Photocatalytic Degradation of Methylene Blue and Anticancer Response of In2O3/RGO Nanocomposites Prepared by a Microwave-Assisted Hydrothermal Synthesis Process
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Study
2.2. Morphological Study
2.3. XPS Analysis
2.4. Raman Analysis
2.5. UV Analysis
2.6. PL Analysis
2.7. Photocatalytic Performance
2.8. Potential Photocatalytic Mechanism
2.9. Cytotoxicity and Compatibility Investigations
3. Experimental Section
3.1. Materials and Cells
3.2. Synthesis of Pure In2O3 NPs and In2O3/RGO NCs
3.3. Characterization
3.4. Photocatalytic Experiment
3.5. Cytotoxicity Assessment
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cheng, L.; Wang, X.; Gong, F.; Liu, T.; Liu, Z. 2D Nanomaterials for Cancer Theranostic Applications. Adv. Mater. 2020, 32, 1902333. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Su, Y.L.; Hu, S.H.; Chen, S.Y. Functionalized Graphene Nanocomposites for Enhancing Photothermal Therapy in Tumor Treatment. Adv. Drug Deliv. Rev. 2016, 105, 190–204. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.Y.; Xie, Y.; Yu, C.H.; Chen, G.Y.; Li, Y.H.; Zhang, T.; Peng, Q. Graphene-Based Nanomaterials: The Promising Active Agents for Antibiotics-Independent Antibacterial Applications. J. Control. Release 2019, 307, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Pourmadadi, M.; Rajabzadeh-Khosroshahi, M.; Eshaghi, M.M.; Rahmani, E.; Motasadizadeh, H.; Arshad, R.; Rahdar, A.; Pandey, S. TiO2-Based Nanocomposites for Cancer Diagnosis and Therapy: A Comprehensive Review. J. Drug Deliv. Sci. Technol. 2023, 82, 104370. [Google Scholar] [CrossRef]
- Akgöl, S.; Ulucan-Karnak, F.; Kuru, C.İ.; Kuşat, K. The Usage of Composite Nanomaterials in Biomedical Engineering Applications. Biotechnol. Bioeng. 2021, 118, 2906–2922. [Google Scholar] [CrossRef]
- Oun, A.A.; Shankar, S.; Rhim, J.W. Multifunctional Nanocellulose/Metal and Metal Oxide Nanoparticle Hybrid Nanomaterials. Crit. Rev. Food Sci. Nutr. 2019, 60, 435–460. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, T.; Hu, R.; Jiang, S.; Zhang, C.; Hou, H. Thermal, Mechanical and Dielectric Properties of Polyimide Composite Films by In-Situ Reduction of Fluorinated Graphene. Molecules 2022, 27, 8896. [Google Scholar] [CrossRef]
- Murali, A.; Lokhande, G.; Deo, K.A.; Brokesh, A.; Gaharwar, A.K. Emerging 2D Nanomaterials for Biomedical Applications. Mater. Today 2021, 50, 276–302. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, L.; Zhu, Y.; Zhang, C.; Jiang, S.; Hou, H. In Situ Fabrication of High Dielectric Constant Composite Films with Good Mechanical and Thermal Properties by Controlled Reduction. Molecules 2023, 28, 2535. [Google Scholar] [CrossRef]
- Salman, O.N. The Antibacterial Activity of Indium Oxide Thin Film Prepared by Thermal Deposition. Iraqi J. Phys. 2018, 16, 46–51. [Google Scholar] [CrossRef]
- Zhou, X.; Ding, C.; Cheng, C.; Liu, S.; Duan, G.; Xu, W.; Liu, K.; Hou, H. Mechanical and Thermal Properties of Electrospun Polyimide/RGO Composite Nanofibers via in-Situ Polymerization and in-situ Thermal Conversion. Eur. Polym. J. 2020, 141, 110083. [Google Scholar] [CrossRef]
