[IPr#–PEPPSI]: A Well-Defined, Highly Hindered and Broadly Applicable Pd(II)–NHC (NHC = N-Heterocyclic Carbene) Precatalyst for Cross-Coupling Reactions
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Molander, G.A.; Wolfe, J.P.; Larhed, M. Science of Synthesis: Cross-Coupling and Heck-Type Reactions, 1st ed.; Thieme: Stuttgart, Germany, 2013. [Google Scholar]
- Molnar, A. Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments; Wiley: Weinheim, Germany, 2013. [Google Scholar]
- Meijere, A.D.; Brase, S.; Oestreich, M. Metal Catalyzed Cross-Coupling Reactions and More, 3 Volume Set; Wiley: Weinheim, Germany, 2014. [Google Scholar]
- Colacot, T.J. New Trends in Cross-Coupling, 1st ed.; RSC: Cambridge, UK, 2015. [Google Scholar]
- Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review. Chem. Rev. 2018, 118, 2249–2295. [Google Scholar] [CrossRef] [PubMed]
- Christmann, U.; Vilar, R. Monoligated palladium species as catalysts in cross-coupling reactions. Angew. Chem. Int. Ed. 2005, 44, 366–374. [Google Scholar] [CrossRef]
- Wu, X.F.; Anbarasan, P.; Neumann, H.; Beller, M. From Noble Metal to Nobel Prize: Palladium-Catalyzed Coupling Reactions as Key Methods in Organic Synthesis. Angew. Chem. Int. Ed. 2010, 49, 9047–9050. [Google Scholar] [CrossRef]
- Johansson Seechurn, C.C.C.; Kitching, M.O.; Colacot, T.J.; Snieckus, V. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012, 51, 5062–5085. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Johansson Seechurn, C.C.C.; Colacot, T.J. Development of Preformed Pd Catalysts for Cross-Coupling Reactions, Beyond the 2010 Nobel Prize. ACS Catal. 2012, 2, 1147–1164. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Bulger, P.G.; Sarlah, D. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem. Int. Ed. 2005, 44, 4442–4489. [Google Scholar] [CrossRef] [PubMed]
- Torborg, C.; Beller, M. Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Adv. Synth. Catal. 2009, 351, 3027–3043. [Google Scholar] [CrossRef]
- Magano, J.; Dunetz, J.R. Large-Scale Applications of Transition Metal-Catalyzed Couplings for the Synthesis of Pharmaceuticals. Chem. Rev. 2011, 111, 2177–2250. [Google Scholar] [CrossRef]
- Beller, M. Cross-Coupling Reactions in Organic Synthesis Themed Issue. Chem. Soc. Rev. 2011, 40, 4877–5208. [Google Scholar]
- Gildner, P.G.; Colacot, T.J. Reactions of the 21st Century: Two Decades of Innovative Catalyst Design for Palladium-Catalyzed Cross-Couplings. Organometallics 2015, 34, 5497–5508. [Google Scholar] [CrossRef]
- Campeau, L.C.; Hazari, N. Cross-Coupling and Related Reactions: Connecting Past Success to the Development of New Reactions for the Future. Organometallics 2019, 38, 3–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Shi, Z.J. Upgrading Cross-Coupling Reactions for Biaryl Syntheses. Acc. Chem. Res. 2019, 52, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Nolan, S.P.; Cazin, C.S.J. (Eds.) Science of Synthesis: N-Heterocyclic Carbenes in Catalytic Organic Synthesis; Thieme: Stuttgart, Germany, 2017. [Google Scholar]
