Tag and Snag: A New Platform for Bioactive Natural Product Screening from Mixtures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Overview of the “Tag and Snag” Workflow
2.2. Shotgun Derivatization of Dietary Supplement Extracts
2.3. NP Enrichment by Reporting Cells and MS Identification
2.4. Structural Elucidation of Selected Natural Products from Ashwagandha
2.5. Structural Elucidation of Selected Natural Products from Holy Basil
2.6. Structural Elucidation of Selected Natural Products from Valerian
3. Materials and Methods
3.1. Dietary Supplement Extraction and Validation
3.2. Shotgun Derivatization of Dietary Supplements with 13C3/12C3-Propanoate Tag
3.3. Cell Affinity Assay Procedures
3.4. LC-MS Analysis
3.5. Computational Data Analysis
3.6. Extraction and Isolation
3.7. Structural Characterization
3.8. Cytotoxicity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Krishnamurti, C.; Rao, S.C. The Isolation of Morphine by Serturner. Indian J. Anaesth. 2016, 60, 861–862. [Google Scholar] [CrossRef]
- Petrovska, B.B. Historical Review of Medicinal Plants’ Usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Moffat, J.G.; Vincent, F.; Lee, J.A.; Eder, J.; Prunotto, M. Opportunities and Challenges in Phenotypic Drug Discovery: An Industry Perspective. Nat. Rev. Drug Discov. 2017, 16, 531–543. [Google Scholar] [CrossRef]
- Druker, B.J. Imatinib as a Paradigm of Targeted Therapies. Adv. Cancer Res. 2004, 91, 1–30. [Google Scholar]
- Kim, J.L.S.G.; Blenis, J. Rapamycin: One Drug, Many Effects. Cell Metab. 2014, 19, 373–379. [Google Scholar]
- Chakravarti, R.; Sahai, V. Compactin—A Review. Appl. Microbiol. Biotechnol. 2004, 64, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Bent, S. Herbal medicine in the United States: Review of efficacy, safety, and regulation: Grand rounds at University of California, San Francisco Medical Center. J. Gen. Intern. Med. 2008, 23, 854–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashrash, M.; Schommer, J.C.; Brown, L.M. Prevalence and Predictors of Herbal Medicine Use Among Adults in the United States. J. Patient Exp. 2017, 4, 108–113. [Google Scholar] [CrossRef]
- Wang, J.; Xuc, C.; Wong, Y.K.; Li, Y.; Liao, F.; Jiang, T.; Tu, Y. Artemisinin, the Magic Drug Discovered from Traditional Chinese Medicine. Engineering 2019, 5, 32–39. [Google Scholar] [CrossRef]
- Martino, E.; Volpe, S.D.; Terribile, E.; Benetti, E.; Sakaj, M.; Centamore, A.; Sala, A.; Collina, S. The Long Story of Camptothecin: From Traditional Medicine to Drugs. Bioorg. Med. Chem. Lett. 2017, 27, 701–707. [Google Scholar] [CrossRef]
- Seidel, J.; Miao, Y.; Porterfield, W.; Cai, W.; Zhu, X.; Kim, S.; Hu, F.; Bhattarai-Kline, S.; Min, W.; Zhang, W. Structure–activity–distribution relationship study of anti-cancer antimycin-type depsipeptides. Chem. Commun. 2019, 55, 9379–9382. [Google Scholar] [CrossRef] [PubMed]
- Zill, N.; Du, Y.; Marinkovich, S.; Gu, D.; Seidel, J.; Zhang, W. Bioactive Natural Product Discovery via Deuterium Adduct Bioactivity Screening. ACS Chem. Biol. 2023, 18, 1192–1199. [Google Scholar] [CrossRef]
- Cramer, J.; Sager, C.P.; Ernst, B. Hydroxyl Groups in Synthetic and Natural-Product-Derived Therapeutics: A Perspective on a Common Functional Group. J. Med. Chem. 2019, 62, 8915–8930. [Google Scholar] [CrossRef]