- Somwanshi, S.B.; Somvanshi, S.B.; Kharat, P.B. Visible Light Driven Photocatalytic Activity of TiO2 Nanoparticles Prepared via Gel-Combustion Process. J. Phys. Conf. Ser. 2020, 1644, 012042. [Google Scholar] [CrossRef]
- Sun, J.H.; Dong, S.Y.; Wang, Y.K.; Sun, S.P. Preparation and Photocatalytic Property of a Novel Dumbbell-Shaped ZnO Microcrystal Photocatalyst. J. Hazard. Mater. 2009, 172, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Kokila, N.R.; Mahesh, B.; Roopa, K.P.; Prasad, B.D.; Raj, K.; Manjula, S.N.; Mruthunjaya, K.; Ramu, R. Thunbergia Mysorensis Mediated Nano Silver Oxide for Enhanced Antibacterial, Antioxidant, Anticancer Potential and in Vitro Hemolysis Evaluation. J. Mol. Struct. 2022, 1255, 132455. [Google Scholar] [CrossRef]
- Rakhi, R.B.; Chen, W.; Cha, D.; Alshareef, H.N. High Performance Supercapacitors Using Metal Oxide Anchored Graphene Nanosheet Electrodes. J. Mater. Chem. 2011, 21, 16197–16204. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, E.; Xu, S.; Li, Z.; Fakhri, A.; Gupta, V.K. Production of Metal Oxides Nanoparticles Based on Poly-Alanine/Chitosan/Reduced Graphene Oxide for Photocatalysis Degradation, Anti-Pathogenic Bacterial and Antioxidant Studies. Int. J. Biol. Macromol. 2020, 164, 1584–1591. [Google Scholar] [CrossRef]
- Ong, C.B.; Mohammad, A.W.; Ng, L.Y.; Mahmoudi, E.; Azizkhani, S.; Hairom, N.H.H. Solar Photocatalytic and Surface Enhancement of ZnO/RGO Nanocomposite: Degradation of Perfluorooctanoic Acid and Dye. Process Saf. Environ. Prot. 2017, 112, 298–307. [Google Scholar] [CrossRef]
- Priyadharsan, A.; Shanavas, S.; Vasanthakumar, V.; Balamuralikrishnan, B.; Anbarasan, P.M. Synthesis and Investigation on Synergetic Effect of RGO-ZnO Decorated MoS2 Microflowers with Enhanced Photocatalytic and Antibacterial Activity. Colloids Surf. A Physicochem. Eng. Asp. 2018, 559, 43–53. [Google Scholar] [CrossRef]
- Chen, L.; He, F.; Zhao, N.; Guo, R. Fabrication of 3D Quasi-Hierarchical Z-Scheme RGO-Fe2O3-MoS2 Nanoheterostructures for Highly Enhanced Visible-Light-Driven Photocatalytic Degradation. Appl. Surf. Sci. 2017, 420, 669–680. [Google Scholar] [CrossRef]
- Pant, H.R.; Pant, B.; Kim, H.J.; Amarjargal, A.; Park, C.H.; Tijing, L.D.; Kim, E.K.; Kim, C.S. A Green and Facile One-Pot Synthesis of Ag–ZnO/RGO Nanocomposite with Effective Photocatalytic Activity for Removal of Organic Pollutants. Ceram. Int. 2013, 39, 5083–5091. [Google Scholar] [CrossRef]
- Gang, R.; Xu, L.; Xia, Y.; Zhang, L.; Wang, S.; Li, R. Facile One-Step Production of 2D/2D ZnO/RGO Nanocomposites under Microwave Irradiation for Photocatalytic Removal of Tetracycline. ACS Omega 2021, 6, 3831–3839. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Murugesan, S.; Vasanthakumar, V.; Priyadharsan, A.; Alsawalha, M.; Alomayri, T.; Yuan, B. Facile Green Synthesis of ZnFe2O4/RGO Nanohybrids and Evaluation of Its Photocatalytic Degradation of Organic Pollutant, Photo Antibacterial and Cytotoxicity Activities. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125835. [Google Scholar] [CrossRef]
- Gu, F.; Nie, R.; Han, D.; Wang, Z. In2O3-Graphene Nanocomposite Based Gas Sensor for Selective Detection of NO2 at Room Temperature. Sens. Actuators B Chem. 2015, 219, 94–99. [Google Scholar] [CrossRef]
