Carotenoids and Fatty Acids Obtained from Paprika Capsicum annuum by Supercritical Carbon Dioxide and Ethanol as Co-Extractant
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Extraction of Individual Carotenoids Using SC-CO2
2.2. The Extraction of Carotenoids with Co-Extractant
2.3. The Extraction of Fatty Acids
3. Material and Methods
3.1. Plant Material
3.2. Techniques of Extraction
3.3. Carotenoids Identification and Quantification
3.4. Gas Chromatography of Fatty Acids
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Aguiar, A.C.D.; Viganó, J.; da Silva Anthero, A.G.; Dias, A.L.B.; Hubinger, M.D.; Martínez, J. Supercritical Fluids and Fluid Mixtures to Obtain High-Value Compounds from Capsicum Peppers. Food Chem. X 2022, 13, 100228. [Google Scholar] [CrossRef]
- Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial Use of Pepper (Capsicum annum L.) Derived Products: Technological Benefits and Biological Advantages. Food Chem. 2019, 274, 872–885. [Google Scholar] [CrossRef] [PubMed]
- Koncsek, A.; Helyes, L.; Daood, H.G. Bioactive Compounds of Cold Pressed Spice Paprika Seeds Oils. J. Food Process. Preserv. 2018, 42, e13403. [Google Scholar] [CrossRef]
- Azabou, S.; Taheur, F.B.; Jridi, M.; Bouaziz, M.; Nasri, M. Discarded Seeds from Red Pepper (Capsicum annum) Processing Industry as a Sustainable Source of High Added-Value Compounds and Edible Oil. Environ. Sci. Pollut. Res. 2017, 24, 22196–22203. [Google Scholar] [CrossRef] [PubMed]
- de Sá Mendes, N.; de Andrade Gonçalves, É.C.B. The Role of Bioactive Components Found in Peppers. Trends Food Sci. Technol. 2020, 99, 229–243. [Google Scholar] [CrossRef]
- Hernández-Ortega, M.; Ortiz-Moreno, A.; Hernández-Navarro, M.D.; Chamorro-Cevallos, G.; Dorantes-Alvarez, L.; Necoechea-Mondragón, H. Antioxidant, Antinociceptive, and Anti-Inflammatory Effects of Carotenoids Extracted from Dried Pepper (Capsicum annuum L.). J. Biomed. Biotechnol. 2012, 2012, 524019. [Google Scholar] [CrossRef] [Green Version]
- Mohd Hassan, N.; Yusof, N.A.; Yahaya, A.F.; Mohd Rozali, N.N.; Othman, R. Carotenoids of Capsicum Fruits: Pigment Profile and Health-Promoting Functional Attributes. Antioxidants 2019, 8, 469. [Google Scholar] [CrossRef] [Green Version]
- Ponder, A.; Kulik, K.; Hallmann, E. Occurrence and Determination of Carotenoids and Polyphenols in Different Paprika Powders from Organic and Conventional Production. Molecules 2021, 26, 2980. [Google Scholar] [CrossRef]
- Fernández-Bedmar, Z.; Alonso-Moraga, A. In Vivo and In Vitro Evaluation for Nutraceutical Purposes of Capsaicin, Capsanthin, Lutein and Four Pepper Varieties. Food Chem. Toxicol. 2016, 98, 89–99. [Google Scholar] [CrossRef]
- Pugliese, A.; Loizzo, M.; Tundis, R.; O’Callaghan, Y.; Galvin, K.; Menichini, F.; O’Brien, N. The Effect of Domestic Processing on the Content and Bioaccessibility of Carotenoids from Chili Peppers (Capsicum Species). Food Chem. 2013, 141, 2606–2613. [Google Scholar] [CrossRef]