- Hopkinson, M.N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature 2014, 510, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Nolan, S.P. (Ed.) N-Heterocyclic Carbenes; Wiley: Weinheim, Germany, 2014. [Google Scholar]
- Huynh, H.V. The Organometallic Chemistry of N-Heterocyclic Carbenes; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Fortman, G.C.; Nolan, S.P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: A perfect union. Chem. Soc. Rev. 2011, 40, 5151–5169. [Google Scholar] [CrossRef]
- Munz, D. Pushing Electrons–Which Carbene Ligand for Which Application? Organometallics 2018, 37, 275–289. [Google Scholar] [CrossRef]
- Melaimi, M.; Jazzar, R.; Soleilhavoup, M.; Bertrand, G. Cyclic (Alkyl)(amino)carbenes (CAACs): Recent Developments. Angew. Chem. Int. Ed. 2017, 56, 10046–10068. [Google Scholar] [CrossRef]
- Marion, N.; Nolan, S.P. Well-defined N-heterocyclic carbenes-palladium(II) precatalysts for cross-coupling reactions. Acc. Chem. Res. 2008, 41, 1440–1449. [Google Scholar] [CrossRef]
- Nelson, D.J.; Nolan, S.P. Quantifying and understanding the electronic properties of N-heterocyclic carbenes. Chem. Soc. Rev. 2013, 42, 6723–6753. [Google Scholar] [CrossRef]
- Dröge, T.; Glorius, F. The Measure of All Rings: N-Heterocyclic Carbenes. Angew. Chem. Int. Ed. 2010, 49, 6940–6952. [Google Scholar] [CrossRef]
- Diez-Gonzalez, S.; Marion, N.; Nolan, S.P. N-Heterocyclic Carbenes in Late Transition Metal Catalysis. Chem. Rev. 2009, 109, 3612–3676. [Google Scholar] [CrossRef]
- Albert, J.; D’Andrea, L.; Granell, J.; Zafrilla, J.; Font-Bardia, M.; Solans, X. The cyclopalladation reaction of 2-phenylaniline revisited. J. Organomet. Chem. 2005, 690, 422–429. [Google Scholar] [CrossRef]
- Chen, M.T.; Vicic, D.A.; Chain, W.J.; Turner, M.L.; Navarro, O. Inhibited Catalyst Activation in (N-Heterocyclic carbene)PdCl2(diethylamine) Complexes by Intramolecular Hydrogen Bonding. Organometallics 2011, 30, 6770–6773. [Google Scholar] [CrossRef]
- Bernhammer, J.C.; Singh, H.; Huynh, H.V. Amine-Functionalized Indazolin-3-Ylidene Complexes of Palladium (II) by Postmodification of a Single Precursor. Organometallics 2014, 33, 4295–4301. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, L.; Zhou, Y.; Bao, X.; Schaefer, H.F., III. Is Pd(II)-Promoted σ-Bond Metathesis Mechanism Operative for the Pd-PEPPSI Complex-Catalyzed Amination of Chlorobenzene with Aniline? Experiment and Theory. Chem.-Eur. J. 2015, 21, 4153–4161. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Shi, S.; Gao, P.; Lalancette, R.; Szostak, R.; Szostak, M. [(NHC)PdCl2(Aniline)] Complexes: Easily Synthesized, Highly Active Pd(II)–NHC Precatalysts for Cross-Coupling Reactions. J. Org. Chem. 2021, 86, 15648–15657. [Google Scholar] [CrossRef] [PubMed]
- Navarro, O.; Kelly, R.A., III; Nolan, S.P. A General Method for the Suzuki–Miyaura Cross-Coupling of Sterically Hindered Aryl Chlorides: Synthesis of Di- and Tri-ortho-substituted Biaryls in 2-Propanol at Room Temperature. J. Am. Chem. Soc. 2003, 125, 16194–16195. [Google Scholar] [CrossRef]
