Inhibitory Potential of Different Bilberry (Vaccinium myrtillus L.) Extracts on Human Salivary α-Amylase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content (TPC)
2.2. Total Anthocyanin Content (TAC)
2.3. Flavonol and trans-Resveratrol Content
2.4. Anthocyanin Content
2.5. α-Amylase Inhibition
2.6. Antioxidant Activity
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Preparation of Vaccinium myrtillus L. Extracts
3.3.1. Water Extraction
3.3.2. Organic Solvent Extraction
3.4. Total Phenolic Content (TPC) Assay
3.5. Total Anthocyanin Content (TAC) Assay
3.6. High-Performance Liquid Chromatography (HPLC) Analysis of Flavonols and trans-Resveratrol
3.7. High-Performance Liquid Chromatography (HPLC) Analysis of Anthocyanins
3.8. Alpha-Amylase Inhibition Assay
3.9. Antioxidant Activity Assay
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Martău, G.; Bernadette-Emoke, T.; Odocheanu, R.; Soporan, D.; Bochis, M.; Simon, M.; Vodnar, D. Vaccinium Species (Ericaceae): Phytochemistry and Biological Properties of Medicinal Plants. Molecules 2023, 28, 1533. [Google Scholar] [CrossRef] [PubMed]
- Vukanović, S.B.; Tadić, V.M.; Blagojević, N.; Pešić, V.V.; Durdić, S.; Stanković, M.; Mutić, J. Element Accumulation Capacity of Vaccinium myrtillus from Montenegro: Comparison of Element Contents in Water and Ethanol Extracts of Bilberry Plant Parts. Arch. Biol. Sci. 2019, 71, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Brasanac-Vukanovic, S.; Mutic, J.; Stankovic, D.M.; Arsic, I.; Blagojevic, N.; Vukasinovic-Pesic, V.; Tadic, V.M. Wild Bilberry (Vaccinium myrtillus L., Ericaceae) from Montenegro as a Source of Antioxidants for Use in the Production of Nutraceuticals. Molecules 2018, 23, 1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozhuharov, S.; Andreeva, N. Flora of the Republic of Bulgaria, 8th ed.; Kozhuharov, S., Ed.; Academic Publishing House “Prof. Marin Drinov”: Sofia, Bulgaria, 1982. [Google Scholar]
- Giacalone, M.; di Sacco, F.; Traupe, I.; Topini, R.; Forfori, F.; Giunta, F. Antioxidant and Neuroprotective Properties of Blueberry Polyphenols: A Critical Review. Nutr. Neurosci. 2011, 14, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Torri, E.; Lemos, M.; Caliari, V.; Kassuya, C.A.L.; Bastos, J.K.; Andrade, S.F. Anti-Inflammatory and Antinociceptive Properties of Blueberry Extract (Vaccinium corymbosum). J. Pharm. Pharmacol. 2010, 59, 591–596. [Google Scholar] [CrossRef]
- Du, Q.; Jerz, G.; Winterhalter, P. Isolation of Two Anthocyanin Sambubiosides from Bilberry (Vaccinium myrtillus) by High-Speed Counter-Current Chromatography. J. Chromatogr. A 2004, 1045, 59–63. [Google Scholar] [CrossRef]
- Wang, H.; Cao, G.; Prior, R.L. Oxygen Radical Absorbing Capacity of Anthocyanins. J. Agric. Food Chem. 1997, 45, 304–309. [Google Scholar] [CrossRef]
