1): 3319sh, 3195, 2980sh, 2975sh, 2967sh, 2942vw, 2936sh, 2897w, 2880w (νOH, νCH); 1659w, 1651sh (δH2O); 1570s, 1559sh (νasCOO); 1471, 1450vw (δasCH3); 1423sh, 1399 (νsCOO, δCOH); 1385sh; 1363 (δsCH3); 1320; 1280; 1266; 1223; 1126; 1116s; 1092; 1042s; 933; 866; 849; 812sh; 775 (δCOO); 710sh; 672; 663.
- [Sm(H2O)2Lact3] (3-Sm). Calc. for C9H19O11Sm (%): Sm, 33.15; C, 23.83; H, 4.22. Found (%): Sm, 33.2; C, 23.6; H, 4.3. FTIR (ATR, ν, cm−1): 3399, 3159sh, 3054, 2997, 2989, 2980sh, 2957w, 2943sh, 2883vw (νOH, νCH); 1668sh (δH2O); 1577s (νasCOO); 1481, 1470, 1456sh (δasCH3); 1427sh, 1407sh, 1404sh, 1391s (νsCOO, δCOH); 1365, 1358 (δsCH3); 1320sh; 1314s; 1281; 1270sh; 1263; 1111s; 1094; 1045s; 932; 863; 782, 776sh (δCOO); 759; 709; 665sh.
- [Eu(H2O)2Lact3] (3-Eu). Calc. for C9H19EuO11 (%): Eu, 33.38. Found (%): Eu, 33.7. FTIR (ATR, ν, cm−1): 3403, 3158sh, 3058, 2997, 2989, 2980sh, 2958w, 2938w, 2885sh (νOH, νCH); 1663sh (δH2O); 1583s (νasCOO); 1482, 1469, 1457sh (δasCH3); 1427sh, 1408sh, 1393s (νsCOO, δCOH); 1365, 1359 (δsCH3); 1321sh; 1314s; 1282; 1272; 1265; 1112s; 1095; 1046s; 932; 863; 783, 776sh (δCOO); 758; 712; 651.
- [Gd(H2O)2Lact3] (3-Gd). Calc. for C9H19GdO11 (%): Gd, 34.15. Found (%): Gd, 34.1. FTIR (ATR, ν, cm−1): 3403, 3161sh, 3074, 3013vw, 2998w, 2978vw, 2960w, 2946w, 2845vw (νOH, νCH); 1668sh (δH2O); 1585s (νasCOO); 1480, 1465 (δasCH3); 1409sh, 1394s (νsCOO, δCOH); 1372, 1358 (δsCH3); 1314s; 1278sh; 1263; 1115s; 1092sh; 1045s; 933; 864; 787, 768, 753sh (δCOO); 710; 651.
- [Tb(H2O)2Lact3] (3-Tb). Calc. for C9H19O11Tb (%): Tb, 34.39. Found (%): Tb, 34.1. FTIR (ATR, ν, cm−1): 3403, 3151sh, 3061, 2997, 2989, 2981sh, 2955w, 2938w, 2883sh (νOH, νCH); 1661sh (δH2O); 1580s (νasCOO); 1483, 1468, 1456sh (δasCH3); 1428sh, 1409sh, 1393s (νsCOO, δCOH); 1365, 1359 (δsCH3); 1321sh; 1315s; 1281sh; 1271sh; 1264; 1112s; 1096; 1046s; 933; 864; 783, 776sh (δCOO); 759sh; 715; 666sh; 651.
- [Dy(H2O)2Lact3] (3-Dy). Calc. for C9H19DyO11 (%): Dy, 34.89. Found (%): Dy, 35.3. FTIR (ATR, ν, cm−1): 3405, 3161sh, 3061, 2997w, 2990w, 2959sh, 2941sh, 2881vw (νOH, νCH); 1581s (νasCOO); 1485, 1468 (δasCH3); 1413sh, 1394s (νsCOO, δCOH); 1366w, 1359 (δsCH3); 1315s; 1282sh; 1273sh; 1265; 1123sh; 1112s; 1096; 1047s; 934; 864; 784, 775sh, 760sh (δCOO); 716; 651.