- Aizawa, K.; Inakuma, T. Dietary Capsanthin, the Main Carotenoid in Paprika (Capsicum annuum), Alters Plasma High-Density Lipoprotein-Cholesterol Levels and Hepatic Gene Expression in Rats. Br. J. Nutr. 2009, 102, 1760–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maoka, T. Recent Progress in Structural Studies of Carotenoids in Animals and Plants. Arch. Biochem. Biophys. 2009, 483, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Fernández-García, E.; Carvajal-Lérida, I.; Pérez-Gálvez, A. Carotenoids Exclusively Synthesized in Red Pepper (Capsanthin and Capsorubin) Protect Human Dermal Fibroblasts against UVB Induced DNA Damage. Photochem. Photobiol. Sci. 2016, 15, 1204–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Gao, Y.; Hao, J.; Geng, J.; Zhang, J.; Yin, J.; Liu, R.; Sui, W.; Gong, L.; Zhang, M. Capsanthin Extract Prevents Obesity, Reduces Serum TMAO Levels and Modulates the Gut Microbiota Composition in High-Fat-Diet Induced Obese C57BL/6J Mice. Food Res. Int. 2019, 128, 108774. [Google Scholar] [CrossRef]
- Kennedy, L.E.; Abraham, A.; Kulkarni, G.; Shettigar, N.; Dave, T.; Kulkarni, M. Capsanthin, a Plant-Derived Xanthophyll: A Review of Pharmacology and Delivery Strategies. AAPS PharmSciTech 2021, 22, 203. [Google Scholar] [CrossRef]
- Kim, S.; Ha, T.Y.; Hwang, I.K. Analysis, Bioavailability, and Potential Healthy Effects of Capsanthin, Natural Red Pigment from Capsicum Spp. Food Rev. Int. 2009, 25, 198–213. [Google Scholar] [CrossRef]
- Jarret, R.L.; Levy, I.J.; Potter, T.L.; Cermak, S.C. Seed Oil and Fatty Acid Composition in Capsicum Spp. J. Food Compos. Anal. 2013, 30, 102–108. [Google Scholar] [CrossRef]
- Chouaibi, M.; Rezig, L.; Hamdi, S.; Ferrari, G. Chemical Characteristics and Compositions of Red Pepper Seed Oils Extracted by Different Methods. Ind. Crops Prod. 2019, 128, 363–370. [Google Scholar] [CrossRef]
- Ristic-Medic, D.; Vucic, V.; Poštić, M.; Karadžić, I.; Glibetic, M. Polyunsaturated Fatty Acid in Health and Disease. J. Serbian Chem. Soc. 2013, 78, 1269–1289. [Google Scholar] [CrossRef]
- Embaby, H.E.; Miyakawa, T.; Hachimura, S.; Muramatsu, T.; Nara, M.; Tanokura, M. Physical and Chemical Properties of Nabak (Zizyphus Spina-Christi) Seed Kernel and Sweet Pepper (Capsicum annuum L.) Seed Oils. J. Sci. Food Agric. 2022, 102, 2660–2666. [Google Scholar] [CrossRef]
- Tepić, A.; Zeković, Z.; Kravić, S.; Mandić, A. Pigment Content and Fatty Acid Composition of Paprika Oleoresins Obtained by Conventional and Supercritical Carbon Dioxide Extraction. CyTA-J. Food 2009, 7, 95–102. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M. Monounsaturated Fatty Acids and Risk of Cardiovascular Disease. Circulation 1999, 100, 1253–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montalbán, M.G.; Víllora, G. Supercritical Fluids: Properties and Applications. In Phase Equilibria with Supercritical Carbon Dioxide; Montalbán, M.G., Víllora, G., Eds.; IntechOpen: Rijeka, Serbia, 2022. [Google Scholar]
- Hrnčič, M.K.; Cör, D.; Verboten, M.T.; Knez, Ž. Application of Supercritical and Subcritical Fluids in Food Processing. Food Qual. Saf. 2018, 2, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Ruslan, M.S.; Idham, Z.; Yian, L.; Ahmad Zaini, M.A.; Che Yunus, M.A. Effect of Operating Conditions on Catechin Extraction from Betel Nuts Using Supercritical CO2-Methanol Extraction. Sep. Sci. Technol. 2017, 53, 662–670. [Google Scholar] [CrossRef]
- Aris, A.; Zaini, A.S.; Mohd Nasir, H.; Idham, Z.; Vellasamy, Y.; Yunus, M. Effect of Particle Size and Co-Extractant in Momordica Charantia Extract Yield and Diffusion Coefficient Using Supercritical CO2. Malays. J. Fundam. Appl. Sci. 2018, 14, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Ciurlia, L.; Bleve, M.; Rescio, L. Supercritical Carbon Dioxide Co-Extraction of Tomatoes (Lycopersicum esculentum L.) and Hazelnuts (Corylus avellana L.): A New Procedure in Obtaining a Source of Natural Lycopene. J. Supercrit. Fluids 2009, 49, 338–344. [Google Scholar] [CrossRef]