- Wang, P.; Li, Q.; Cheng, Y.; Chu, K. In2O3 Nanoparticle-Reduced Graphene Oxide Hybrid for Electrocatalytic Nitrogen Fixation: Computational and Experimental Studies. J. Mater. Sci. 2020, 55, 4624–4632. [Google Scholar] [CrossRef]
- Bibi, S.; Ahmad, A.; Anjum, M.A.R.; Haleem, A.; Siddiq, M.; Shah, S.S.; Kahtani, A. Al Photocatalytic Degradation of Malachite Green and Methylene Blue over Reduced Graphene Oxide (RGO) Based Metal Oxides (RGO-Fe3O4/TiO2) Nanocomposite under UV-Visible Light Irradiation. J. Environ. Chem. Eng. 2021, 9, 105580. [Google Scholar] [CrossRef]
- Balsamo, S.A.; Fiorenza, R.; Condorelli, M.; Pecoraro, R.; Brundo, M.V.; Presti, F.L.; Scir, S. One-Pot Synthesis of TiO2-rGO Photocatalysts for the Degradation of Groundwater Pollutants. Materials 2021, 14, 5938. [Google Scholar] [CrossRef]
- Farbod, F.; Mazloum-Ardakani, M.; Naderi, H.R.; Mirvakili, A.; Wang, M.; Shinde, D.V.; Dante, S.; Salimi, P.; Lauciello, S.; Prato, M. Indium Based Metal-Organic Framework/Carbon Nanotubes Composite as a Template for In2O3 Porous Hexagonal Prisms/Carbon Nanotubes Hybrid Structure and Their Application as Promising Super-Capacitive Electrodes. J. Energy Storage 2022, 51, 104238. [Google Scholar] [CrossRef]
- Amarnath, M.; Gurunathan, K. Highly Selective CO2 Gas Sensor Using Stabilized NiO-In2O3 Nanospheres Coated Reduced Graphene Oxide Sensing Electrodes at Room Temperature. J. Alloys Compd. 2021, 857, 157584. [Google Scholar] [CrossRef]
- Zou, K.; Chen, X.; Jing, W.; Dai, X.; Wang, P.; Liu, Y.; Qiao, R.; Shi, M.; Chen, Y.; Sun, J.; et al. Facilitating Catalytic Activity of Indium Oxide in Lithium-Sulfur Batteries by Controlling Oxygen Vacancies. Energy Storage Mater. 2022, 48, 133–144. [Google Scholar] [CrossRef]
- Srivastava, M.; Singh, N. Metal Oxide Nanostructures for Gas Sensing Applications. In Nanomaterials-Based Sensing Platforms; Apple Academic Press: Palm Bay, FL, USA, 2022; pp. 117–153. [Google Scholar] [CrossRef]
- Na, C.W.; Kim, J.-H.; Kim, H.-J.; Woo, H.-S.; Gupta, A.; Kim, H.-K.; Lee, J.-H. Highly Selective and Sensitive Detection of NO2 Using RGO-In2O3 Structure on Flexible Substrate at Low Temperature. Sens. Actuators B Chem. 2018, 255, 1671–1679. [Google Scholar] [CrossRef]
- Devi, P.; Singh, J.P. Visible Light Induced Selective Photocatalytic Reduction of CO2 to CH4 on In2O3-RGO Nanocomposites. J. CO2 Util. 2021, 43, 101376. [Google Scholar] [CrossRef]
- Mikhaylov, P.A.; Vinogradov, M.I.; Levin, I.S.; Shandryuk, G.A.; Lubenchenko, A.V.; Kulichikhin, V.G. Synthesis and Characterization of Polyethylene Terephthalate-Reduced Graphene Oxide Composites. IOP Conf. Ser. Mater. Sci. Eng. 2019, 693, 012036. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhong, Y.; Wang, Z.; Li, L.; Liu, X. PdPbAg Alloy NPs Immobilized on Reduced Graphene Oxide/In2O3 Composites as Highly Active Electrocatalysts for Direct Ethylene Glycol Fuel Cells. RSC Adv. 2022, 12, 19929–19935. [Google Scholar] [CrossRef]
- de Lima, B.S.; Komorizono, A.A.; Ndiaye, A.L.; Bernardi, M.I.B.; Brunet, J.; Mastelaro, V.R. Tunning the Gas Sensing Properties of RGO with In2O3 Nanoparticles. Surfaces 2022, 5, 127–142. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, B.; Xie, E.; Zhou, J.; Zhang, Z. Improving Gas-Sensing Properties of Electrospun In2O3 Nanotubes by Mg Acceptor Doping. Sens. Actuators B Chem. 2015, 207, 313–320. [Google Scholar] [CrossRef]