- [Ho(H2O)2Lact3] (3-Ho). Calc. for C9H19HoO11 (%): Ho, 35.23; C, 23.09; H, 4.09. Found (%): Ho, 35.9; C, 22.8; H, 4.2. FTIR (ATR, ν, cm−1): 3405, 3158sh, 3064, 2981, 2967, 2942sh, 2880vw (νOH, νCH); 1666sh (δH2O); 1583s (νasCOO); 1485, 1469 (δasCH3); 1415sh, 1395s (νsCOO, δCOH); 1366, 1359 (δsCH3); 1323sh; 1315; 1283sh; 1273sh; 1266; 1124sh; 1113s; 1096; 1047s; 934; 865; 785, 775sh (δCOO); 719; 651.
- [Er(H2O)2Lact3] (3-Er). Calc. for C9H19ErO11 (%): Er, 35.55. Found (%): Er, 35.6. FTIR (ATR, ν, cm−1): 3406, 3157sh, 3059, 3019vw, 2997sh, 2990, 2981sh, 2961w, 2940vw, 2878sh (νOH, νCH); 1666sh (δH2O); 1584s (νasCOO); 1487, 1469 (δasCH3); 1434sh, 1416sh, 1397s (νsCOO, δCOH); 1378sh; 1366, 1359 (δsCH3); 1324sh; 1316; 1283; 1273sh; 1267; 1125w; 1113s; 1096; 1047s; 935; 865; 786, 776sh (δCOO); 722; 673vw; 654.
- [Tm(H2O)2Lact3] (3-Tm). Calc. for C9H19O11Tm (%): Tm, 35.78. Found (%): Tm, 37.2. FTIR (ATR, ν, cm−1): 3408, 3158sh, 3062, 2996sh, 2989, 2983sh, 2966w, 2950vw 2931vw, 2879vw (νOH, νCH); 1663sh (δH2O); 1583s (νasCOO); 1487, 1469 (δasCH3); 1434sh, 1413sh, 1396s (νsCOO, δCOH); 1380; 1366, 1359 (δsCH3); 1322sh; 1316s; 1282sh; 1272sh; 1266; 1113s; 1097; 1048s; 935; 865; 785, 777sh (δCOO); 723.
- [Yb(H2O)2Lact3] (3-Yb). Calc. for C9H19O11Yb (%): Yb, 36.33. Found (%): Yb, 35.6. FTIR (ATR, ν, cm−1): 3419, 3167sh, 3062, 3001, 2983, 2941, 2892w (νOH, νCH); 1663sh (δH2O); 1583s (νasCOO); 1487, 1471 (δasCH3); 1434sh, 1414sh, 1398s (νsCOO, δCOH); 1379; 1364 (δsCH3); 1318s; 1284; 1267; 1126; 1114s; 1102sh; 1098sh; 1048s; 935; 866; 786, 777sh (δCOO); 722; 651.
- [Lu(H2O)2Lact3] (3-Lu). Calc. for C9H19LuO11 (%): Lu, 36.59. Found (%): Lu, 37.8. FTIR (ATR, ν, cm−1): 3408, 3146sh, 3066, 2996sh, 2990, 2983sh, 2941sh, 2879vw (νOH, νCH); 1667sh (δH2O); 1584s (νasCOO); 1485, 1470 (δasCH3); 1434sh, 1414sh, 1399s (νsCOO, δCOH); 1380; 1366, 1360 (δsCH3); 1323sh; 1316s; 1282sh, 1273sh, 1268; 1113s; 1098; 1049s; 936; 866; 786, 776sh (δCOO); 727.
- [Y(H2O)2Lact3] (3-Y). Calc. for C9H19O11Y (%): Y, 22.67; C, 27.57; H, 4.88. Found (%): Y, 23.4; C, 27.3; H, 4.9. FTIR (ATR, ν, cm−1): 3407, 3159sh, 3062, 2996sh, 2990, 2980sh, 2941sh, 2881vw (νsCOO, δCOH); 1583 (νasCOO); 1484, 1469 (δasCH3); 1416sh, 1396s (νsCOO, δCOH); 1377sh, 1365, 1359 (δsCH3); 1323sh; 1315s; 1283sh; 1275sh; 1266; 1124sh; 1113s; 1096; 1047s; 934; 865; 785, 775sh (δCOO); 719; 652.
