Uniformly Dispersed Sb-Nanodot Constructed by In Situ Confined Polymerization of Ionic Liquids for High-Performance Potassium-Ion Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Sb-Nanodot@C (Sb-ND@C)
2.3. Preparation of C
2.4. Preparation of Sb/rGO
2.5. Characterizations
2.6. Electrochemical Performances
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liang, Y.; Chen, Z.; Jing, Y.; Rong, Y.; Facchetti, A.; Yao, Y. Heavily n-Dopable π-Conjugated Redox Polymers with Ultrafast Energy Storage Capability. J. Am. Chem. Soc. 2015, 137, 4956–4959. [Google Scholar] [CrossRef]
- Li, D.; Zhu, M.; Chen, L.; Chen, L.; Zhai, W.; Ai, Q.; Hou, G.; Sun, Q.; Liu, Y.; Liang, Z.; et al. Sandwich-Like FeCl3@C as High-Performance Anode Materials for Potassium-Ion Batteries. Adv. Mater. Interfaces 2018, 5, 1800606. [Google Scholar] [CrossRef]
- Pramudita, J.C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An Initial Review of the Status of Electrode Materials for Potassium-Ion Batteries. Adv. Energy Mater. 2017, 7, 1602911. [Google Scholar] [CrossRef]
- Deng, T.; Fan, X.; Luo, C.; Chen, J.; Chen, L.; Hou, S.; Eidson, N.; Zhou, X.; Wang, C. Self-Templated Formation of P2-type K0.6CoO2 Microspheres for High Reversible Potassium-Ion Batteries. Nano Lett. 2018, 18, 1522–1529. [Google Scholar] [CrossRef]
- Tang, M.; Wu, Y.; Chen, Y.; Jiang, C.; Zhu, S.; Zhuo, S.; Wang, C. An Organic Cathode with High Capacities for Fast-Charge Potassium-Ion Batteries. J. Mater. Chem. A 2019, 7, 486–492. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Zhou, M.; Liang, L.; Dong, H.; Wu, M.; Yang, Y.; Lei, Y. Potassium Prussian Blue Nanoparticles: A Low-Cost Cathode Material for Potassium-Ion Batteries. Adv. Funct. Mater. 2017, 27, 1604307. [Google Scholar] [CrossRef]
- Su, D.; McDonagh, A.; Qiao, S.-Z.; Wang, G. High-Capacity Aqueous Potassium-Ion Batteries for Large-Scale Energy Storage. Adv. Mater. 2017, 29, 1604007. [Google Scholar] [CrossRef]
- Han, J.; Li, G.-N.; Liu, F.; Wang, M.; Zhang, Y.; Hu, L.; Dai, C.; Xu, M. Investigation of K3V2(PO4)3/C Nanocomposites as High-Potential Cathode Materials for Potassium-Ion Batteries. Chem. Commun. 2017, 53, 1805–1808. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Huang, J.; Tan, H.; Huang, J.; Zhang, B. K3V2(PO4)2F3 as a Robust Cathode for Potassium-Ion Batteries. Energy Storage Mater. 2019, 16, 97–101. [Google Scholar] [CrossRef]
- Jian, Z.; Luo, W.; Ji, X. Carbon Electrodes for K-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liao, J.; Tang, Z.; Xiao, L.; Ding, X.; Hu, Q.; Wen, Z.; Chen, C. Highly Disordered Hard Carbon Derived from Skimmed Cotton as a High-Performance Anode Material for Potassium-Ion Batteries. J. Power Sources 2018, 396, 533–541. [Google Scholar] [CrossRef]
- Zhao, J.; Zou, X.; Zhu, Y.; Xu, Y.; Wang, C. Electrochemical Intercalation of Potassium into Graphite. Adv. Funct. Mater. 2016, 26, 8103–8110. [Google Scholar] [CrossRef]
- An, Y.; Tian, Y.; Ci, L.; Xiong, S.; Feng, J.; Qian, Y. Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries. ACS Nano 2018, 12, 12932–12940. [Google Scholar] [CrossRef]
- Han, Y.; Li, T.; Li, Y.; Tian, J.; Yi, Z.; Lin, N.; Qian, Y. Stabilizing Antimony Nanocrystals within Ultrathin Carbon Nanosheets for High-Performance K-Ion Storage. Energy Storage Mater. 2019, 20, 46–54. [Google Scholar] [CrossRef]