- Jiménez, D.; Vardanega, R.; Salinas, F.; Espinosa-Álvarez, C.; Bugueño-Muñoz, W.; Palma, J.; Meireles, M.A.A.; Ruíz-Domínguez, M.C.; Cerezal-Mezquita, P. Effect of Drying Methods on Biorefinery Process to Obtain Capsanthin and Phenolic Compounds from Capsicum annuum L. J. Supercrit. Fluids 2021, 174, 105241. [Google Scholar] [CrossRef]
- Barros, H.D.F.Q.; Coutinho, J.P.; Grimaldi, R.; Godoy, H.T.; Cabral, F.A. Simultaneous Extraction of Edible Oil from Avocado and Capsanthin from Red Bell Pepper Using Supercritical Carbon Dioxide as Solvent. J. Supercrit. Fluids 2016, 107, 315–320. [Google Scholar] [CrossRef]
- Uquiche, E.; del Valle, J.M.; Ortiz, J. Supercritical Carbon Dioxide Extraction of Red Pepper (Capsicum annuum L.) Oleoresin. J. Food Eng. 2004, 65, 55–66. [Google Scholar] [CrossRef]
- Daood, H.G.; Illés, V.; Gnayfeed, M.H.; Mészáros, B.; Horváth, G.; Biacs, P.A. Extraction of Pungent Spice Paprika by Supercritical Carbon Dioxide and Subcritical Propane. J. Supercrit. Fluids 2002, 23, 143–152. [Google Scholar] [CrossRef]
- Gnayfeed, M.H.; Daood, H.G.; Illés, V.; Biacs, P.A. Supercritical CO2 and Subcritical Propane Extraction of Pungent Paprika and Quantification of Carotenoids, Tocopherols, and Capsaicinoids. J. Agric. Food Chem. 2001, 49, 2761–2766. [Google Scholar] [CrossRef] [PubMed]
- Illés, V.; Daood, H.G.; Biacs, P.A.; Gnayfeed, M.H.; Meszaros, B. Supercritical CO2 and Subcritical Propane Extraction of Spice Red Pepper Oil with Special Regard to Carotenoid and Tocopherol Content. J. Chromatogr. Sci. 1999, 37, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Kostrzewa, D.; Dobrzyńska-Inger, A.; Turczyn, A. Optimization of Supercritical Carbon Dioxide Extraction of Sweet Paprika (Capsicum annuum L.) Using Response Surface Methodology. Chem. Eng. Res. Des. 2020, 160, 39–51. [Google Scholar] [CrossRef]
- Kim, J.; Ha, T.Y.; Kim, S.; Lee, S.-J.; Ahn, J. Red Paprika (Capsicum annuum L.) and Its Main Carotenoid Capsanthin Ameliorate Impaired Lipid Metabolism in the Liver and Adipose Tissue of High-Fat Diet-Induced Obese Mice. J. Funct. Foods 2017, 31, 131–140. [Google Scholar] [CrossRef]
- Kostrzewa, D.; Dobrzyńska-Inger, A.; Reszczyński, R. Pilot Scale Supercritical CO2 Extraction of Carotenoids from Sweet Paprika (Capsicum annuum L.): Influence of Particle Size and Moisture Content of Plant Material. LWT 2021, 136, 110345. [Google Scholar] [CrossRef]
- Stinco, C.M.; Szczepańska, J.; Marszałek, K.; Pinto, C.A.; Inácio, R.S.; Mapelli-Brahm, P.; Barba, F.J.; Lorenzo, J.M.; Saraiva, J.A.; Meléndez-Martínez, A.J. Effect of High-Pressure Processing on Carotenoids Profile, Colour, Microbial and Enzymatic Stability of Cloudy Carrot Juice. Food Chem. 2019, 299, 125112. [Google Scholar] [CrossRef] [PubMed]
- Khajeh, M. Optimization of Process Variables for Essential Oil Components from Satureja Hortensis by Supercritical Fluid Extraction Using Box-Behnken Experimental Design. J. Supercrit. Fluids 2011, 55, 944–948. [Google Scholar] [CrossRef]
- Jarén-Galán, M.; Nienaber, U.; Schwartz, S.J. Paprika (Capsicum annuum) Oleoresin Extraction with Supercritical Carbon Dioxide. J. Agric. Food Chem. 1999, 47, 3558–3564. [Google Scholar] [CrossRef]
- Prado, J.; Veggi, P.; Meireles, M.A. Extraction Methods for Obtaining Carotenoids from Vegetables-Review. Curr. Anal. Chem. 2014, 10, 29–66. [Google Scholar] [CrossRef]