- Liang, T.T.; Kim, D.S.; Yoon, J.W.; Yu, Y.T. Rapid Synthesis of Rhombohedral In2O3 Nanoparticles via a Microwave-Assisted Hydrothermal Pathway and Their Application for Conductometric Ethanol Sensing. Sens. Actuators B Chem. 2021, 346, 130578. [Google Scholar] [CrossRef]
- Kumar, R.; Youssry, S.M.; Joanni, E.; Sahoo, S.; Kawamura, G.; Matsuda, A. Microwave-Assisted Synthesis of Iron Oxide Homogeneously Dispersed on Reduced Graphene Oxide for High-Performance Supercapacitor Electrodes. J. Energy Storage 2022, 56, 105896. [Google Scholar] [CrossRef]
- Wang, C.; Guo, G.; Zhu, C.; Li, Y.; Jin, Y.; Zou, B.; He, H.; Wang, A. Facile Synthesis, Characterization, and Photocatalytic Evaluation of In2O3/SnO2 Microsphere Photocatalyst for Efficient Degradation of Rhodamine B. Nanomaterials 2022, 12, 3151. [Google Scholar] [CrossRef]
- Bhargava, R.; Khan, S. Effect of Reduced Graphene Oxide (RGO) on Structural, Optical, and Dielectric Properties of Mg(OH)2/RGO Nanocomposites. Adv. Powder Technol. 2017, 28, 2812–2819. [Google Scholar] [CrossRef]
- Naik, M.Z.; Meena, S.N.; Ghadi, S.C.; Naik, M.M.; Salker, A.V. Evaluation of Silver-Doped Indium Oxide Nanoparticles as in Vitro α-Amylase and α-Glucosidase Inhibitors. Med. Chem. Res. 2016, 25, 381–389. [Google Scholar] [CrossRef]
- Alaizeri, Z.M.; Alhadlaq, H.A.; Aldawood, S.; Javed, M.; Maqusood, A. Photodeposition Mediated Synthesis of Silver-Doped Indium Oxide Nanoparticles for Improved Photocatalytic and Anticancer Performance. Environ. Sci. Pollut. Res. 2022, 30, 6055–6067. [Google Scholar] [CrossRef]
- Sun, L.; Li, R.; Zhan, W.; Yuan, Y.; Wang, X.; Han, X.; Zhao, Y. Double-Shelled Hollow Rods Assembled from Nitrogen/Sulfur-Codoped Carbon Coated Indium Oxide Nanoparticles as Excellent Photocatalysts. Nat. Commun. 2019, 10, 2270. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Ge, S.; Pan, D.; Pan, Y.; Murugadoss, V.; Li, R.; Xie, W.; Lu, Y.; Wu, T.; Wujcik, E.K.; et al. Microwave Hydrothermal Synthesis of In2O3-ZnO Nanocomposites and Their Enhanced Photoelectrochemical Properties. J. Electrochem. Soc. 2019, 166, H3074–H3083. [Google Scholar] [CrossRef]
- Al Shboul, A.M.; Izquierdo, R. Printed Chemiresistive In2O3 Nanoparticle-Based Sensors with Ppb Detection of H2S Gas for Food Packaging. ACS Appl. Nano Mater. 2021, 4, 9508–9517. [Google Scholar] [CrossRef]
- Shen, C.; Wang, L.; Zhou, A.; Wang, B.; Wang, X.; Lian, W.; Hu, Q.; Qin, G.; Liu, X. Synthesis and Electrochemical Properties of Two-Dimensional RGO/Ti3C2Tx Nanocomposites. Nanomaterials 2018, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xu, Y.; Liu, Z.; Yang, W.; Liu, J. A Highly Conductive Porous Graphene Electrode Prepared via in situ Reduction of Graphene Oxide Using Cu Nanoparticles for the Fabrication of High Performance Supercapacitors. RSC Adv. 2015, 5, 54275–54282. [Google Scholar] [CrossRef]
- Gengenbach, T.R.; Major, G.H.; Linford, M.R.; Easton, C.D. Practical Guides for X-ray Photoelectron Spectroscopy (XPS): Interpreting the Carbon 1s Spectrum. J. Vac. Sci. Technol. A 2021, 39, 013204. [Google Scholar] [CrossRef]