- Ge, X.; Liu, S.; Qiao, M.; Du, Y.; Li, Y.; Bao, J.; Zhou, X. Enabling Superior Electrochemical Properties for Highly Efficient Potassium Storage by Impregnating Ultrafine Sb Nanocrystals within Nanochannel-Containing Carbon Nanofibers. Angew. Chem. Int. Ed. 2019, 58, 14578–14583. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.; Zhang, W.; Luo, G.; Wu, C.; Qin, W. Air-Stabilized Pore Structure Engineering of Antimony-Based Anode by Electrospinning for Potassium Ion Batteries. J. Colloid Interface Sci. 2023, 633, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Fan, L.; Ma, R.; Chen, S.; Yu, X.; Yang, H.; Xie, Y.; Han, X.; Lu, B. Super Long-life Potassium-Ion Batteries Based on an Antimony@Carbon Composite Anode. Chem. Commun. 2018, 54, 11773–11776. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, R. High-Capacity Graphene-Confined Antimony Nanoparticles as a Promising Anode Material for Potassium-Ion Batteries. J. Alloys Compd. 2020, 834, 155191. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, Y.; Fan, X.; Ji, G.; Ji, X.; Wang, H.; Hou, S.; Zachariah, M.R.; Wang, C. Extremely Stable Antimony–Carbon Composite Anodes for Potassium-Ion Batteries. Energy Environ. Sci. 2019, 12, 615–623. [Google Scholar] [CrossRef]
- Wang, B.; Qin, L.; Mu, T.; Xue, Z.; Gao, G. Are Ionic Liquids Chemically Stable? Chem. Rev. 2017, 117, 7113–7131. [Google Scholar] [CrossRef]
- Offner-Marko, L.; Bordet, A.; Moos, G.; Tricard, S.; Rengshausen, S.; Chaudret, B.; Luska, K.L.; Leitner, W. Bimetallic Nanoparticles in Supported Ionic Liquid Phases as Multifunctional Catalysts for the Selective Hydrodeoxygenation of Aromatic Substrates. Angew. Chem. Int. Ed. 2018, 57, 12721–12726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, K.; Liu, H.; Jia, Y.; Zhang, Z.; Jiang, Y.; Liu, X.; Huang, K.-J.; Jiao, L. Flexible Antimony@Carbon Integrated Anode for High-Performance Potassium-Ion Battery. Adv. Mater. Technol. 2020, 5, 2000199. [Google Scholar] [CrossRef]
- Sheng, Z.-H.; Shao, L.; Chen, J.-J.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H. Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano 2011, 5, 4350–4358. [Google Scholar] [CrossRef]
- Yu, Q.; Lu, Y.; Luo, R.; Liu, X.; Huo, K.; Kim, J.-K.; He, J.; Luo, Y. In Situ Formation of Copper-Based Hosts Embedded within 3D N-Doped Hierarchically Porous Carbon Networks for Ultralong Cycle Lithium–Sulfur Batteries. Adv. Funct. Mater. 2018, 28, 1804520. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, G.; Shao, L.-L.; Yuan, Z.-Y.; Jing, Q.-S.; Huang, K.-J.; Huang, Z.-Y.; Zhao, X.-H.; Zou, G.-D. Controlled Synthesis of Nickel Encapsulated into Nitrogen-Doped Carbon Nanotubes with Covalent Bonded Interfaces: The Structural and Electronic Modulation Strategy for an Efficient Electrocatalyst in Dye-Sensitized Solar Cells. Chem. Mater. 2017, 29, 9680–9694. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, Z.; Li, X.; Lin, C.; Liu, R.; Cao, C.; Chen, Q.; Wei, M.; Zeng, L.; Qian, Q. Sb-Doped Metallic 1T-MoS2 Nanosheets Embedded in N-Doped Carbon as High-Performance Anode Materials for Half/Full Sodium/Potassium-Ion Batteries. Dalton Trans. 2022, 51, 11685–11692. [Google Scholar] [CrossRef]