- de Andrade Lima, M.; Charalampopoulos, D.; Chatzifragkou, A. Optimisation and Modelling of Supercritical CO2 Extraction Process of Carotenoids from Carrot Peels. J. Supercrit. Fluids 2018, 133, 94–102. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, H.J.; Shin, M.H.; Lee, K.-W.; Lee, H.; Kim, Y.-S.; Kim, K.O.; Kim, K.H. Effects of Cosolvents on the Decaffeination of Green Tea by Supercritical Carbon Dioxide. Food Chem. 2007, 105, 1011–1017. [Google Scholar] [CrossRef]
- Barbosa, H.M.A.; de Melo, M.M.R.; Coimbra, M.A.; Passos, C.P.; Silva, C.M. Optimization of the Supercritical Fluid Coextraction of Oil and Diterpenes from Spent Coffee Grounds Using Experimental Design and Response Surface Methodology. J. Supercrit. Fluids 2014, 85, 165–172. [Google Scholar] [CrossRef]
- Ortega, A.B.; Garcia, A.C.; Szekely, E.; Škerget, M.; Knez, Ž. Supercritical Fluid Extraction from Saw Palmetto Berries at a Pressure Range between 300 bar and 450 bar. J. Supercrit. Fluids 2017, 120, 132–139. [Google Scholar] [CrossRef]
- Machmudah, S.; Maulana, N.A.; Norman, A.S.M.; Nyoto, V.M.; Amrullah, I.; Wahyudiono; Winardi, S.; Wenten, I.G.; Goto, M. Oil Removal from Spent Bleaching Earth of Vegetable Oil Refinery Plant Using Supercritical Carbon Dioxide. Heliyon 2022, 8, e10826. [Google Scholar] [CrossRef] [PubMed]
- Cvetković, T.; Ranilović, J.; Gajari, D.; Tomić-Obrdalj, H.; Šubarić, D.; Moslavac, T.; Cikoš, A.-M.; Jokić, S. Podravka and Slavonka Varieties of Pepper Seeds (Capsicum annuum L.) as a New Source of Highly Nutritional Edible Oil. Foods 2020, 9, 1262. [Google Scholar] [CrossRef] [PubMed]
- Abbeddou, S.; Petrakis, C.; Pérez-Gálvez, A.; Kefalas, P.; Hornero-Méndez, D. Effect of Simulated Thermo-Degradation on the Carotenoids, Tocopherols and Antioxidant Properties of Tomato and Paprika Oleoresins. J. Am. Oil Chem. Soc. 2013, 90, 1697–1703. [Google Scholar] [CrossRef] [Green Version]
- Teixeira de Souza Sora, G.; Souza, A.; Zielinski, A.; Haminiuk, C.; Matsushita, M.; Peralta, R. Fatty Acid Composition of Capsicum Genus Peppers. Ciênc. Agrotecnol. 2015, 39, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. Evolutionary Aspects of Diet: The Omega-6/Omega-3 Ratio and the Brain. Mol. Neurobiol. 2011, 44, 203–215. [Google Scholar] [CrossRef]
- Teixeira, A.; Fernandes, A.; Pereira, E. Fat Content Reduction and Lipid Profile Improvement in Portuguese Fermented Sausages Alheira. Heliyon 2020, 6, e05306. [Google Scholar] [CrossRef]
- Kostrzewa, D.; Dobrzyńska-Inger, A.; Turczyn, A. Experimental Data and Modelling of the Solubility of High-Carotenoid Paprika Extract in Supercritical Carbon Dioxide. Molecules 2019, 24, 4174. [Google Scholar] [CrossRef] [Green Version]
- ISO 12966-2:2011 (E); Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters-Part 2: Preparation of Methyl Esters of Fatty Acid. International Organization for Standardization (ISO): Geneva, Switzerland, 2011.
- ISO 12966-3: 2009 (E); Part 3: Preparation of Methyl Esters Using Trimethylsulfonium Hydroxide (TMSH). International Organization for Standardization (ISO): Geneva, Switzerland, 2009.
- ISO 12966-4:2015 (E); Part 4: Determination by Capillary Gas Chromatography. International Organization for Standardization (ISO): Geneva, Switzerland, 2015.
- ISO 12966-1:2014 (E); Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. International Organization for Standardization (ISO): Geneva, Switzerland, 2014.
