Fabrication, Characterization and Biomedical Evaluation of a Statistically Optimized Gelatin Scaffold Enriched with Co-Drugs Loaded into Controlled-Release Silica Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Design of Experimental Work
3.3. Preparation of Co-Drugs-Loaded Mesoporous Silica Nanoparticles
3.4. Preparation of MSNs-Loaded Gelatin Scaffold
3.5. Evaluation of MSNs-Loaded Scaffold
3.5.1. Entrapment Efficiency of Drugs in Nanoparticles and MSNs-Loaded Scaffold
3.5.2. Drug-Release Studies from MSNs-Loaded Scaffold
3.5.3. Thermal Analysis
3.5.4. Fourier Transform Infrared (FTIR) Spectroscopy
3.5.5. Crystallographic Evaluation by X-ray Diffractometer (XRD)
3.5.6. Scanning Electron Microscope (SEM) Analysis
3.5.7. Analysis of Particle Size and Charge of MSNs-Loaded Scaffold
3.6. Biomedical Evaluation of Optimized Scaffold
3.6.1. Skin Irritation Testing
3.6.2. In Vitro Antifungal Studies
3.6.3. Cytotoxicity Studies
3.6.4. In Vivo Antifungal Studies
3.6.5. Stability Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Whited, J.D.; Hall, R.P.; Foy, M.E.; Marbrey, L.E.; Grambow, S.C.; Dudley, T.K.; Datta, S.K.; Simel, D.L.; Oddone, E.Z. Patient and clinician satisfaction with a store-and-forward teledermatology consult system. Telemed. J. E Health 2004, 10, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Puebla, L.E.J. Fungal Infections in Immunosuppressed Patients. In Immunodeficiency; Intechopen: London, UK, 2012. [Google Scholar]
- Garg, A.; Sharma, G.S.; Goyal, A.K.; Ghosh, G.; Si, S.C.; Rath, G. Recent advances in topical carriers of anti-fungal agents. Heliyon 2020, 6, e04663. [Google Scholar] [CrossRef] [PubMed]
- Urban, K.; Chu, S.; Scheufele, C.; Giesey, R.L.; Mehrmal, S.; Uppal, P.; Delost, G.R. The global, regional, and national burden of fungal skin diseases in 195 countries and territories: A cross-sectional analysis from the Global Burden of Disease Study 2017. JAAD Int. 2021, 2, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Bahl, D.; Daftardar, S.; Devi Bachu, R.; Boddu, S.H.; Altorok, N.; Kahaleh, B. Evaluation of topical econazole nitrate formulations with potential for treating Raynaud’s phenomenon. Pharm. Dev. Technol. 2019, 24, 689–699. [Google Scholar] [CrossRef]
- Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci. 2020, 7, 319. [Google Scholar] [CrossRef]
- Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Kumar, N.S.; Vekariya, R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Adv. 2020, 10, 26777–26791. [Google Scholar] [CrossRef] [PubMed]
- Nayl, A.; Abd-Elhamid, A.; Aly, A.A.; Bräse, S. Recent progress in the applications of silica-based nanoparticles. RSC Adv. 2022, 12, 13706–13726. [Google Scholar] [CrossRef]
- Porrang, S.; Davaran, S.; Rahemi, N.; Allahyari, S.; Mostafavi, E. How Advancing are Mesoporous Silica Nanoparticles? A Comprehensive Review of the Literature. Int. J. Nanomed. 2022, 17, 1803. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, A.; Garg, N. Acoustic cavitation-assisted formulation of solid lipid nanoparticles using different stabilizers. ACS Omega 2019, 4, 13360–13370. [Google Scholar] [CrossRef] [Green Version]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles—From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef]