- Kader, F.; Rovel, B.; Girardin, M.; Metche, M. Fractionation and Identification of the Phenolic Compounds of Highbush Blueberries (Vaccinium corymbosum, L.). Food Chem. 1996, 55, 35–40. [Google Scholar] [CrossRef]
- Može, Š.; Polak, T.; Gašperlin, L.; Koron, D.; Vanzo, A.; Poklar Ulrih, N.; Abram, V. Phenolics in Slovenian Bilberries (Vaccinium myrtillus, L.) and Blueberries (Vaccinium corymbosum, L.). J. Agric. Food Chem. 2011, 59, 6998–7004. [Google Scholar] [CrossRef]
- Häkkinen, S.H.; Törrönen, A.R. Content of Flavonols and Selected Phenolic Acids in Strawberries and Vaccinium Species: Influence of Cultivar, Cultivation Site and Technique. Food Res. Int. 2000, 33, 517–524. [Google Scholar] [CrossRef]
- McDougall, G.J.; Kulkarni, N.N.; Stewart, D. Current Developments on the Inhibitory Effects of Berry Polyphenols on Digestive Enzymes. BioFactors 2008, 34, 73–80. [Google Scholar] [CrossRef]
- Tsuda, T.; Horio, F.; Uchida, K.; Aoki, H.; Osawa, T. Dietary Cyanidin 3-O-β-D-Glucoside-Rich Purple Corn Color Prevents Obesity and Ameliorates Hyperglycemia in Mice. J. Nutr. 2003, 133, 2125–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, Y.I.; Apostolidis, E.; Shetty, K. In Vitro Studies of Eggplant (Solanum melongena) Phenolics as Inhibitors of Key Enzymes Relevant for Type 2 Diabetes and Hypertension. Bioresour. Technol. 2008, 99, 2981–2988. [Google Scholar] [CrossRef]
- Berryman, L.Y. Pharmacotherapy Handbook, 2nd ed.; McGraw-Hill Companies: New York, NY, USA, 2000; Volume 34, ISBN 9780071643269. [Google Scholar]
- Kaur, N.; Kumar, V.; Nayak, S.K.; Wadhwa, P.; Kaur, P.; Sahu, S.K. Alpha-Amylase as Molecular Target for Treatment of Diabetes Mellitus: A Comprehensive Review. Chem. Biol. Drug Des. 2021, 98, 539–560. [Google Scholar] [CrossRef] [PubMed]
- Bunea, A.; Ruginǎ, D.O.; Pintea, A.M.; Sconţa, Z.; Bunea, C.I.; Socaciu, C. Comparative Polyphenolic Content and Antioxidant Activities of Some Wild and Cultivated Blueberries from Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Sellappan, S.; Akoh, C.C.; Krewer, G. Phenolic Compounds and Antioxidant Capacity of Georgia-Grown Blueberries and Blackberries. J. Agric. Food Chem. 2002, 50, 2432–2438. [Google Scholar] [CrossRef]
- Prior, R.L.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.; O’Brien, C.; Lischner, N.; Ehlenfeldt, M.; Kalt, W.; Krewer, G.; et al. Antioxidant Capacity as Influenced by Total Phenolic and Anthocyanin Content, Maturity, and Variety of Vaccinium Species. J. Agric. Food Chem. 1998, 46, 2686–2693. [Google Scholar] [CrossRef]
- Dincheva, I.; Badjakov, I. Assesment of the Anthocyanin Variation in Bulgarian Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitis-idaea L.). Int. J. Med. Pharm. Sci. 2016, 6, 39–50. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Acylated Anthocyanins from Edible Sources and Their Applications in Food Systems. Biochem. Eng. J. 2003, 14, 217–225. [Google Scholar] [CrossRef]