- Yavuz, S.; Bandaru, P.R. Ag Nanowire Coated Reduced Graphene Oxide/n-Silicon Schottky Junction Based Solar Cell. In Proceedings of the 2016 IEEE Conference on Technologies for Sustainability (SusTech), Phoenix, AZ, USA, 9–11 October 2016; pp. 265–269. [Google Scholar] [CrossRef]
- King, A.A.K.; Davies, B.R.; Noorbehesht, N.; Newman, P.; Church, T.L.; Harris, A.T.; Razal, J.M.; Minett, A.I. A New Raman Metric for the Characterisation of Graphene Oxide and Its Derivatives. Sci. Rep. 2016, 6, 19491. [Google Scholar] [CrossRef] [Green Version]
- Ullah, H.; Yamani, Z.H.; Qurashi, A.; Iqbal, J.; Safeen, K. Study of the Optical and Gas Sensing Properties of In2O3 Nanoparticles Synthesized by Rapid Sonochemical Method. J. Mater. Sci. Mater. Electron. 2020, 31, 17474–17481. [Google Scholar] [CrossRef]
- Nguyen, T.T.D.; Choi, H.N.; Ahemad, M.J.; Van Dao, D.; Lee, I.H.; Yu, Y.T. Hydrothermal Synthesis of In2O3 Nanocubes for Highly Responsive and Selective Ethanol Gas Sensing. J. Alloys Compd. 2020, 820, 153133. [Google Scholar] [CrossRef]
- Cao, L.; Li, H.; Liu, X.; Liu, S.; Zhang, L.; Xu, W.; Yang, H.; Hou, H.; He, S.; Zhao, Y.; et al. Nitrogen, Sulfur Co-Doped Hierarchical Carbon Encapsulated in Graphene with “Sphere-in-Layer” Interconnection for High-Performance Supercapacitor. J. Colloid Interface Sci. 2021, 599, 443–452. [Google Scholar] [CrossRef]
- Jabeen, S.; Iqbal, J.; Arshad, A.; Awan, M.S.; Warsi, M.F. (In1−xFex)2O3 Nanostructures for Photocatalytic Degradation of Various Dyes. Mater. Chem. Phys. 2020, 243, 122516. [Google Scholar] [CrossRef]
- Uma, K.; Chong, S.; Mohan, S.C.; Jothivenkatachalam, K.; Yang, T.C.K.; Lin, J.H. Multi-Functional RGO-Supported α-Fe2O3 Nanocomposites for High-Performance Pseudocapacitors and Visible Light–Driven Photocatalytic Applications. Ionics 2020, 26, 3491–3500. [Google Scholar] [CrossRef]
- Xie, R.; Fang, K.; Liu, Y.; Chen, W.; Fan, J.; Wang, X.; Ren, Y.; Song, Y. Z-Scheme In2O3/WO3 Heterogeneous Photocatalysts with Enhanced Visible-Light-Driven Photocatalytic Activity toward Degradation of Organic Dyes. J. Mater. Sci. 2020, 55, 11919–11937. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, F.; Zhou, F.; Yang, X.; Zhang, D.; Chen, Y. Synergistic Effect of RGO/TiO2 Nanosheets with Exposed (0 0 1) Facets for Boosting Visible Light Photocatalytic Activity. Appl. Surf. Sci. 2020, 510, 145451. [Google Scholar] [CrossRef]
- Khan, M.A.M.; Siwach, R.; Kumar, S.; Ahmed, J.; Ahamed, M. Hydrothermal Preparation of Zn-Doped In2O3 Nanostructure and Its Microstructural, Optical, Magnetic, Photocatalytic and Dielectric Behaviour. J. Alloys Compd. 2020, 846, 156479. [Google Scholar] [CrossRef]
- Lu, Y.; Shao, L.; Deng, S.; Lu, Z.; Yan, R.; Ren, D.; Huang, Y.; Liu, H. Synthesis of C-In2O3/BiOI Composite and Its Enhanced Photocatalytic Degradation for Methyl Blue. Inorg. Chem. Commun. 2019, 100, 56–59. [Google Scholar] [CrossRef]
- Smok, W.; Zaborowska, M.; Tański, T.; Radoń, A. Novel In2O3/SnO2 Heterojunction 1D Nanostructure Photocatalyst for MB Degradation. Opt. Mater. 2023, 139, 113757. [Google Scholar] [CrossRef]
- Lu, H.; Sha, S.; Li, T.; Wen, Q.; Yang, S.; Wu, J.; Wang, K.; Sheng, Z.; Ma, J. One-Step Electrodeposition of ZnO/Graphene Composites with Enhanced Capability for Photocatalytic Degradation of Organic Dyes. Front. Chem. 2022, 10, 1–12. [Google Scholar] [CrossRef]