- Lee, S.S.; Santschi, M.; Ferguson, S.J. A Biomimetic Macroporous Hybrid Scaffold with Sustained Drug Delivery for Enhanced Bone Regeneration. Biomacromolecules 2021, 22, 2460–2471. [Google Scholar] [CrossRef] [PubMed]
- Calori, I.R.; Braga, G.; de Jesus, P.d.C.C.; Bi, H.; Tedesco, A.C. Polymer scaffolds as drug delivery systems. Eur. Polym. J. 2020, 129, 109621. [Google Scholar] [CrossRef]
- Goodarzi, K.; Shariatzadeh, F.J.; Solouk, A.; Akbari, S.; Mirzadeh, H. Injectable drug loaded gelatin based scaffolds as minimally invasive approach for drug delivery system: CNC/PAMAM nanoparticles. Eur. Polym. J. 2020, 139, 109992. [Google Scholar] [CrossRef]
- Qiu, K.; Chen, B.; Nie, W.; Zhou, X.; Feng, W.; Wang, W.; Chen, L.; Mo, X.; Wei, Y.; He, C. Electrophoretic deposition of dexamethasone-loaded mesoporous silica nanoparticles onto poly (L-lactic acid)/poly (ε-caprolactone) composite scaffold for bone tissue engineering. ACS Appl. Mater. Interfaces 2016, 8, 4137–4148. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.Y.; Yang, G.; Choi, E.; Ryu, J.-H. Mesoporous silica nanoparticle-supported nanocarriers with enhanced drug loading, encapsulation stability, and targeting efficiency. Biomater. Sci. 2022, 10, 1448–1455. [Google Scholar] [CrossRef]
- Kazemzadeh, P.; Sayadi, K.; Toolabi, A.; Sayadi, J.; Zeraati, M.; Chauhan, N.P.S.; Sargazi, G. Structure-Property Relationship for Different Mesoporous Silica Nanoparticles and its Drug Delivery Applications: A Review. Front. Chem. 2022, 10, 823785. [Google Scholar] [CrossRef]
- Ge, S.; Lin, Y.; Lu, H.; Li, Q.; He, J.; Chen, B.; Wu, C.; Xu, Y. Percutaneous delivery of econazole using microemulsion as vehicle: Formulation, evaluation and vesicle-skin interaction. Int. J. Pharm. 2014, 465, 120–131. [Google Scholar] [CrossRef]
- GRIFFITH, B.H. The treatment of keloids with triamcinolone acetonide. Plast. Reconstr. Surg. 1966, 38, 202–208. [Google Scholar] [CrossRef]
- Boddupalli, B.M.; Ramani, R.; Anisetti, B. Development and optimization of Etoposide loaded nanoparticles by using DoE response surface central composite design. Int. J. Bio Pharma Res. 2019, 8, 2531–2540. [Google Scholar]
- Matlhola, K.; Katata-Seru, L.; Tshweu, L.; Bahadur, I.; Makgatho, G.; Balogun, M. Formulation and optimization of Eudragit RS PO-tenofovir nanocarriers using Box-Behnken experimental design. J. Nanomater. 2015, 2015, 630690. [Google Scholar] [CrossRef] [Green Version]
- Radin, S.; Chen, T.; Ducheyne, P. The controlled release of drugs from emulsified, sol gel processed silica microspheres. Biomaterials 2009, 30, 850–858. [Google Scholar] [CrossRef] [Green Version]
- Patarroyo, J.L.; Florez-Rojas, J.S.; Pradilla, D.; Valderrama-Rincón, J.D.; Cruz, J.C.; Reyes, L.H. Formulation and characterization of gelatin-based hydrogels for the encapsulation of Kluyveromyces lactis—Applications in packed-bed reactors and probiotics delivery in humans. Polymers 2020, 12, 1287. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Peng, L.; Huang, Z.; Mei, S. Well-dispersed hollow silica microspheres synthesis with silica sol as precursor by template method. J. Mol. Struct. 2014, 1059, 15–19. [Google Scholar] [CrossRef]