- Rizvi, S.I.; Mishra, N. Anti-oxidant effect of quercetin on type 2 diabetic erythrocytes syed. J. Food Biochem. 2009, 33, 404–415. [Google Scholar] [CrossRef]
- Ćorković, I.; Gašo-Sokač, D.; Pichler, A.; Šimunović, J.; Kopjar, M. Dietary Polyphenols as Natural Inhibitors of α-Amylase and α-Glucosidase. Life 2022, 12, 1692. [Google Scholar] [CrossRef] [PubMed]
- Yanglin, J.; Dong, L.; Yan, J.; Juan, Z.; Jiang, Z.; Li, H.; Li, L.; Zhang, H.; Wang, H. In Vitro and in Vivo Inhibitory Effect of Anthocyanin-Rich Bilberry Extract on α-Glucosidase and α-Amylase. LWT-Food Sci. Technol. 2021, 145, 111484. [Google Scholar]
- Cho, M.J.; Howard, L.R.; Prior, R.L.; Clark, J.R. Flavonoid Glycosides and Antioxidant Capacity of Various Blackberry, Blueberry and Red Grape Genotypes Determined by High-Performance Liquid Chromatography/Mass Spectrometry. J. Sci. Food Agric. 2004, 84, 1771–1782. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Mechchate, H.; Es-Safi, I.; Louba, A.; Alqahtani, A.S.; Nasr, F.A.; Noman, O.M.; Farooq, M.; Alharbi, M.S.; Alqahtani, A.; Bari, A.; et al. In Vitro Alpha-Amylase and Alpha-Glucosidase Inhibitory Activity and in Vivo Antidiabetic Activity of Withania Frutescens l. Foliar Extract. Molecules 2021, 26, 293. [Google Scholar] [CrossRef] [PubMed]
- Alhakamy, N.A.; Mohamed, G.A.; Fahmy, U.A.; Eid, B.G.; Ahmed, O.A.A.; Al-Rabia, M.W.; Khedr, A.I.M.; Nasrullah, M.Z.; Ibrahim, S.R.M. New Alpha-Amylase Inhibitory Metabolites from Pericarps of Garcinia Mangostana. Life 2022, 12, 384. [Google Scholar] [CrossRef]
- Van Quan, N.; Xuan, T.D.; Tran, H.D.; Thuy, N.T.D.; Trang, L.T.; Huong, C.T.; Andriana, Y.; Tuyen, P.T. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Canarium Tramdenum Bark. Molecules 2019, 24, 605. [Google Scholar] [CrossRef] [Green Version]
- Benmohamed, M.; Guenane, H.; Messaoudi, M.; Zahnit, W.; Egbuna, C.; Sharifi-rad, M.; Chouh, A.; Seghir, B.B.; Rebiai, A. Mineral Profile, Antioxidant, Anti-Inflammatory, Antibacterial, Anti-Urease and Anti-α-Amylase Activities of the Unripe Fruit Extracts of Pistacia atlantica. Molecules 2023, 28, 349. [Google Scholar] [CrossRef]
- Haguet, Q.; Le Joubioux, F.; Chavanelle, V.; Groult, H.; Schoonjans, N.; Langhi, C.; Michaux, A.; Otero, Y.F.; Boisseau, N.; Peltier, S.L.; et al. Inhibitory Potential of α-Amylase, α-Glucosidase, and Pancreatic Lipase by a Formulation of Five Plant Extracts: TOTUM-63. Int. J. Mol. Sci. 2023, 24, 3652. [Google Scholar] [CrossRef]
- Omar, A.M.; AlKharboush, D.F.; Mohammad, K.A.; Mohamed, G.A.; Abdallah, H.M.; Ibrahim, S.R.M. Mangosteen Metabolites as Promising Alpha-Amylase Inhibitor Candidates: In Silico and In Vitro Evaluations. Metabolites 2022, 12, 1229. [Google Scholar] [CrossRef]