- Bruno, N.C.; Tudge, M.T.; Buchwald, S.L. Design and Preparation of New Palladium Precatalysts for C-C and C-N Cross-Coupling Reactions. Chem. Sci. 2013, 4, 916–920. [Google Scholar] [CrossRef] [Green Version]
- Marion, N.; Navarro, O.; Mei, J.; Stevens, E.D.; Scott, N.M.; Nolan, S.P. Modified (NHC)Pd(allyl)Cl (NHC = N-heterocyclic carbene) complexes for room-temperature Suzuki-Miyaura and Buchwald-Hartwig reactions. J. Am. Chem. Soc. 2006, 128, 4101–4111. [Google Scholar] [CrossRef]
- Li, G.; Lei, P.; Szostak, M.; Casals, E.; Poater, A.; Cavallo, L.; Nolan, S.P. Mechanistic Study of Suzuki-Miyaura Cross-Coupling Reactions of Amides Mediated by [Pd(NHC)(allyl)Cl] Precatalysts. ChemCatChem 2018, 10, 3096–3106. [Google Scholar] [CrossRef]
- Zhou, T.; Ma, S.; Nahra, F.; Obled, A.M.C.; Poater, A.; Cavallo, L.; Cazin, C.S.J.; Nolan, S.P.; Szostak, M. [Pd(NHC)(μ-Cl)Cl]2: Versatile and Highly Reactive Complexes for Cross-Coupling Reactions that Avoid Formation of Inactive Pd(I) Off-Cycle Products. iScience 2020, 23, 101377. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Tu, Y.; Li, Y.; Wu, J.; Zhao, J. Palladium-Catalyzed Oxidative Cross-Coupling of Arylhydrazines and Arenethiols with Molecular Oxygen as the Sole Oxidant. J. Org. Chem. 2018, 83, 2389–2394. [Google Scholar] [CrossRef] [PubMed]
- Bryan, Z.J.; Smith, M.L.; McNeil, A.J. Chain-Growth Polymerization of Aryl Grignards Initiated by a Stabilized NHC-Pd Precatalyst. Macromol. Rapid Commun. 2012, 33, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-F.; Huang, Y.; Liu, H.; Gao, Z.-H.; Zhang, C.-L.; Ye, S. Photoredox cooperative N-heterocyclic carbene/palladium-catalysed alkylacylation of alkenes. Nat. Commun. 2022, 13, 5754. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Meng, G.; Li, G.; Flach, C.; Mendelsohn, R.; Lalancette, R.; Szostak, R.; Szostak, M. IPr#–Highly Hindered, Broadly Applicable N-Heterocyclic Carbenes. Chem. Sci. 2021, 12, 10583–10589. [Google Scholar] [PubMed]
- IPr# HCl. 1,3-Bis-(2,4,6-Tribenzhydrylphenyl)-1H-imidazol-3-ium chloride. Available online: www.sigmaaldrich.com/catalog/product/aldrich/915653 (accessed on 28 June 2023).
- [Pd(IPr#)(cin)Cl]. Available online: www.sigmaaldrich.com/US/en/product/aldrich/919616 (accessed on 28 June 2023).
- Froese, R.D.J.; Lombardi, C.; Pompeo, M.; Rucker, R.P.; Organ, M.G. Designing Pd-N-Heterocyclic Carbene Complexes for High Reactivity and Selectivity for Cross-Coupling Applications. Acc. Chem. Res. 2017, 50, 2244–2253. [Google Scholar] [CrossRef] [PubMed]
- Valente, C.; Calimsiz, S.; Hoi, K.H.; Mallik, D.; Sayah, M.; Organ, M.G. The development of bulky palladium NHC complexes for the most-challenging cross-coupling reactions. Angew. Chem. Int. Ed. 2012, 51, 3314–3332. [Google Scholar] [CrossRef]
- Pd(IPr#)(3-Cl-py)Cl2. Available online: https://www.sigmaaldrich.com/US/en/product/aldrich/925489 (accessed on 28 June 2023).