- Zheng, J.P.; Li, P.; Ma, Y.L.; Yao, K.D. Gelatin/montmorillonite hybrid nanocomposite. I. Preparation and properties. J. Appl. Polym. Sci. 2002, 86, 1189–1194. [Google Scholar] [CrossRef]
- Parvez, S.; Rahman, M.M.; Khan, M.A.; Khan, M.A.H.; Islam, J.M.; Ahmed, M.; Rahman, M.F.; Ahmed, B. Preparation and characterization of artificial skin using chitosan and gelatin composites for potential biomedical application. Polym. Bull. 2012, 69, 715–731. [Google Scholar] [CrossRef]
- Feng, W.; Nie, W.; He, C.; Zhou, X.; Chen, L.; Qiu, K.; Wang, W.; Yin, Z. Effect of pH-responsive alginate/chitosan multilayers coating on delivery efficiency, cellular uptake and biodistribution of mesoporous silica nanoparticles based nanocarriers. ACS Appl. Mater. Interfaces 2014, 6, 8447–8460. [Google Scholar] [CrossRef]
- Shafqat, S.S.; Khan, A.A.; Zafar, M.N.; Alhaji, M.H.; Sanaullah, K.; Shafqat, S.R.; Murtaza, S.; Pang, S.C. Development of amino-functionalized silica nanoparticles for efficient and rapid removal of COD from pre-treated palm oil effluent. J. Mater. Res. Technol. 2019, 8, 385–395. [Google Scholar] [CrossRef]
- El-Gawad, A.; Helmy, A.E.-G.; Soliman, O.A.; El-Dahan, M.S.; Al-Zuhairy, S.A. Improvement of the ocular bioavailability of econazole nitrate upon complexation with cyclodextrins. AAPS Pharm. Sci. Tech. 2017, 18, 1795–1809. [Google Scholar] [CrossRef]
- Ho, M.J.; Jeong, H.T.; Im, S.H.; Kim, H.T.; Lee, J.E.; Park, J.S.; Cho, H.R.; Kim, D.Y.; Choi, Y.W.; Lee, J.W. Design and In vivo pharmacokinetic evaluation of triamcinolone acetonide microcrystals-loaded PLGA microsphere for increased drug retention in knees after intra-articular injection. Pharmaceutics 2019, 11, 419. [Google Scholar] [CrossRef] [Green Version]
- Maheen, S.; Younis, H.; Khan, H.U. Enhanced Antifungal and Wound Healing Efficacy of Statistically Optimized, Physicochemically Evaluated Econazole-Triamcinolone Loaded Silica Nanoparticles. Front. Chem. 2022, 10, 836678. [Google Scholar] [CrossRef]
- Bahl, D. Design and Characterization of Topical Econazole Nitrate Formulations for Treating Raynaud’s Phenomenon. Ph.D. Thesis, University of Toledo, Toledo, OH, USA, 2017. [Google Scholar]
- Lee, S.; Yun, H.-S.; Kim, S.-H. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials 2011, 32, 9434–9443. [Google Scholar] [CrossRef]
- Helal, D.A.; El-Rhman, D.A.; Abdel-Halim, S.A.; El-Nabarawi, M.A. Formulation and evaluation of fluconazole topical gel. Int. J. Pharm. Pharm. Sci. 2012, 4, 176–183. [Google Scholar]
- Ambrogi, V.; Perioli, L.; Pagano, C.; Marmottini, F.; Moretti, M.; Mizzi, F.; Rossi, C. Econazole nitrate-loaded MCM-41 for an antifungal topical powder formulation. J. Pharm. Sci. 2010, 99, 4738–4745. [Google Scholar] [CrossRef] [PubMed]
- Amit, C.; Muralikumar, S.; Janaki, S.; Lakshmipathy, M.; Therese, K.L.; Umashankar, V.; Padmanabhan, P.; Narayanan, J. Designing and enhancing the antifungal activity of corneal specific cell penetrating peptide using gelatin hydrogel delivery system. Int. J. Nanomed. 2019, 14, 605. [Google Scholar] [CrossRef] [Green Version]