- De Sales, P.M.; de Souza, P.M.; Simeoni, L.A.; Magalhães, P.d.O.; Silveira, D. α-Amylase Inhibitors: A Review of Raw Material and Isolated Compounds from Plant Source. J. Pharm. Pharm. Sci. 2012, 15, 141–183. [Google Scholar] [CrossRef] [Green Version]
- Barrett, A.; Ndou, T.; Hughey, C.A.; Straut, C.; Howell, A.; Dai, Z.; Kaletunc, G. Inhibition of α-Amylase and Glucoamylase by Tannins Extracted from Cocoa, Pomegranates, Cranberries, and Grapes. J. Agric. Food Chem. 2013, 61, 1477–1486. [Google Scholar] [CrossRef]
- Grussu, D.; Stewart, D.; McDougall, G.J. Berry Polyphenols Inhibit α-Amylase in Vitro: Identifying Active Components in Rowanberry and Raspberry. J. Agric. Food Chem. 2011, 59, 2324–2331. [Google Scholar] [CrossRef]
- Yilmazer-Musa, M.; Griffith, A.M.; Michels, A.J.; Schneider, E.; Frei, B. Grape Seed and Tea Extracts and Catechin 3-Gallates Are Potent Inhibitors of α-Amylase and α-Glucosidase Activity. J. Agric. Food Chem. 2012, 60, 8924–8929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhao, J.; Yan, Y.; Liu, D.; Wang, C.; Wang, H. Inhibition of Glycosidase by Ursolic Acid: In Vitro, in Vivo and in Silico Study. J. Sci. Food Agric. 2020, 100, 986–994. [Google Scholar] [CrossRef]
- Güder, A.; Gür, M.; Engin, M.S. Antidiabetic and Antioxidant Properties of Bilberry (Vaccinium myrtillus Linn.) Fruit and Their Chemical Composition. J. Agric. Sci. Technol. 2015, 17, 401–414. [Google Scholar]
- Nunes, S.; Vieira, P.; Gomes, P.; Viana, S.D.; Reis, F. Blueberry as an Attractive Functional Fruit to Prevent (Pre)Diabetes Progression. Antioxidants 2021, 10, 1162. [Google Scholar] [CrossRef] [PubMed]
- Kwiecień, I.; Miceli, N.; Kedzia, E.; Cavò, E.; Taviano, M.F. Different Types of Hypericum perforatum Cvs. (Elixir, Helos, Topas) In Vitro Cultures: A Rich Source of Bioactive Metabolites and Biological Activities of Biomass Extracts. Molecules 2023, 28, 2376. [Google Scholar] [CrossRef] [PubMed]
- Miceli, N.; Kwiecień, I.; Nicosia, N.; Speranza, J.; Ragusa, S.; Cavò, E.; Davì, F.; Taviano, M.F.; Ekiert, H. Improvement in the Biosynthesis of Antioxidant-Active Metabolites in In Vitro Cultures of Isatis Tinctoria (Brassicaceae) by Biotechnological Methods/Elicitation and Precursor Feeding. Antioxidants 2023, 12, 1111. [Google Scholar] [CrossRef]
- Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Fokou, P.V.T.; et al. The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules 2021, 26, 1118. [Google Scholar] [CrossRef]
- Najmi, Z.; Scalia, A.C.; De Giglio, E.; Cometa, S.; Cochis, A.; Colasanto, A.; Locatelli, M.; Coisson, J.D.; Iriti, M.; Vallone, L.; et al. Screening of Different Essential Oils Based on Their Physicochemical and Microbiological Properties to Preserve Red Fruits and Improve Their Shelf Life. Foods 2023, 12, 332. [Google Scholar] [CrossRef]
- Cinar, Z.Ö.; Atanassova, M.; Tumer, T.B.; Caruso, G.; Antika, G.; Sharma, S.; Sharifi-Rad, J.; Pezzani, R. Cocoa and Cocoa Bean Shells Role in Human Health: An Updated Review. J. Food Compos. Anal. 2021, 103, 104115. [Google Scholar] [CrossRef]