- O’Brien, C.J.; Kantchev, E.A.B.; Valente, C.; Hadei, N.; Chass, G.A.; Lough, A.; Hopkinson, A.C.; Organ, M.G. Easily Prepared Air- and Moisture-Stable Pd–NHC (NHC = N-Heterocyclic Carbene) Complexes: A Reliable, User-Friendly, Highly Active Palladium Precatalyst for the Suzuki–Miyaura Reaction. Chem. Eur. J. 2006, 12, 4743–4748. [Google Scholar] [CrossRef]
- Chartoire, A.; Frogneux, X.; Boreux, A.; Slawin, A.M.Z.; Nolan, S.P. [Pd(IPr*)(3-Cl-pyridinyl)Cl2]: A Novel and Efficient PEPPSI Precatalyst. Organometallics 2012, 31, 6947–6951. [Google Scholar] [CrossRef]
- Clavier, H.; Nolan, S.P. Percent buried volume for phosphine and N-heterocyclic carbene ligands: Steric properties in organometallic chemistry. Chem. Commun. 2010, 46, 841–861. [Google Scholar] [CrossRef]
- Falivene, L.; Cao, Z.; Petta, A.; Serra, L.; Poater, A.; Oliva, R.; Scarano, V.; Cavallo, L. Towards the Online Computer-Aided Design of Catalytic Pockets. Nat. Chem. 2019, 11, 872–879. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Nolan, S.P.; Szostak, M. Well-Defined Palladium(II)-NHC (NHC = N-Heterocyclic Carbene) Precatalysts for Cross-Coupling Reactions of Amides and Esters by Selective Acyl CO–X (X = N, O) Cleavage. Acc. Chem. Res. 2018, 51, 2589–2599. [Google Scholar] [CrossRef]
- Lei, P.; Meng, G.; Shi, S.; Ling, Y.; An, J.; Szostak, R.; Szostak, M. Suzuki-Miyaura Cross-Coupling of Amides and Esters at Room Temperature: Correlation with Barriers to Rotation around C–N and C–O Bonds. Chem. Sci. 2017, 8, 6525–6530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, T.; Szostak, M. Palladium-catalyzed cross-couplings by C–O bond activation. Catal. Sci. Technol. 2020, 10, 5702–5739. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, T.; Poater, A.; Cavallo, L.; Nolan, S.P.; Szostak, M. Suzuki–Miyaura cross-coupling of esters by selective O–C(O) cleavage mediated by air- and moisture-stable [Pd(NHC)(μ-Cl)Cl]2 precatalysts: Catalyst evaluation and mechanism. Catal. Sci. Technol. 2021, 11, 3189–3197. [Google Scholar] [CrossRef] [PubMed]
- Meng, G.; Lei, P.; Szostak, M. A General Method for Two-Step Transamidation of Secondary Amides Using Commercially Available, Air- and Moisture-Stable Palladium/NHC (N-Heterocyclic Carbene) Complexes. Org. Lett. 2017, 19, 2158–2161. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.T.; Vicic, D.A.; Turner, M.L.; Navarro, O. (N-Heterocyclic Carbene)PdCl2(TEA) Complexes: Studies on the Effect of the “Throw-Away” Ligand in Catalytic Activity. Organometallics 2011, 30, 5052–5056. [Google Scholar] [CrossRef]
- Huang, J.; Grasa, G.; Nolan, S.P. General and Efficient Catalytic Amination of Aryl Chlorides Using a Palladium/Bulky Nucleophilic Carbene System. Org. Lett. 1999, 1, 1307–1309. [Google Scholar] [CrossRef]
- Giannerini, M.; Fananas-Mastral, M.; Feringa, B.L. Direct catalytic cross-coupling of organolithiums compounds. Nat. Chem. 2013, 5, 667–672. [Google Scholar] [CrossRef] [Green Version]
- Pinxterhuis, E.B.; Giannerini, M.; Hornillos, V.; Feringa, B.L. Fast, greener and scalable direct coupling of organolithium compounds with no additional solvents. Nat. Commun. 2016, 7, 11698. [Google Scholar] [CrossRef] [Green Version]