- Tejada, G.; Piccirilli, G.; Sortino, M.; Salomón, C.; Lamas, M.; Leonardi, D. Formulation and in-vitro efficacy of antifungal mucoadhesive polymeric matrices for the delivery of miconazole nitrate. Mater. Sci. Eng. C 2017, 79, 140–150. [Google Scholar] [CrossRef]
- De Meester, N.; Gingold, R.; Rigaux, A.; Derycke, S.; Moens, T. Cryptic diversity and ecosystem functioning: A complex tale of differential effects on decomposition. Oecologia 2016, 182, 559–571. [Google Scholar] [CrossRef]
- Madkhali, O.; Mekhail, G.; Wettig, S.D. Modified gelatin nanoparticles for gene delivery. Int. J. Pharm. 2019, 554, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Vyas, S.P. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem. Phys. Lipids 2012, 165, 454–461. [Google Scholar] [CrossRef]
- Sun, J.; Yu, C.-H.; Zhao, X.-L.; Wang, Y.; Jiang, S.-G.; Gong, X.-F. Econazole nitrate induces apoptosis in MCF-7 cells via mitochondrial and caspase pathways. Iran. J. Pharm. Res. 2014, 13, 1327. [Google Scholar]
- Pinto, F.C.H.; Junior, D.S.-C.; Oréfice, R.L.; Ayres, E.; Andrade, S.P.; Lima, L.D.C.; Lima Moura, S.A.; Da Silva, G.R. Controlled release of triamcinolone acetonide from polyurethane implantable devices: Application for inhibition of inflammatory-angiogenesis. J. Mater. Sci. Mater. Med. 2012, 23, 1431–1445. [Google Scholar] [CrossRef]
- Singh, L.P.; Bhattacharyya, S.K.; Kumar, R.; Mishra, G.; Sharma, U.; Singh, G.; Ahalawat, S. Sol-Gel processing of silica nanoparticles and their applications. Adv. Colloid Interface Sci. 2014, 214, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Ninan, N.; Grohens, Y.; Elain, A.; Kalarikkal, N.; Thomas, S. Synthesis and characterisation of gelatin/zeolite porous scaffold. Eur. Polym. J. 2013, 49, 2433–2445. [Google Scholar] [CrossRef]
- Katiyar, S.S.; Muntimadugu, E.; Rafeeqi, T.A.; Domb, A.J.; Khan, W. Co-delivery of rapamycin-and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv. 2016, 23, 2608–2616. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Chaurasia, S.; Patel, R.R.; Kumar, V.; Mishra, B. Development and optimization of atorvastatin calcium loaded oral biodegradable polymeric nanoparticles using central composite design. Adv. Sci. Lett. 2014, 20, 984–993. [Google Scholar] [CrossRef]
- Draize, J.H. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmacol. Exp. Ther. 1944, 82, 377–390. [Google Scholar]
- Kiehlbauch, J.A.; Hannett, G.E.; Salfinger, M.; Archinal, W.; Monserrat, C.; Carlyn, C. Use of the National Committee for Clinical Laboratory Standards guidelines for disk diffusion susceptibility testing in New York state laboratories. J. Clin. Microbiol. 2000, 38, 3341–3348. [Google Scholar] [CrossRef] [Green Version]
- Shariati, A.; Moradabadi, A.; Azimi, T.; Ghaznavi-Rad, E. Wound healing properties and antimicrobial activity of platelet-derived biomaterials. Sci. Rep. 2020, 10, 1032. [Google Scholar] [CrossRef] [Green Version]
Formulation | %EE of TA | %EE of EN | Formulation | %EE of TA | %EE of EN |
---|---|---|---|---|---|