- [Sm(H2O)2Lact3]∙H2O (4-Sm). Calc. for C9H21O12Sm (%): Sm, 31.88. Found (%): Sm, 31.8. FTIR (ATR, ν, cm–1): 3492vw, 3399w, 3157sh, 3068, 2997w, 2989w, 2979sh, 2959vw, 2941sh. 2883vw (νOH, νCH); 1634sh (δH2O); 1582s (νasCOO); 1480, 1467 (δasCH3); 1407sh, 1391s (νsCOO, δCOH); 1367, 1358 (δsCH3); 1322sh; 1314s; 1280sh; 1271sh; 1264; 1114s; 1094; 1045s; 932; 863; 782, 774sh (δCOO); 707; 650.
- [Eu(H2O)2Lact3]∙H2O (4-Eu). Calc. for C9H21EuO12 (%): Eu, 32.11. Found (%): Eu, 32.2. FTIR (ATR, ν, cm–1): 3492vw, 3402vw, 3157sh, 3084, 3014w, 2999w, 2978w, 2960vw, 2949vw (νOH, νCH); 1636 (δH2O); 1588s (νasCOO); 1479, 1465 (δasCH3); 1409s, 1396sh (νsCOO, δCOH); 1372, 1358 (δsCH3); 1315s; 1278; 1264; 1116s; 1092sh; 1045s; 931; 864; 788, 768 (δCOO); 705.
- [Y(H2O)2Lact3]∙H2O (4-Y). Calc. for C9H21O12Y (%): Y, 21.68. Found (%): Y, 21.5. FTIR (ATR, ν, cm–1): 3492vw, 3405sh, 3170sh, 3086, 3014w. 2999w, 2979w, 2963w, 2946w (νOH, νCH); 1639 (δH2O); 1591s (νasCOO); 1482sh, 1466 (δasCH3); 1412, 1401 (νsCOO, δCOH); 1373, 1359 (δsCH3); 1316s; 1279; 1265; 1115s; 1092w; 1051sh; 1045s; 934; 866; 790, 769 (δCOO); 708w; 677w.
3.2. Preparation of Precursor Solutions and Deposition of Ln2O3 Thin Films
3.3. X-ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mishra, S.; Daniele, S. Metal–Organic Derivatives with Fluorinated Ligands as Precursors for Inorganic Nanomaterials. Chem. Rev. 2015, 115, 8379–8448. [Google Scholar] [CrossRef]
- ten Elshof, J.E. Chemical Solution Deposition of Oxide Thin Films. In Epitaxial Growth of Complex Metal Oxides; Elsevier: Amsterdam, The Netherlands, 2022; pp. 75–100. [Google Scholar]
- Kessler, V.G. Aqueous Route to TiO2-Based Nanomaterials Using pH-Neutral Carboxylate Precursors. J. Sol-Gel Sci. Technol. 2013, 68, 464–470. [Google Scholar] [CrossRef]
- Schneller, T.; Waser, R.; Kosec, M.; Payne, D. Chemical Solution Deposition of Functional Oxide Thin Films; Schneller, T., Waser, R., Kosec, M., Payne, D., Eds.; Springer: Vienna, Austria, 2013; Volume 9783211993, ISBN 978-3-211-99310-1. [Google Scholar]
- Lee, H.Y.; Kim, S.I.; Lee, Y.C.; Hong, Y.P.; Park, Y.H.; Ko, K.H. New Chemical Route for YBCO Thin Films. IEEE Trans. Appl. Supercond. 2003, 13, 2743–2746. [Google Scholar] [CrossRef]
- Hasenkox, U.; Mitze, C.; Waser, R.; Arons, R.R.; Pommer, J.; Güntherodt, G. Chemical Solution Deposition of Epitaxial La1−x(Ca, Sr)XMnO3 Thin Films. J. Electroceram. 1999, 3, 255–260. [Google Scholar] [CrossRef]
- Kendin, M.; Tsymbarenko, D. Synthesis and Thermal Decomposition of Rare Earth Isovalerates and Their Solutions with Amines as an Effective Pathway to Obtain Oxide Nanomaterials. J. Anal. Appl. Pyrolysis 2019, 140, 367–375. [Google Scholar] [CrossRef]
- Schwartz, R.W. Chemical Solution Deposition of Perovskite Thin Films. Chem. Mater. 1997, 9, 2325–2340. [Google Scholar] [CrossRef]
- Tsymbarenko, D.M.; Martynova, I.A.; Malkerova, I.P.; Alikhanyan, A.S.; Kuzmina, N.P. Mixed Ligand Acetate, Propionate, and Pivalate Complexes of Rare Earth Metals with Monoethanolamine: A New Approach to the Synthesis, Composition, Structure, and Use for the Preparation of Oxide Materials. Russ. J. Coord. Chem. 2016, 42, 662–678. [Google Scholar] [CrossRef]