Run Order | Extraction Parameters | Y (g/100 g DM) | Content of Carotenoids (mg/kg Extract) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
p, MPa (X1) | T, °C (X2) | t, min (X3) | Violaxanthin | Capsorubin | Capsanthin | Zeaxanthin | β-Cryptoxanthin | β-Carotene | ||
SFE1 | 35 (0) | 60 (1) | 60 (1) | 9.94 | 450 ± 18.1 | 2250 ± 113.1 | 13,860 ± 494.3 | 1050 ± 45.8 | 860 ± 5.9 | 4330 ± 262.5 |
SFE2 | 35 (0) | 50 (0) | 35 (0) | 8.75 | 150 ± 2.8 | 1300 ± 39.3 | 7650 ± 37.7 | 640 ± 0.4 | 690 ± 3.5 | 3680 ± 6.1 |
SFE3 | 35 (0) | 50 (0) | 35 (0) | 8.85 | 280 ± 9.9 | 1230 ± 25.6 | 7950 ± 5.7 | 620 ± 2.9 | 680 ± 9.0 | 3720 ± 23.9 |
SFE4 | 25 (−1) | 60 (1) | 35 (0) | 8.68 | 160 ± 1.2 | 620 ± 25.8 | 4370 ± 132.7 | 420 ± 14.7 | 660 ± 13.3 | 4250 ± 133.7 |
SFE5 | 45 (1) | 50 (0) | 60 (1) | 9.50 | 750 ± 6.7 | 3070 ± 108.0 | 18,610 ± 24.3 | 1380 ± 13.5 | 970 ± 0.6 | 4300 ± 75.7 |
SFE6 | 25 (−1) | 40 (−1) | 35 (0) | 8.35 | 60 ± 2.2 | 640 ± 36.3 | 3930 ± 16.4 | 320 ± 1.4 | 410 ± 5.8 | 3410 ± 79.5 |
SFE7 | 35 (0) | 40 (−1) | 10 (−1) | 8.04 | 170 ± 0.6 | 730 ± 5.3 | 4950 ± 43.1 | 370 ± 3.2 | 440 ± 3.0 | 3470 ± 21.2 |
SFE8 | 35 (0) | 40 (−1) | 60 (1) | 8.93 | 340 ± 1.4 | 1910 ± 21.1 | 11,430 ± 166.2 | 860 ± 0.9 | 770 ± 4.6 | 3800 ± 9.5 |
SFE9 | 25 (−1) | 50 (0) | 60 (1) | 9.11 | 340 ± 4.0 | 1400 ± 3.0 | 9810 ± 264.8 | 780 ± 3.3 | 830 ± 1.3 | 4480 ± 27.1 |
SFE10 | 45 (1) | 60 (1) | 35 (0) | 9.48 | 500 ± 7.2 | 2500 ± 16.9 | 14,030 ± 101.7 | 1070 ± 15.8 | 790 ± 4.8 | 3630 ± 38.4 |
SFE11 | 45 (1) | 50 (0) | 10 (−1) | 8.35 | 320 ± 5.1 | 1330 ± 19.9 | 8640 ± 37.0 | 690 ± 3.5 | 760 ± 1.5 | 4540 ± 4.1 |
SFE12 | 25 (−1) | 50 (0) | 10 (−1) | 7.22 | n.d. | 920 ± 83.2 | 1720 ± 133.1 | 140 ± 0.9 | 260 ± 1.0 | 3060 ± 23.5 |
SFE13 | 35 (0) | 60 (1) | 10 (−1) | 8.09 | 240 ± 3.2 | 990 ± 37.1 | 6640 ± 78.9 | 570 ± 8.3 | 810 ± 12.8 | 4970 ± 63.0 |
SFE14 | 35 (0) | 50 (0) | 35 (0) | 8.76 | 270 ± 19.6 | 1320 ± 32.3 | 7490 ± 141.9 | 650 ± 21.4 | 790 ± 10.6 | 4650 ± 127.4 |
SFE15 | 45 (1) | 40 (−1) | 35 (0) | 8.61 | 390 ± 10.0 | 1900 ±2.6 | 12,130 ± 92.7 | 880 ± 21.3 | 780 ± 8.3 | 3820 ± 41.4 |
SOX | 10.84 | 610 ± 9.5 | 2020 ± 50.3 | 13,270 ± 268.7 | 1000 ± 12.4 | 740 ± 14.8 | 3290 ± 60.5 |
Source | Violaxanthin (mg/kg) | Capsorubin (mg/kg) | Capsanthin (mg/kg) | Zeaxanthin (mg/kg) | β-Cryptoxanthin (mg/kg) | |||||
---|---|---|---|---|---|---|---|---|---|---|
β | p-Value | β | p-Value | β | p-Value | β | p-Value | β | p-Value | |
Model | 0.0149 | 0.0011 | 0.0003 | 0.0003 | 0.0195 | |||||
Lack of Fit | 0.4740 | 0.0440 | 0.0469 | 0.0379 | 0.3009 | |||||