- Alaizeri, Z.M.; Alhadlaq, H.A. One-Pot Synthesis of SnO2-RGO Nanocomposite for Enhanced Photocatalytic and Anticancer Activity. Polymers 2022, 14, 2036. [Google Scholar] [CrossRef]
- Ahamed, M.; Akhtar, M.J.; Khan, M.A.M.; Alhadlaq, H.A. SnO2-Doped Zno/Reduced Graphene Oxide Nanocomposites: Synthesis, Characterization, and Improved Anticancer Activity via Oxidative Stress Pathway. Int. J. Nanomed. 2021, 16, 89–104. [Google Scholar] [CrossRef]
- Saranya, J.; Saminathan, P.; Ankireddy, S.R.; Shaik, M.R.; Khan, M.; Khan, M.; Shaik, B. Cerium Oxide/Graphene Oxide Hybrid: Synthesis, Characterization, and Evaluation of Anticancer Activity in a Breast Cancer Cell Line (MCF-7). Biomedicines 2023, 11, 531. [Google Scholar] [CrossRef]
- Aziz, I.M.; Bhat, R.; Farrag, M.A.; Almajhdi, F.N. Oncolytic Activity of Human Orthopneumovirus in Cancer Cell Lines. Exp. Oncol. 2022, 44, 113–120. [Google Scholar] [CrossRef]
Prepared Samples | XRD Size (nm) | TEM Size (nm) | Bandgap Energy (Eg) |
---|---|---|---|
In2O3 NPs | 17 | 12 | 3.17 |
In2O3/RGO NCs | 13 | 10 | 3.22 |
Catalyst Used | Concentration of MB/Amount of Catalyst | Light Source | Exposure Time (min) | D (%) | References |
---|---|---|---|---|---|
In2O3/RGO NCs | 10 ppm/20mg | UV light | 120 min | 90% | Present work |
Zn-In2O3 NPs | 20 ppm/50 mg | Visible-light | 180 min | 94.1% | [58] |
C-In2O3/BiOI NCs | 10 ppm/25 mg | Visible-light | 90min | 99% | [59] |
In2O3/SnO2 NCs | 4 ppm/0.2 mg | UV light | 180 min | 50.9% | [60] |
ZnO/rGO NCs | 10ppm/20 mg | Visible-light | 120 min | 99.1% | [61] |
In2O3-ZnO NCs | 20 ppm/20 mg | UV light | 60 min | 95.3% | [44] |
Ag-In2O3 NPs | 10 ppm/30 mg | UV light | 360 min | 92% | [42] |
Samples | Cancer Cells Lines | |
---|---|---|
HepG2 cells | HCT116 cells | |
In2O3 NPs | 70.47 | 98.69 |
In2O3/RGO NCs | 40.31 | 57.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaizeri, Z.M.; Alhadlaq, H.A.; Aldawood, S.; Akhtar, M.J.; Aziz, A.A.; Ahamed, M. Photocatalytic Degradation of Methylene Blue and Anticancer Response of In2O3/RGO Nanocomposites Prepared by a Microwave-Assisted Hydrothermal Synthesis Process. Molecules 2023, 28, 5153. https://doi.org/10.3390/molecules28135153
Alaizeri ZM, Alhadlaq HA, Aldawood S, Akhtar MJ, Aziz AA, Ahamed M. Photocatalytic Degradation of Methylene Blue and Anticancer Response of In2O3/RGO Nanocomposites Prepared by a Microwave-Assisted Hydrothermal Synthesis Process. Molecules. 2023; 28(13):5153. https://doi.org/10.3390/molecules28135153
Chicago/Turabian StyleAlaizeri, ZabnAllah M., Hisham A. Alhadlaq, Saad Aldawood, Mohd Javed Akhtar, Aziz A. Aziz, and Maqusood Ahamed. 2023. "Photocatalytic Degradation of Methylene Blue and Anticancer Response of In2O3/RGO Nanocomposites Prepared by a Microwave-Assisted Hydrothermal Synthesis Process" Molecules 28, no. 13: 5153. https://doi.org/10.3390/molecules28135153
APA StyleAlaizeri, Z. M., Alhadlaq, H. A., Aldawood, S., Akhtar, M. J., Aziz, A. A., & Ahamed, M. (2023). Photocatalytic Degradation of Methylene Blue and Anticancer Response of In2O3/RGO Nanocomposites Prepared by a Microwave-Assisted Hydrothermal Synthesis Process. Molecules, 28(13), 5153. https://doi.org/10.3390/molecules28135153