- Aspinall, H.C. Requirements of Precursors for MOCVD and ALD of Rare Earth Oxides. In Rare Earth Oxide Thin Films. Topics in Applied Physics; Fanciulli, M., Scarel, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 106, pp. 53–72. ISBN 3540357963. [Google Scholar]
- Jones, A.C.; Aspinall, H.C.; Chalker, P.R. Chapter 8. Chemical Vapour Deposition of Metal Oxides for Microelectronics Applications. In Chemical Vapour Deposition: Precursors, Processes and Applications; Jones, A.C., Hitchman, M.L., Eds.; Royal Society of Chemistry: Cambridge, UK, 2008; pp. 357–412. [Google Scholar]
- Jones, A.C.; Aspinall, H.C.; Chalker, P.R. Molecular Design of Improved Precursors for the MOCVD of Oxides Used in Microelectronics. Surf. Coat. Technol. 2007, 201, 9046–9054. [Google Scholar] [CrossRef]
- Janicki, R.; Mondry, A.; Starynowicz, P. Carboxylates of Rare Earth Elements. Coord. Chem. Rev. 2017, 340, 98–133. [Google Scholar] [CrossRef]
- Ouchi, A.; Suzuki, Y.; Ohki, Y.; Koizumi, Y. Structure of Rare Earth Carboxylates in Dimeric and Polymeric Forms. Coord. Chem. Rev. 1988, 92, 29–43. [Google Scholar] [CrossRef]
- Gomez Torres, S.; Meyer, G. Anhydrous Neodymium(III) Acetate. Z. Anorg. Allg. Chem. 2008, 634, 231–233. [Google Scholar] [CrossRef]
- Malaestean, I.L.; Kutluca-Alıcı, M.; Ellern, A.; van Leusen, J.; Schilder, H.; Speldrich, M.; Baca, S.G.; Kögerler, P. Linear, Zigzag, and Helical Cerium(III) Coordination Polymers. Cryst. Growth Des. 2012, 12, 1593–1602. [Google Scholar] [CrossRef]
- Tsymbarenko, D.; Martynova, I.; Grebenyuk, D.; Shegolev, V.; Kuzmina, N. One-Dimensional Coordination Polymers of Whole Row Rare Earth Tris-Pivalates. J. Solid State Chem. 2018, 258, 876–884. [Google Scholar] [CrossRef]
- Kendin, M.; Tsymbarenko, D. 2D-Coordination Polymers Based on Rare-Earth Propionates of Layered Topology Demonstrate Polytypism and Controllable Single-Crystal-to-Single-Crystal Phase Transitions. Cryst. Growth Des. 2020, 20, 3316–3324. [Google Scholar] [CrossRef]
- Grebenyuk, D.; Ryzhkov, N.; Tsymbarenko, D. Novel Mononuclear Mixed Ligand Complexes of Heavy Lanthanide Trifluoroacetates with Diethylenetriamine. J. Fluor. Chem. 2017, 202, 82–90. [Google Scholar] [CrossRef]
- Vermeir, P.; Cardinael, I.; Bäcker, M.; Schaubroeck, J.; Schacht, E.; Hoste, S.; Van Driessche, I. Fluorine-Free Water-Based Sol–Gel Deposition of Highly Epitaxial YBa2Cu3O7−δ Films. Supercond. Sci. Technol. 2009, 22, 075009. [Google Scholar] [CrossRef]
- Vermeir, P.; Cardinael, I.; Schaubroeck, J.; Verbeken, K.; Bäcker, M.; Lommens, P.; Knaepen, W.; D’haen, J.; De Buysser, K.; Van Driessche, I. Elucidation of the Mechanism in Fluorine-Free Prepared YBa2Cu3O7−δ Coatings. Inorg. Chem. 2010, 49, 4471–4477. [Google Scholar] [CrossRef]
- Queraltó, A.; Banchewski, J.; Pacheco, A.; Gupta, K.; Saltarelli, L.; Garcia, D.; Alcalde, N.; Mocuta, C.; Ricart, S.; Pino, F.; et al. Combinatorial Screening of Cuprate Superconductors by Drop-On-Demand Inkjet Printing. ACS Appl. Mater. Interfaces 2021, 13, 9101–9112. [Google Scholar] [CrossRef]