β0 | 233.33 | 1283.30 | 7696.67 | 636.67 | 720.00 | |||||
X1 | 175.00 | 0.0014 | 652.50 | 0.0001 | 4197.50 | <0.0001 | 295.00 | <0.0001 | 142.50 | 0.0048 |
X2 | 48.75 | 0.1354 | 147.50 | 0.0616 | 807.50 | 0.0404 | 85.00 | 0.0107 | 90.00 | 0.0285 |
X3 | 143.75 | 0.0033 | 582.50 | 0.0002 | 3970.00 | <0.0001 | 287.50 | <0.0001 | 145.00 | 0.0044 |
X1X2 | 2.50 | 0.9511 | 155.00 | 0.1345 | 365.00 | 0.4200 | 22.50 | 0.4912 | −60.00 | 0.2101 |
X1X3 | 22.50 | 0.5867 | 315.00 | 0.0151 | 470.00 | 0.3094 | 12.50 | 0.6971 | −90.00 | 0.0836 |
X2X3 | 10.00 | 0.8067 | 20.00 | 0.8271 | 185.00 | 0.6748 | −2.50 | 0.9375 | −70.00 | 0.1544 |
X12 | 48.33 | 0.2845 | 170.83 | 0.1175 | 696.67 | 0.1682 | 35.42 | 0.3125 | −37.50 | 0.4275 |
X22 | −4.17 | 0.9217 | −39.17 | 0.6830 | 221.67 | 0.6301 | 0.42 | 0.9900 | −22.50 | 0.6266 |
X32 | 70.83 | 0.1395 | 225.83 | 0.0547 | 1301.67 | 0.0298 | 75.42 | 0.0623 | 22.50 | 0.6266 |
R2 | 0.9384 | 0.9791 | 0.9879 | 0.9874 | 0.9311 | |||||
Adjusted R2 | 0.8275 | 0.9415 | 0.9661 | 0.9648 | 0.8072 | |||||
Predicted R2 | 0.3096 | 0.6744 | 0.8113 | 0.8032 | 0.0991 |
Source | Violaxanthin (mg/kg) | Capsorubin (mg/kg) | Capsanthin (mg/kg) | Zeaxanthin (mg/kg) | β-Cryptoxanthin (mg/kg) | |||||
---|---|---|---|---|---|---|---|---|---|---|
β | p-Value | β | p-Value | β | p-Value | β | p-Value | β | p-Value | |
Model | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0005 | |||||
Lack of Fit | 0.6889 | 0.0691 | 0.0617 | 0.0707 | 0.3283 | |||||
β0 | 258.57 | 1259.33 | 8221.43 | 657.14 | 700.00 | |||||
X1 | 175.00 | <0.0001 | 652.50 | <0.0001 | 4197.50 | <0.0001 | 259.00 | <0.0001 | 142.5 | 0.0010 |
X2 | 48.75 | 0.0576 | 147.50 | 0.0275 | 807.50 | 0.0205 | 85.00 | 0.0008 | 90.00 | 0.0164 |
X3 | 143.75 | <0.0001 | 582.50 | <0.0001 | 3970.00 | <0.0001 | 287.50 | <0.0001 | 145.00 | 0.0009 |
X1X2 | 155.00 | 0.0782 | ||||||||
X1X3 | 315.00 | 0.0041 | −90.00 | 0.0691 | ||||||
X2X3 | ||||||||||
X12 | 173.90 | 0.0611 | ||||||||
X22 | ||||||||||
X32 | 67.68 | 0.0694 | 228.90 | 0.0219 | 1236.1 | 0.0165 | 72.86 | 0.0195 | ||
R2 | 0.9152 | 0.9781 | 0.9758 | 0.9824 | 0.8456 | |||||
Adjusted R2 | 0.8813 | 0.9562 | 0.9661 | 0.9754 | 0.7838 | |||||
Predicted R2 | 0.8129 | 0.7825 | 0.9410 | 0.9560 | 0.6149 |
SFE Condition | Y (g/100 g DM) | Content of Carotenoids (mg/kg Extract) | |||||
---|---|---|---|---|---|---|---|
Violaxanthin | Capsorubin | Capsanthin | Zeaxanthin | β-Cryptoxanthin | β-Carotene | ||
25 MPa/40 °C | 10.37 | 370 ± 0.1 | 1620 ± 9.6 | 10,130 ± 151.5 | 740 ± 6.7 | 650 ± 10.9 | 3060 ± 9.7 |