- Tanikawa, T.; Asaka, T.; Kashimura, M.; Misawa, Y.; Suzuki, K.; Sato, M.; Kameo, K.; Morimoto, S.; Nishida, A. Synthesis and Antibacterial Activity of Acylides (3-O-Acyl-erythromycin Derivatives): A Novel Class of Macrolide Antibiotics. J. Med. Chem. 2001, 44, 4027–4030. [Google Scholar] [CrossRef]
- Singh, N.; Bhalla, M.; De Jager, P.; Gilca, M. An Overview on Ashwagandha: A Rasayana (Rejuvenator) of Ayurveda. Afr. J. Tradit. Complement. Altern. Med. 2011, 8 (Suppl. 5), 208–213. [Google Scholar] [CrossRef] [PubMed]
- Subbaraju, G.V.; Vanisree, M.; Rao, C.V.; Sivaramakrishna, C.; Sridhar, P.; Jayaprakasam, B.; Nair, M.G. Ashwagandhanolide, a Bioactive Dimeric Thiowithanolide Isolated from the Roots of Withania somnifera. J. Nat. Prod. 2006, 69, 1790–1792. [Google Scholar] [CrossRef] [PubMed]
- Mulabagal, V.; Subbaraju, G.V.; Rao, C.V.; Sivaramakrishna, C.; DeWitt, D.L.; Holmes, D.; Sung, B.; Aggarwal, B.B.; Tsay, H.-S.; Nair, M.G. Withanolide Sulfoxide from Aswagandha Roots Inhibits Nuclear Transcription Factor-Kappa-B, Cyclooxygenase and Tumor Cell Proliferation. Phytother. Res. 2009, 22, 987–992. [Google Scholar] [CrossRef]
- Suzuki, A.; Shirota, O.; Mori, K.; Sekita, S.; Fuchino, H.; Takano, A.; Kuroyanagi, M. Leishmanicidal Active Constituents from Nepalese Medicinal Plant Tulsi (Ocimum sanctum L.). Chem. Pharm. Bull. 2009, 57, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Chaudhuri, P.K. A Review on Phytochemical and Pharmacological Properties of Holy basil (Ocimum sanctum L.). Ind. Crops Prod. 2018, 118, 367–382. [Google Scholar] [CrossRef]
- Cohen, M.M. Tulsi—Ocimum sanctum: A Herb for All Reasons. J. Ayurveda Integr. Med. 2014, 5, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, S.; Kalra, A.; Gupta, V.; Khan, F.; Lal, R.K.; Tripathi, A.K.; Parameswaran, S.; Gopalakrishnan, C.; Ramaswamy, G.; Shasany, A.K. Unravelling the Genome of Holy basil: An “Incomparable” “Elixir of Life” of Traditional Indian Medicine. BMC Genom. 2015, 16, 413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, Y.; Shoji, M.; Hanazawa, S.; Tanaka, S.; Fujisawa, S. Preventive Effect of Bis-eugenol, a Eugenol Ortho Dimer, on Lipopolysaccharide-Stimulated Nuclear Factor Kappa B Activation and Inflammatory Cytokine Expression in Macrophages. Biochem. Pharmacol. 2003, 66, 1061–1066. [Google Scholar] [CrossRef]
- Bent, S.; Padula, A.; Moore, D.; Patterson, M.; Mehling, W. Valerian for Sleep: A Systematic Review and Meta-Analysis. Am. J. Med. 2006, 119, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Shinjyo, N.; Waddell, G.; Green, J. Valerian Root in Treating Sleep Problems and Associated Disorders—A Systematic Review and Meta-Analysis. J. Evid.-Based Integr. Med. 2020, 25, 2515690X20967323. [Google Scholar] [CrossRef]
- Torssell, K.; Wahlberg, K. Isolation, Structure and Synthesis of Alkaloids from Valeriana officinalis L. Acta Chem. Scand. 1967, 21, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bos, R.; Hendriks, H.; Bruins, A.P.; Kloosterman, J.; Sipma, G. Isolation and Identification of Valerenane Sesquiterpenoids from Valeriana officinalis. Phytochemistry 1986, 25, 133–135. [Google Scholar] [CrossRef]
- Yates, R.L.; Wenninger, J.A. Constituents of olibanum oil: Sesquiterpene hydrocarbons. J. AOAC Int. 1970, 53, 941–948. [Google Scholar] [CrossRef] [Green Version]