- Rasi, S.; Ricart, S.; Obradors, X.; Puig, T.; Roura-Grabulosa, P.; Farjas, J. Effect of Triethanolamine on the Pyrolysis of Metal-Propionate-Based Solutions. J. Anal. Appl. Pyrolysis 2019, 143, 104685. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Torres, P.; Tang, X.; Norby, P.; Grivel, J.-C. Growth of Highly Epitaxial YBa2Cu3O7−δ Films from a Simple Propionate-Based Solution. Inorg. Chem. 2015, 54, 10232–10238. [Google Scholar] [CrossRef]
- Xue, L.; Li, Q.; Zhang, Y.; Liu, R.; Zhen, X. Synthesis, Sintering and Characterization of PLZST Perovskite Prepared by a Lactate Precursor Route. J. Eur. Ceram. Soc. 2006, 26, 323–329. [Google Scholar] [CrossRef]
- Gromilov, S.A.; Piryazev, D.A.; Tatarchuk, V.V. Crystal Structure of Zinc Lactate Dihydrate—A By-Product of the Micellar Synthesis of ZnO2 Nanoparticles from Zinc Acetate and Hydroperite. J. Struct. Chem. 2021, 62, 571–576. [Google Scholar] [CrossRef]
- Ke, Z.; Fan, X.; You-ying, D.; Chen, F.; Zhang, L.; Yang, K.; Li, B.; Kong, Y. Crystal Structure and Solution Thermodynamics of the Lactate Complex Zn[(C3H5O3)2(H2O)2]·H2O(S). Chem. Thermodyn. Therm. Anal. 2022, 5, 100024. [Google Scholar] [CrossRef]
- Singh, K.D.; Jain, S.C.; Sakore, T.D.; Biswas, A.B. The Crystal and Molecular Structure of Zinc Lactate Trihydrate. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1975, 31, 990–993. [Google Scholar] [CrossRef]
- Carballo, R.; Covelo, B.; Vázquez-López, E.M.; Castiñeiras, A.; Niclós, J. The Interaction of α-Hydroxycarboxylic Acids with Metal Ions: Lactic Acid (H2L1) and 2-Methyllactic Acid (H2L2) with Cobalt(II) Crystal and Molecular Structures of [Co(HL1)2(H2O)2]·H2O and [Co(HL2)2(H2O)2]. Z. Anorg. Allg. Chem. 2002, 628, 468–472. [Google Scholar] [CrossRef]
- Lis, T. Structure of Manganese(II) L-Lactate Dihydrate. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1982, 38, 937–939. [Google Scholar] [CrossRef]
- Larsen, E.M.; Homeier, E.H. Zirconium(IV) and Hafnium(IV) Complexes of α-Hydroxy Carboxylates, Lactates, Mandelates, and Isopropylmandelates. Stereospecificity in Eight-Coordinate Complexes. Inorg. Chem. 1972, 11, 2687–2692. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, H.; Wang, X.; Qu, Z.; Xiong, R.; Xue, X.; Xue, Z.; You, X. 2D Chiral Uranyl(VI) Coordination Polymers with Second-Harmonic Generation Response and Ferroelectric Properties. Eur. J. Inorg. Chem. 2003, 2003, 3712–3715. [Google Scholar] [CrossRef]
- Demartin, F.; Biagioli, M.; Strinna-Erre, L.; Panzanelli, A.; Micera, G. Molecular Structure of a Mono-Peroxo Vanadium(V) Complex Formed by d,l-Lactic Acid. Inorganica Chim. Acta 2000, 299, 123–127. [Google Scholar] [CrossRef]
- Kakihana, M.; Tomita, K.; Petrykin, V.; Tada, M.; Sasaki, S.; Nakamura, Y. Chelating of Titanium by Lactic Acid in the Water-Soluble Diammonium Tris(2-Hydroxypropionato)Titanate(IV). Inorg. Chem. 2004, 43, 4546–4548. [Google Scholar] [CrossRef]