25 MPa/60 °C | 10.71 | 380 ± 8.6 | 1610 ± 39.3 | 10,490 ± 249.1 | 800 ± 0.8 | 660 ± 18.5 | 3090 ± 17.3 |
45 MPa/40 °C | 11.04 | 540 ± 0.1 | 1960 ± 6.5 | 12,900 ± 267.3 | 940 ± 17.7 | 700 ± 12.7 | 2970 ± 75.0 |
45 MPa/60 °C | 11.26 | 540 ± 6.1 | 1810 ± 23.4 | 11,920 ± 183.9 | 910 ± 16.2 | 670 ± 8.9 | 3030 ± 29.9 |
Content of Fatty Acids (g/100 g Extract) | PUFA/SFA | Total FA Yield (mg/g Sample) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lauric Acid (C12:0) | Palmitic Acid (C16:0) | Stearic Acid (C18:0) | Oleic Acid (C18:1) | Linoleic Acid (C18:2) | Arachidic Acid (C20:0) | α-Linolenic Acid (C18:3) | Behenic Acid (C22:0) | Total SFA | Total UFA | Total FA | |||
SFE1 | 0.64 ± 0.03 | 11.09 ± 0.16 | 1.98 ± 0.06 | 8.48 ± 0.02 | 45.55 ± 0.28 | 0.27 ± 0.01 | 3.07 ± 0.03 | 0.21 ± 0.00 | 14.19 | 57.10 | 71.29 | 3.43 | 63.38 |
SFE2 | 0.47 ± 0.09 | 11.11 ± 0.04 | 2.01 ± 0.02 | 8.64 ± 0.02 | 46.87 ± 0.14 | 0.27 ± 0.00 | 3.03 ± 0.01 | 0.21 ± 0.00 | 14.07 | 58.54 | 72.61 | 3.55 | 56.85 |
SFE3 | 0.49 ± 0.02 | 10.14 ± 0.75 | 1.79 ± 0.14 | 7.89 ± 0.53 | 42.59 ± 3.16 | 0.29 ± 0.01 | 2.69 ± 0.26 | 0.11 ± 0.06 | 12.82 | 53.17 | 65.99 | 3.53 | 52.26 |
SFE4 | 0.40 ± 0.02 | 11.55 ± 0.06 | 2.11 ± 0.01 | 9.08 ± 0.07 | 48.53 ± 0.49 | 0.27 ± 0.01 | 3.16 ± 0.11 | 0.21 ± 0.01 | 14.54 | 60.77 | 75.31 | 3.56 | 58.44 |
SFE5 | 0.34 ± 0.01 | 9.04 ± 0.97 | 1.58 ± 0.25 | 6.94 ± 0.86 | 37.84 ± 4.15 | 0.21 ± 0.01 | 2.56 ± 0.39 | 0.14 ± 0.05 | 11.31 | 47.34 | 58.65 | 3.57 | 49.85 |
SFE6 | 0.30 ± 0.05 | 10.54 ± 0.96 | 1.91 ± 0.22 | 8.27 ± 0.74 | 44.72 ± 3.68 | 0.27 ± 0.00 | 2.76 ± 0.28 | 0.17 ± 0.05 | 13.19 | 55.75 | 68.94 | 3.60 | 51.50 |
SFE7 | 0.31 ± 0.04 | 11.66 ± 0.17 | 1.38 ± 0.04 | 8.16 ± 0.30 | 49.13 ± 1.03 | 0.29 ± 0.01 | 3.03 ± 0.17 | 0.12 ± 0.08 | 13.76 | 60.32 | 74.08 | 3.79 | 53.26 |
SFE8 | 0.50 ± 0.05 | 10.94 ± 0.62 | 1.96 ± 0.12 | 8.50 ± 0.49 | 45.64 ± 2.61 | 0.27 ± 0.00 | 3.03 ± 0.23 | 0.14 ± 0.10 | 13.81 | 57.17 | 70.98 | 3.52 | 56.71 |
SFE9 | 0.30 ± 0.03 | 9.18 ± 0.29 | 1.59 ± 0.08 | 7.01 ± 0.19 | 39.62 ± 1.65 | 0.21 ± 0.01 | 2.31 ± 0.06 | 0.11 ± 0.05 | 11.39 | 48.94 | 60.33 | 3.68 | 49.17 |
SFE10 | 0.48 ± 0.03 | 10.47 ± 0.04 | 1.81 ± 0.04 | 8.02 ± 0.01 | 43.48 ± 0.06 | 0.24 ± 0.03 | 2.89 ± 0.07 | 0.17 ± 0.04 | 13.17 | 54.39 | 67.56 | 3.52 | 57.29 |
SFE11 | 0.41 ± 0.01 | 10.34 ± 0.27 | 1.83 ± 0.04 | 7.96 ± 0.27 | 43.47 ± 1.06 | 0.28 ± 0.01 | 2.67 ± 0.06 | 0.14 ± 0.00 | 13.00 | 54.10 | 67.10 | 3.55 | 50.12 |