- Gijsen, H.; Wijnberg, J.; Groot, A. Thermal rearrangement of bicyclogermacrane-1,8-dione. Synthesis of humulenedione and (−)-cubenol, starting from natural (+)-Aromadendrene-V. Tetrahedron 1994, 50, 4745–4754. [Google Scholar] [CrossRef]
- Buchi, G.; Popper, T.L.; Stauffacher, D. Terpenes. XIV. The Structure of Valerenic Acid. J. Am. Chem. Soc. 1960, 82, 2962–2963. [Google Scholar] [CrossRef]
- Khom, S.; Baburin, I.; Timin, E.; Hohaus, A.; Trauner, G.; Kopp, B.; Hering, S. Valerenic acid potentiates and inhibits GABA(A) receptors: Molecular mechanism and subunit specificity. Neuropharmacology 2007, 53, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.; Felgentreff, F.; Schroder, H.; Meier, B.; Brattstrom, A. The anxiolytic effects of a Valerian extract is based on Valerenic acid. BMC Complement. Altern. Med. 2014, 14, 267. [Google Scholar] [CrossRef] [Green Version]
- Skelin, M.; Bursa, D.; Kozina, V.; Winters, T.; Macan, M.; Urlin, M. Key molecules in the GABA signalling pathway are present in mouse and human cervical tissue. Reprod. Fertil. Dev. 2018, 30, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- Friedel, H.D.; Matuseh, R. Neue Aromadendran-Derivate aus Tolu-Balsam. Helv. Chim. Acta 1987, 70, 1753–1759. [Google Scholar] [CrossRef]
- Zhu, Y.; Ouyang, Z.; Du, H.; Wang, M.; Wang, J.; Sun, H.; Kong, L.; Xu, Q.; Ma, H.; Sun, Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm. Sin. B 2022, 12, 4011–4039. [Google Scholar]
Source | Tagged m/z (M+0) | RT (min) | Mass Intensity | Calc. Parent m/z | Adduct | Calc. Mass | Structure | LC-MS Figure |
---|---|---|---|---|---|---|---|---|
Ashwag. | 1031.5559 | 24.5 | 4.32 × 104 | 975.5297 | H+ | 974.5214 | 1 | Figure S1 |
Ashwag. | 1047.5519 | 22.3 | 8.09 × 103 | 991.5257 | H+ | 990.5163 | 2 | Figure S2 |
Hol. Ba. | 594.3060 594.3064 | 31.1 31.4 | 2.21 × 103 2.21 × 105 | 538.2796 | NH4+ | 520.2461 | 7 9 | Figure S3 |
Hol. Ba. | 761.3282 761.3293 | 31.7 34.2 | 4.74 × 105 4.36 × 104 | 705.3031 | Na+ | 682.3124 | 10 11 | Figure S4 |
Valerian | 558.3575 558.3582 | 30.8 32.7 | 1.53 × 105 2.00 × 105 | 502.3313 | none | 502.3313 | 15 | Figure S5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seidel, J.; Du, Y.; Devanathan, R.; Law, R.; Hu, Z.; Zill, N.A.; Iavarone, A.T.; Zhang, W. Tag and Snag: A New Platform for Bioactive Natural Product Screening from Mixtures. Molecules 2023, 28, 5726. https://doi.org/10.3390/molecules28155726
Seidel J, Du Y, Devanathan R, Law R, Hu Z, Zill NA, Iavarone AT, Zhang W. Tag and Snag: A New Platform for Bioactive Natural Product Screening from Mixtures. Molecules. 2023; 28(15):5726. https://doi.org/10.3390/molecules28155726
Chicago/Turabian StyleSeidel, Jeremy, Yongle Du, Rohin Devanathan, Richard Law, Zhijuan Hu, Nicholas A. Zill, Anthony T. Iavarone, and Wenjun Zhang. 2023. "Tag and Snag: A New Platform for Bioactive Natural Product Screening from Mixtures" Molecules 28, no. 15: 5726. https://doi.org/10.3390/molecules28155726
APA StyleSeidel, J., Du, Y., Devanathan, R., Law, R., Hu, Z., Zill, N. A., Iavarone, A. T., & Zhang, W. (2023). Tag and Snag: A New Platform for Bioactive Natural Product Screening from Mixtures. Molecules, 28(15), 5726. https://doi.org/10.3390/molecules28155726