- Hati, S.; Batchelor, R.J.; Einstein, F.W.B.; Tracey, A.S. Vanadium(V) Complexes of α-Hydroxycarboxylic Acids in Aqueous Solution. Inorg. Chem. 2001, 40, 6258–6265. [Google Scholar] [CrossRef] [PubMed]
- Saadeh, S.M.; Lah, M.S.; Pecoraro, V.L. Manganese Complexes of α-Hydroxy Acids. Inorg. Chem. 1991, 30, 8–15. [Google Scholar] [CrossRef]
- Petrykin, V.; Kakihana, M.; Yoshioka, K.; Sasaki, S.; Ueda, Y.; Tomita, K.; Nakamura, Y.; Shiro, M.; Kudo, A. Synthesis and Structure of New Water-Soluble and Stable Tantalum Compound: Ammonium Tetralactatodiperoxo-μ-Oxo-Ditantalate(V). Inorg. Chem. 2006, 45, 9251–9256. [Google Scholar] [CrossRef] [PubMed]
- Carballo, R.; Covelo, B.; Fernández-Hermida, N.; Lago, A.B.; Vázquez-López, E.M. Synthesis of Mixed-Ligand Complexes of Copper(II) with Lactate and 2,2′-Dipyridylamine: Study of the Effect of Weak Interactions on Their Crystal Packing. Z. Anorg. Allg. Chem. 2007, 633, 1791–1795. [Google Scholar] [CrossRef]
- Balboa, S.; Borrás, J.; Brandi, P.; Carballo, R.; Castiñeiras, A.; Lago, A.B.; Niclós-Gutiérrez, J.; Real, J.A. Three-Dimensional Mixed-Ligand Coordination Polymers with Ferromagnetically Coupled Cyclic Tetranuclear Copper(II) Units Bonded by Weak Interactions. Cryst. Growth Des. 2011, 11, 4344–4352. [Google Scholar] [CrossRef]
- Fursova, E.; Romanenko, G.; Ovcharenko, V. Unpredictable Polynuclear Ni(II) Lactate Formation. Polyhedron 2013, 62, 274–277. [Google Scholar] [CrossRef]
- Carballo, R.; Covelo, B.; Fernández-Hermida, N.; García-Martínez, E.; Lago, A.B.; Vázquez-López, E.M. Solid State Coordination Chemistry of Copper(II) Lactate Complexes with the Twisted Ligands 4,4′-Dipyridyldisulfide and Bis(4-Pyridylthio)Methane. J. Mol. Struct. 2008, 892, 427–432. [Google Scholar] [CrossRef]
- Qu, Z.-R.; Ye, Q.; Zhao, H.; Fu, D.-W.; Ye, H.-Y.; Xiong, R.-G.; Akutagawa, T.; Nakamura, T. Homochiral Laminar Europium Metal–Organic Framework with Unprecedented Giant Dielectric Anisotropy. Chem.-A Eur. J. 2008, 14, 3452–3456. [Google Scholar] [CrossRef]
- Ye, Q.; Fu, D.-W.; Tian, H.; Xiong, R.-G.; Chan, P.W.H.; Huang, S.D. Multiferroic Homochiral Metal−Organic Framework. Inorg. Chem. 2008, 47, 772–774. [Google Scholar] [CrossRef]
- Yapryntsev, A.D.; Baranchikov, A.E.; Churakov, A.V.; Kopitsa, G.P.; Silvestrova, A.A.; Golikova, M.V.; Ivanova, O.S.; Gorshkova, Y.E.; Ivanov, V.K. The First Amorphous and Crystalline Yttrium Lactate: Synthesis and Structural Features. RSC Adv. 2021, 11, 30195–30205. [Google Scholar] [CrossRef]
- Chen, H.-J.; Chen, L.-Q.; Lin, L.-R.; Long, L.-S.; Zheng, L.-S. Doped Luminescent Lanthanide Coordination Polymers Exhibiting Both White-Light Emission and Thermal Sensitivity. Inorg. Chem. 2021, 60, 6986–6990. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zheng, T.-F.; Chen, J.-L.; Wen, H.-R.; Liu, S.-J.; Hu, T.-L. A pH-Stable TbIII -Based Metal–Organic Framework as a Turn-On and Blue-Shift Fluorescence Sensor toward Benzaldehyde and Salicylaldehyde in Aqueous Solution. Inorg. Chem. 2022, 61, 16177–16184. [Google Scholar] [CrossRef] [PubMed]