F1 | 82 ± 2.63 | 95 ± 3.92 | F11 | 53 ± 2.83 | 55 ± 3.34 |
F2 | 71 ± 1.95 | 73 ± 2.81 | F12 | 86 ± 3.42 | 90 ± 2.87 |
F3 | 86 ± 2.31 | 87 ± 1.71 | F13 | 50 ± 3.57 | 53 ± 2.58 |
F4 | 66 ± 1.88 | 68 ± 2.62 | F14 | 52 ± 2.37 | 54 ± 2.69 |
F5 | 81 ± 3.36 | 84 ± 3.96 | F15 | 84 ± 2.85 | 89 ± 3.89 |
F6 | 72 ± 3.82 | 73 ± 3.73 | F16 | 67 ± 3.83 | 72 ± 2.74 |
F7 | 75 ± 2.59 | 77 ± 2.98 | F17 | 48 ± 1.38 | 51 ± 3.46 |
F8 | 73 ± 3.78 | 75 ± 2.93 | F18 | 49 ± 2.82 | 53 ± 2.27 |
F9 | 72 ± 2.28 | 73 ± 2.86 | F19 | 72 ± 1.94 | 75 ± 3.19 |
F10 | 69 ± 1.37 | 72 ± 2.38 | F20 | 85 ± 2.42 | 91 ± 3.85 |
Formulation | Formulation Variables | Results of Responses | |||||
---|---|---|---|---|---|---|---|
Gelatin Conc. (mg/100 mL) | Plasticizer Conc. (mg/100 mL) | Freezing Time | Entrapment of EN (%) | Entrapment of TA (%) | EN Release (%) | TA Release (%) | |
F1 | 800 | 0.6 | 4 | 38 ± 2.37 | 47 ± 2.84 | 82 ± 2.76 | 87 ± 3.37 |
F2 | 1000 | 0.1 | 9 | 43 ± 2.20 | 46 ± 2.21 | 80 ± 3.41 | 83 ± 3.81 |
F3 | 100 | 0.3 | 24 | 34 ± 1.43 | 37 ± 3.78 | 59 ± 2.68 | 66 ± 2.19 |
F4 | 1000 | 0.9 | 13 | 92 ± 2.58 | 94 ± 1.58 | 43 ± 3.75 | 45 ± 3.65 |
F5 | 100 | 0.1 | 24 | 39 ± 2.43 | 45 ± 2.43 | 81 ± 2.18 | 86 ± 3.90 |
F6 | 1000 | 0.1 | 24 | 48 ± 3.46 | 49 ± 2.49 | 54 ± 2.49 | 59 ± 2.89 |
F7 | 100 | 0.9 | 24 | 40 ± 1.65 | 45±1.59 | 63 ± 3.94 | 69 ± 3.65 |
F8 | 100 | 0.9 | 4 | 42 ± 2.27 | 45 ± 2.27 | 90 ± 4.06 | 93 ± 2.88 |
F9 | 300 | 0.5 | 13 | 52 ± 2.91 | 57 ± 3.91 | 53 ± 3.61 | 58 ± 2.53 |
F10 | 800 | 0.5 | 13 | 81 ± 1.62 | 86 ± 3.65 | 48 ± 2.99 | 51 ± 2.61 |
F11 | 550 | 0.3 | 4 | 49 ± 2.73 | 54 ± 2.83 | 63 ± 3.68 | 66 ± 3.89 |
F12 | 550 | 0.7 | 13 | 63 ± 3.23 | 69 ± 2.24 | 45 ± 2.37 | 48 ± 3.21 |
F13 | 550 | 0.3 | 18 | 84 ± 2.68 | 88 ± 1.85 | 52 ± 3.57 | 57 ± 2.51 |
F14 | 550 | 0.5 | 18 | 86 ± 3.36 | 90 ± 2.39 | 52 ± 2.82 | 57 ± 3.98 |
F15 | 550 | 0.5 | 9 | 73 ± 2.79 | 76 ± 2.92 | 60 ± 2.29 | 60 ± 3.95 |
F16 | 550 | 0.5 | 13 | 78 ± 2.29 | 84 ± 2.84 | 50 ± 4.24 | 53 ± 2.94 |
F17 | 550 | 0.5 | 13 | 80 ± 2.72 | 83 ± 2.62 | 50 ± 2.51 | 53 ± 3.71 |
F18 | 550 | 0.5 | 13 | 79 ± 3.71 | 83 ± 2.86 | 51 ± 4.85 | 54 ± 3.69 |
F19 | 550 | 0.5 | 13 | 80 ± 2.64 | 84 ± 2.91 | 50 ± 2.89 | 53 ± 2.73 |
F20 | 550 | 0.5 | 13 | 80 ± 2.82 | 83 ± 3.08 | 51 ± 2.73 | 53 ± 3.04 |
PARAMETERS | ||||||||
---|---|---|---|---|---|---|---|---|
FACTORS | EN Entrapment (Y1) | Entrapment of TA (Y2) | EN Release (Y3) | TA Release (Y4) | ||||
p Value | f Value | p Value | f Value | p Value | f Value | p Value | f Value | |
Quadratic model | <0.0012 | 8.57 | <0.0002 | 12.96 | <0.0001 | 32.04 | <0.0001 | 29.24 |
x1—Gelatin Concentration | 0.0341 | 2.51 | 0.0158 | 0.8572 | 0.2231 | 1.69 | 0.2030 | 1.86 |
x2—Plasticizer Concentration | 0.0236 | 1.64 | 0.0241 | 0.1524 | 0.6820 | 0.1781 | 0.5651 | 0.3539 |
x3—Freezing Time | 0.0193 | 0.0829 | 0.0319 | 0.5152 | 0.6989 | 0.1585 | 0.6998 | 0.1575 |
x1x2 | 0.6442 | 0.2267 | 0.2893 | 1.25 | 0.1695 | 2.19 | 0.3297 | 1.05 |
x1x3 | 0.5716 | 0.3421 | 0.7995 | 0.0680 | 0.3546 | 0.9421 | 0.6655 | 0.1984 |
x2x3 | 0.8770 | 0.0252 | 0.1808 | 2.07 | 0.9323 | 0.0076 | 0.4943 | 0.5032 |
x12 | 0.0966 | 3.36 | 0.4516 | 0.6135 | 0.3397 | 1.01 | 0.0355 | 5.90 |