SFE12 | 0.20 ± 0.01 | 11.30 ± 0.29 | 2.02 ± 0.12 | 8.76 ± 0.39 | 47.74 ± 2.00 | 0.27 ± 0.01 | 2.91 ± 0.15 | 0.17 ± 0.05 | 13.96 | 59.41 | 73.37 | 3.63 | 47.40 |
SFE13 | 0.39 ± 0.07 | 11.08 ± 0.68 | 1.99 ± 0.14 | 8.60 ± 0.47 | 46.88 ± 2.62 | 0.29 ± 0.01 | 2.92 ± 0.18 | 0.15 ± 0.01 | 13.90 | 58.40 | 72.30 | 3.58 | 52.35 |
SFE14 | 0.53 ± 0.02 | 11.22 ± 020 | 2.07 ± 0.05 | 9.10 ± 0.11 | 47.37 ± 0.85 | 0.29 ± 0.01 | 2.93 ± 0.11 | 0.22 ± 0.01 | 14.33 | 59.40 | 73.73 | 3.51 | 57.80 |
SFE15 | 0.63 ± 0.05 | 10.60 ± 0.91 | 1.85 ± 0.17 | 8.05 ± 0.74 | 43.65 ± 3.78 | 0.25 ± 0.01 | 2.88 ± 0.35 | 0.18 ± 0.04 | 13.51 | 54.58 | 68.09 | 3.44 | 52.43 |
SOX | 0.78 ± 0.02 | 10.40 ± 0.34 | 1.80 ± 0.05 | 8.02 ± 0.22 | 43.05 ± 1.15 | 0.26 ± 0.01 | 3.45 ± 0.10 | 0.17 ± 0.05 | 13.41 | 54.52 | 67.93 | 3.47 | 65.89 |
SFE_C_25 MPa/40 °C | 0.73 ± 0.03 | 11.79 ± 0.15 | 1.84 ± 0.02 | 9.42 ± 0.12 | 54.15 ± 0.82 | 0.55 ± 0.05 | 3.84 ± 0.07 | 0.32 ± 0.01 | 15.23 | 67.41 | 82.64 | 3.91 | 76.65 |
SFE_C_25 MPa/60 °C | 0.75 ± 0.04 | 10.23 ± 0.39 | 1.55 ± 0.07 | 8.52 ± 0.13 | 49.43 ± 0.81 | 0.56 ± 0.03 | 3.55 ± 0.17 | 0.31 ± 0.03 | 13.40 | 61.50 | 74.90 | 3.95 | 71.75 |
SFE_C_45 MPa/40 °C | 0.87 ± 0.04 | 9.46 ± 0.75 | 1.54 ± 0.14 | 8.48 ± 0.71 | 49.58 ± 3.63 | 0.53 ± 0.04 | 3.53 ± 0.35 | 0.29 ± 0.01 | 12.69 | 61.59 | 74.28 | 4.19 | 73.35 |
SFE_C_45 MPa/60 °C | 0.86 ± 0.06 | 11.33 ± 0.42 | 1.73 ± 0.08 | 8.88 ± 0.02 | 51.81 ± 0.13 | 0.55 ± 0.04 | 3.87 ± 0.28 | 0.30 ± 0.05 | 14.77 | 64.56 | 79.33 | 3.77 | 79.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostrzewa, D.; Mazurek, B.; Kostrzewa, M.; Jóźwik, E. Carotenoids and Fatty Acids Obtained from Paprika Capsicum annuum by Supercritical Carbon Dioxide and Ethanol as Co-Extractant. Molecules 2023, 28, 5438. https://doi.org/10.3390/molecules28145438
Kostrzewa D, Mazurek B, Kostrzewa M, Jóźwik E. Carotenoids and Fatty Acids Obtained from Paprika Capsicum annuum by Supercritical Carbon Dioxide and Ethanol as Co-Extractant. Molecules. 2023; 28(14):5438. https://doi.org/10.3390/molecules28145438
Chicago/Turabian StyleKostrzewa, Dorota, Barbara Mazurek, Marcin Kostrzewa, and Emilia Jóźwik. 2023. "Carotenoids and Fatty Acids Obtained from Paprika Capsicum annuum by Supercritical Carbon Dioxide and Ethanol as Co-Extractant" Molecules 28, no. 14: 5438. https://doi.org/10.3390/molecules28145438
APA StyleKostrzewa, D., Mazurek, B., Kostrzewa, M., & Jóźwik, E. (2023). Carotenoids and Fatty Acids Obtained from Paprika Capsicum annuum by Supercritical Carbon Dioxide and Ethanol as Co-Extractant. Molecules, 28(14), 5438. https://doi.org/10.3390/molecules28145438