- Dickins, R.S.; Love, C.S.; Puschmann, H. Bidentate Lactate Binding in Aqueous Solution in a Cationic, Heptadentate Lanthanide Complex: An Effective Chiral Derivatising Agent. Chem. Commun. 2001, 1, 2308–2309. [Google Scholar] [CrossRef]
- Martynova, I.A.; Tsymbarenko, D.M.; Kuz’mina, N.P. Yttrium Tris-Propionate Monohydrate: Synthesis, Crystal Structure, and Thermal Stability. Russ. J. Coord. Chem. Khimiya 2014, 40, 565–570. [Google Scholar] [CrossRef]
- Wang, R.; Zheng, Z. Rare Earth Complexes with Carboxylic Acids. In Rare Earth Coordination Chemistry; John Wiley & Sons, Ltd.: Chichester, UK, 2010; pp. 91–136. ISBN 9780470824856. [Google Scholar]
- Scales, N.; Zhang, Y.; Bhadbhade, M.; Karatchevtseva, I.; Kong, L.; Lumpkin, G.R.; Li, F. Neodymium Coordination Polymers with Propionate, Succinate and Mixed Succinate–Oxalate Ligands: Synthesis, Structures and Spectroscopic Characterization. Polyhedron 2015, 102, 130–136. [Google Scholar] [CrossRef]
- Grivel, J.-C.; Zhao, Y.; Tang, X.; Pallewatta, P.G.P.A.; Watenphul, A.; Zimmermann, M.V. Thermal Decomposition of Yttrium(III) Valerate in Argon. J. Anal. Appl. Pyrolysis 2014, 106, 125–131. [Google Scholar] [CrossRef]
- Bußkamp, H.; Deacon, G.B.; Hilder, M.; Junk, P.C.; Kynast, U.H.; Lee, W.W.; Turner, D.R. Structural Variations in Rare Earth Benzoate Complexes: Part I. Lanthanum. CrystEngComm 2007, 9, 394–411. [Google Scholar] [CrossRef]
- Grebenyuk, D.; Zobel, M.; Polentarutti, M.; Ungur, L.; Kendin, M.; Zakharov, K.; Degtyarenko, P.; Vasiliev, A.; Tsymbarenko, D. A Family of Lanthanide Hydroxo Carboxylates with 1D Polymeric Topology and Ln4 Butterfly Core Exhibits Switchable Supramolecular Arrangement. Inorg. Chem. 2021, 60, 8049–8061. [Google Scholar] [CrossRef]
- Li, Y.; Yan, P.; Hou, G.; Li, H.; Chen, P.; Li, G. Luminescence of Unique 1D Tube-like Lactate Lanthanide Coordination Polymers. J. Organomet. Chem. 2013, 723, 176–180. [Google Scholar] [CrossRef]
- Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. The Rich Stereochemistry of Eight-Vertex Polyhedra: A Continuous Shape Measures Study. Chem.-A Eur. J. 2005, 11, 1479–1494. [Google Scholar] [CrossRef]
- Gomez Torres, S.; Pantenburg, I.; Meyer, G. Direct Oxidation of Europium Metal with Acetic Acid: Anhydrous Europium(III) Acetate, Eu(OAc)3, Its Sesqui-Hydrate, Eu(OAc)3(H2O)1.5, and the “Hydrogendiacetate”, [Eu(H(OAc)2)3](H2O). Z. Anorg. Allg. Chem. 2006, 632, 1989–1994. [Google Scholar] [CrossRef]
- Kepert, C.J.; Wei-Min, L.; Junk, P.C.; Skelton, B.W.; White, A.H. Structural Systematics of Rare Earth Complexes. X (‘Maximally’) Hydrated Rare Earth Acetates. Aust. J. Chem. 1999, 52, 437. [Google Scholar] [CrossRef]
- Chu, J.; Zhao, Y.; Zhen, S.; Jiang, G.; Chen, Y.; Wu, W.; Zhang, Z.; Hong, Z.; Jin, Z. Influence of Seed Layer Materials on the Texture of IBAD-MgO Layer. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Lee, S.; Petrykin, V.; Molodyk, A.; Samoilenkov, S.; Kaul, A.; Vavilov, A.; Vysotsky, V.; Fetisov, S. Development and Production of Second Generation High Tc Superconducting Tapes at SuperOx and First Tests of Model Cables. Supercond. Sci. Technol. 2014, 27, 044022. [Google Scholar] [CrossRef] [Green Version]