x22 | 0.0146 | 8.68 | 0.0051 | 12.72 | 0.0001 | 38.08 | 0.0004 | 27.09 |
x32 | 0.0321 | 6.37 | 0.0129 | 0.2727 | 0.2082 | 1.81 | 0.0306 | 6.33 |
Source | Entrapment of EN (Y1) | Entrapment of TA (Y2) | EN Release (Y3) | TA Release (Y4) |
---|---|---|---|---|
Std Deviation | 6.68 | 6.63 | 4.06 | 4.49 |
Mean | 60.50 | 56.30 | 71.75 | 65.75 |
C.V% | 11.05 | 11.78 | 5.66 | 6.82 |
R2 | 0.8852 | 0.9210 | 0.9665 | 0.9634 |
Adjusted R2 | 0.7818 | 0.8500 | 0.9363 | 0.9304 |
Predicted R2 | 0.3484 | 0.3132 | 0.8413 | 0.2039 |
Adeq Precision | 19.8629 | 18.7343 | 16.4820 | 14.4866 |
Composition of Optimized Scaffold | Scaffold Responses | Exp. Value | Predicted Value | DF | ZP (mv) | |
---|---|---|---|---|---|---|
Gelatin Conc. (mg) | 1000 | EN Entrapment | 94 | 92 | 0.923 | −16 ± 2.12 |
Plasticizer Conc. (mg) | 0.7 | TA Entrapment | 95 | 92 | 0.894 | |
Freezing Time (hours) | 18 | EN Release | 34 | 40 | 0.889 | |
TA Release | 48 | 40 | 0.917 |
Sr. No. | Treatment | In Vivo Antifungal Activity | Mean Erythma Score | |||
---|---|---|---|---|---|---|
Rabbits with Positive Test/ Total Rabbits | Infected Sites/Log CFU | 1st Day | 7th Day | 14th Day | ||
1 | Group I (control group) | 6/6 | 3.94 ± 0.45 | 0 | 0 | 0 |
2 | Group II (EN-TA suspension-treated group) | 4/6 | 3.01 ± 0.35 | 2 | 3 | 3 |
3 | Group III (scaffold loaded with MSNs-treated group) | 0/6 | 0 | 0 | 0 | 0 |
4 | Group IV (drug-loaded MSNs-treated group) | 1/6 | 0.19 ± 0.11 | 0 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younis, H.; Khan, H.U.; Maheen, S.; Saadullah, M.; Shah, S.; Ahmad, N.; Alshehri, S.; Majrashi, M.A.A.; Alsalhi, A.; Siddique, R.; et al. Fabrication, Characterization and Biomedical Evaluation of a Statistically Optimized Gelatin Scaffold Enriched with Co-Drugs Loaded into Controlled-Release Silica Nanoparticles. Molecules 2023, 28, 5233. https://doi.org/10.3390/molecules28135233
Younis H, Khan HU, Maheen S, Saadullah M, Shah S, Ahmad N, Alshehri S, Majrashi MAA, Alsalhi A, Siddique R, et al. Fabrication, Characterization and Biomedical Evaluation of a Statistically Optimized Gelatin Scaffold Enriched with Co-Drugs Loaded into Controlled-Release Silica Nanoparticles. Molecules. 2023; 28(13):5233. https://doi.org/10.3390/molecules28135233
Chicago/Turabian StyleYounis, Hina, Hafeez Ullah Khan, Safirah Maheen, Malik Saadullah, Shahid Shah, Nabeel Ahmad, Sameer Alshehri, Mohammed Ali A. Majrashi, Abdullah Alsalhi, Rida Siddique, and et al. 2023. "Fabrication, Characterization and Biomedical Evaluation of a Statistically Optimized Gelatin Scaffold Enriched with Co-Drugs Loaded into Controlled-Release Silica Nanoparticles" Molecules 28, no. 13: 5233. https://doi.org/10.3390/molecules28135233
APA StyleYounis, H., Khan, H. U., Maheen, S., Saadullah, M., Shah, S., Ahmad, N., Alshehri, S., Majrashi, M. A. A., Alsalhi, A., Siddique, R., Andleeb, M., Shabbir, S., & Abbas, G. (2023). Fabrication, Characterization and Biomedical Evaluation of a Statistically Optimized Gelatin Scaffold Enriched with Co-Drugs Loaded into Controlled-Release Silica Nanoparticles. Molecules, 28(13), 5233. https://doi.org/10.3390/molecules28135233