- Haș, I.M.; Teleky, B.E.; Vodnar, D.C.; Ștefănescu, B.E.; Tit, D.M.; Nițescu, M. Polyphenols and Cardiometabolic Health: Knowledge and Concern among Romanian People. Nutrients 2023, 15, 2281. [Google Scholar] [CrossRef] [PubMed]
- Jurca, T.; Vicaș, L.; Tóth, I.; Braun, M.; Marian, E.; Teusdea, A.; Vicaș, S.; Mureșan, M. Mineral Elements Profile, Bioactive Compounds and Antioxidant Capacity of Wild Blueberry and of Pharmaceutical Preparations from Blueberry (Vaccinium myrtillus). Farmacia 2016, 64, 581–587. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
Extracts | Rutin (μg/g fw) | Myricetin (μg/g fw) | Quercetin (μg/g fw) | Kaempferol (μg/g fw) | Resveratrol (μg/g fw) |
---|---|---|---|---|---|
Aqueous | 100.3 ± 2.9 | 10.6 ± 0.4 | 0.7 ± 0.01 | 2.6 ± 0.1 | 12.1 ± 0.4 |
Acetone | 95.6 ± 2.7 | 15.6 ± 0.5 | 1.7 ± 0.05 | ND | 11.3 ± 0.4 |
Ethanolic | 110.4 ± 3.8 | 16.6 ± 0.5 | 0.6 ± 0.01 | ND | 13.0 ± 0.5 |
Methanolic | 104.2 ± 3.4 | 13.5 ± 0.4 | 1.6 ± 0.06 | 1.4 ± 0.04 | 10.6 ± 0.3 |
Vaccinium myrtillus L. Extracts | Delphinidin- 3-Galactoside (mg/100 g fw) | Delphinidin- 3-Glucoside (mg/100 g fw) | Cyanidin- 3-Glucoside (mg/100 g fw) | Malvidin- 3-Glucoside (mg/100 g fw) |
---|---|---|---|---|
Aqueous | 38.3 ± 1.9 | 16.2 ± 0.8 | 18.7 ± 0.9 | 27.4 ± 1.3 |
Methanolic | 79.4 ± 3.8 | 24.2 ± 1.2 | 19.2 ± 0.9 | 37.8 ± 1.9 |
FRAP (μM TE/g fw) | CUPRAC (μM TE/g fw) | DPPH Scavenging (μM TE/g fw) | |
---|---|---|---|
Vaccinium myrtillusL. extracts | |||
Aqueous | 35.9 ± 1.62 | 17.6 ± 0.68 | 298.1 ± 11.92 |
Acetone | 197.4 ± 8.9 | 21.4 ± 0.73 | 376.8 ± 18.84 |
Ethanolic | 57.3 ± 2.31 | 25.3 ± 1.02 | 271.4 ± 16.28 |
Methanolic | 39.0 ± 1.68 | 24.7 ± 1.01 | 216.5 ± 10.83 |
Positive control | |||
BHT 125 μM | 153.2 ± 6.13 μM TE | 157.9 ± 7.89 μM TE | 354.4 ± 14.18 μM TE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karcheva-Bahchevanska, D.; Nikolova, M.; Iliev, I. Inhibitory Potential of Different Bilberry (Vaccinium myrtillus L.) Extracts on Human Salivary α-Amylase. Molecules 2023, 28, 5820. https://doi.org/10.3390/molecules28155820
Karcheva-Bahchevanska D, Nikolova M, Iliev I. Inhibitory Potential of Different Bilberry (Vaccinium myrtillus L.) Extracts on Human Salivary α-Amylase. Molecules. 2023; 28(15):5820. https://doi.org/10.3390/molecules28155820
Chicago/Turabian StyleKarcheva-Bahchevanska, Diana, Mariana Nikolova, and Ilia Iliev. 2023. "Inhibitory Potential of Different Bilberry (Vaccinium myrtillus L.) Extracts on Human Salivary α-Amylase" Molecules 28, no. 15: 5820. https://doi.org/10.3390/molecules28155820
APA StyleKarcheva-Bahchevanska, D., Nikolova, M., & Iliev, I. (2023). Inhibitory Potential of Different Bilberry (Vaccinium myrtillus L.) Extracts on Human Salivary α-Amylase. Molecules, 28(15), 5820. https://doi.org/10.3390/molecules28155820