- Martynova, I.A.; Tsymbarenko, D.M.; Kamenev, A.A.; Mudretsova, S.N.; Streletsky, A.N.; Vasiliev, A.L.; Kuzmina, N.P.; Kaul, A.R. Chemical Deposition of Smooth Nanocrystalline Y2O3 Films from Solutions of Metal-Organic Precursors. Russ. Chem. Bull. 2013, 62, 1454–1458. [Google Scholar] [CrossRef]
- Tsymbarenko, D.; Grebenyuk, D.; Burlakova, M.; Zobel, M. Quick and Robust PDF Data Acquisition Using a Laboratory Single-Crystal X-Ray Diffractometer for Study of Polynuclear Lanthanide Complexes in Solid Form and in Solution. J. Appl. Crystallogr. 2022, 55, 890–900. [Google Scholar] [CrossRef]
- Martynova, I.; Tsymbarenko, D.; Kamenev, A.; Kuzmina, N.; Kaul, A. Synthesis and Characterization of Amorphous Yttrium Oxide Layers by Metal Organic Chemical Solution Deposition. Phys. E Low-Dimens. Syst. Nanostruct. 2014, 56, 447–451. [Google Scholar] [CrossRef]
- Tsymbarenko, D.M.; Martynova, I.A.; Ryzhkov, N.V.; Kuz’mina, N.P. Aluminum Hydroxocarboxylates in Solution Deposition of Planarization Alumina Films. Russ. J. Gen. Chem. 2017, 87, 1209–1216. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXTL, Version 5.10, Structure Determination Software Suite; Bruker AXS: Madison, WI, USA, 1998. [Google Scholar]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CrysAlisPRO Softwave System, Version 1.171.40.67a; Rigaku Oxford Diffraction, Rigaku Corporation: Wroclaw, Poland, 2019.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SCALE3 ABSPACK; Version 1.0.4, GUI 1.03; An Oxford Diffraction Program; Oxford Diffraction Ltd.: Abingdon, UK, 2005.
- Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General Features. Z. Krist.-Cryst. Mater. 2014, 229, 345–352. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gashigullin, R.; Kendin, M.; Martynova, I.; Tsymbarenko, D. Diverse Coordination Chemistry of the Whole Series Rare-Earth L-Lactates: Synthetic Features, Crystal Structure, and Application in Chemical Solution Deposition of Ln2O3 Thin Films. Molecules 2023, 28, 5896. https://doi.org/10.3390/molecules28155896
Gashigullin R, Kendin M, Martynova I, Tsymbarenko D. Diverse Coordination Chemistry of the Whole Series Rare-Earth L-Lactates: Synthetic Features, Crystal Structure, and Application in Chemical Solution Deposition of Ln2O3 Thin Films. Molecules. 2023; 28(15):5896. https://doi.org/10.3390/molecules28155896
Chicago/Turabian StyleGashigullin, Ruslan, Mikhail Kendin, Irina Martynova, and Dmitry Tsymbarenko. 2023. "Diverse Coordination Chemistry of the Whole Series Rare-Earth L-Lactates: Synthetic Features, Crystal Structure, and Application in Chemical Solution Deposition of Ln2O3 Thin Films" Molecules 28, no. 15: 5896. https://doi.org/10.3390/molecules28155896
APA StyleGashigullin, R., Kendin, M., Martynova, I., & Tsymbarenko, D. (2023). Diverse Coordination Chemistry of the Whole Series Rare-Earth L-Lactates: Synthetic Features, Crystal Structure, and Application in Chemical Solution Deposition of Ln2O3 Thin Films. Molecules, 28(15), 5896. https://doi.org/10.3390/molecules28155896