- Viciu, M.S.; Germaneau, R.F.; Nolan, S.P. Well-Defined, Air-Stable (NHC)Pd(Allyl)Cl (NHC = N-Heterocyclic Carbene) Catalysts for the Arylation of Ketones. Org. Lett. 2002, 4, 4053–4056. [Google Scholar] [CrossRef]
- Lian, Z.; Bhwal, B.N.; Yu, P.; Morandi, B. Palladium-catalyzed carbon-sulfur or carbon-phosphorus bond metathesis by reversible arylation. Science 2017, 356, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Chartoire, A.; Slawin, A.M.Z.; Nolan, S.P. Extending the utility of [Pd(NHC)(cinnamyl)Cl] precatalysts: Direct arylation of heterocycles. Beilstein J. Org. Chem. 2012, 8, 1637–1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blakemore, D.C.; Castro, L.; Churcher, I.; Rees, D.C.; Thomas, A.W.; Wilson, D.M.; Wood, A. Organic Synthesis Provides Opportunities to Transform Drug Discovery. Nat. Chem. 2018, 10, 383–394. [Google Scholar] [CrossRef]
- Boström, J.; Brown, D.G.; Young, R.J.; Keserü, G.M. Expanding the Medicinal Chemistry Synthetic Toolbox. Nat. Rev. Drug Discov. 2018, 17, 709–727. [Google Scholar] [CrossRef] [PubMed]
- Dunsford, J.J.; Cavell, K.J. Pd–PEPPSI-Type Expanded Ring N-Heterocyclic Carbene Complexes: Synthesis, Characterization, and Catalytic Activity in Suzuki–Miyaura Cross Coupling. Organometallics 2014, 33, 2902–2905. [Google Scholar] [CrossRef]
- Sizova, O.V.; Skripnikov, L.V.; Sokolov, A.Y. Symmetry decomposition of quantum chemical bond orders. J. Mol. Struc. Theochem. 2008, 870, 1–9. [Google Scholar] [CrossRef]
Entry | Complexes | %Vbur | Pd–CNHC (Å) | Pd–Npy (Å) | Pd–Cl (Å) |
---|---|---|---|---|---|
1 | [IPr#–PEPPSI] (molecule-1) | 40.2 | 1.978(4) | 2.119(4) | 2.285(1), 2.300(1) |
2 | [IPr#–PEPPSI] (molecule-2) | 38.2 | 1.965(4) | 2.114(4) | 2.301(1), 2.302(1) |
3 | [IPr–PEPPSI] | 34.8 | 1.969(3) | 2.137(3) | 2.290(9), 2.298(7) |
4 | [IPent–PEPPSI] | 38.3 | 1.975(3) | 2.097(2) | 2.2868(9), 2.3033(9) |
5 | [Pd(IPr#)(cin)Cl] | 44.7 | 2.046(4) | 2.117(5), 2.133(6), 2.216(7) a | 2.374(1) |
Entry | Complexes | Pd–CNHC | Pd–Npy | Pd–Cl |
---|---|---|---|---|
1 | [IPr#–PEPPSI] | 0.6801 | 0.3099 | 0.6062, 0.6032 |
2 | [IPr–PEPPSI] | 0.6871 | 0.3267 | 0.6278, 0.6302 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Zhao, Q.; Meng, G.; Lalancette, R.; Szostak, R.; Szostak, M. [IPr#–PEPPSI]: A Well-Defined, Highly Hindered and Broadly Applicable Pd(II)–NHC (NHC = N-Heterocyclic Carbene) Precatalyst for Cross-Coupling Reactions. Molecules 2023, 28, 5833. https://doi.org/10.3390/molecules28155833
Rahman MM, Zhao Q, Meng G, Lalancette R, Szostak R, Szostak M. [IPr#–PEPPSI]: A Well-Defined, Highly Hindered and Broadly Applicable Pd(II)–NHC (NHC = N-Heterocyclic Carbene) Precatalyst for Cross-Coupling Reactions. Molecules. 2023; 28(15):5833. https://doi.org/10.3390/molecules28155833
Chicago/Turabian StyleRahman, Md. Mahbubur, Qun Zhao, Guangrong Meng, Roger Lalancette, Roman Szostak, and Michal Szostak. 2023. "[IPr#–PEPPSI]: A Well-Defined, Highly Hindered and Broadly Applicable Pd(II)–NHC (NHC = N-Heterocyclic Carbene) Precatalyst for Cross-Coupling Reactions" Molecules 28, no. 15: 5833. https://doi.org/10.3390/molecules28155833