- Zhu, M.; Kong, X.; Yang, H.; Zhu, T.; Liang, S.; Pan, A. One-Dimensional Coaxial Sb and Carbon Fibers with Enhanced Electrochemical Performance for Sodium-Ion Batteries. Appl. Surf. Sci. 2018, 428, 448–454. [Google Scholar] [CrossRef]
- Zhang, W.; Miao, W.; Liu, X.; Li, L.; Yu, Z.; Zhang, Q. High-Rate and Ultralong-Stable Potassium-Ion Batteries Based on Antimony-Nanoparticles Encapsulated in Nitrogen and Phosphorus Co-Doped Mesoporous Carbon Nanofibers as an Anode Material. J. Alloys Compd. 2018, 769, 141–148. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Yuan, Y.F.; Zhu, M.; Yin, S.M.; Cheng, J.P.; Guo, S.Y. Superior Rate-Capability and Long-Lifespan Carbon Nanotube-in-Nanotube@Sb2S3 Anode for Lithium-Ion Storage. J. Mater. Chem. A 2021, 9, 22334–22346. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Zhang, N.; Peng, P.; Wang, R.; Jin, Y.; Lv, Y.-K.; Wang, X.; Wei, W.; Zang, S.-Q. Uniformly Dispersed Ru Nanoparticles Constructed by In Situ Confined Polymerization of Ionic Liquids for the Electrocatalytic Hydrogen Evolution Reaction. Small Methods 2021, 5, 2100505. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, Y.; Dong, H.; Liu, L.; Wang, X.; Zhang, Y.; Xu, M.; Zhou, Y. Self-Calibrating Electrochemical Sensors Based on Uniformly Dispersed Ag Nanoclusters in Nitrogen-Doped Carbon Sheets for Determination of Nitrite. ACS Appl. Nano Mater. 2022, 5, 9737–9746. [Google Scholar] [CrossRef]
- Hou, H.; Jing, M.; Yang, Y.; Zhang, Y.; Song, W.; Yang, X.; Chen, J.; Chen, Q.; Ji, X. Antimony Nanoparticles Anchored on Interconnected Carbon Nanofibers Networks as Advanced Anode Material for Sodium-Ion Batteries. J. Power Sources 2015, 284, 227–235. [Google Scholar] [CrossRef]
- Yi, Z.; Lin, N.; Zhang, W.; Wang, W.; Zhu, Y.; Qian, Y. Preparation of Sb Nanoparticles in Molten Salt and Their Potassium Storage Performance and Mechanism. Nanoscale 2018, 10, 13236–13241. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Han, K.; Wang, X.; Wang, C.; Li, Q.; Meng, J.; Xu, X.; He, Q.; Luo, W.; Wu, L.; et al. Three-Dimensional Carbon Network Confined Antimony Nanoparticle Anodes for High-Capacity K-Ion Batteries. Nanoscale 2018, 10, 6820–6826. [Google Scholar] [CrossRef]
- Cheng, N.; Zhao, J.; Fan, L.; Liu, Z.; Chen, S.; Ding, H.; Yu, X.; Liu, Z.; Lu, B. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem. Commun. 2019, 55, 12511. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.; Choi, S.; Kim, H.; Kim, H. One-pot formation of Sb–carbon microspheres with graphene sheets: Potassium-ion storage properties and discharge mechanisms. ACS Appl. Mater. Inter. 2019, 11, 27973–27981. [Google Scholar] [CrossRef]
- Ahuja, V.; Senthilkumar, B.; Senguttuvan, P. Ultra-stable Sb/hard carbon composite anodes with synergistic alkali-ion storage performances. Mater. Res. Bull. 2021, 144, 111491. [Google Scholar] [CrossRef]
- He, X.D.; Liu, Z.H.; Liao, J.Y.; Ding, X.; Hu, Q.; Xiao, L.N.; Wang, S.; Chen, C.H. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. J. Mater. Chem. 2019, 7, 9629–9637. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, W.; Peng, J.; Zhang, W.; Liang, Z.; Wu, J.; Feng, J.; Li, H.; Huang, S. Metal-Organic Framework Derived Ultrafine Sb@Porous Carbon Octahedron via In Situ Substitution for High-Performance Sodium-Ion Batteries. ACS Nano 2021, 15, 15104–15113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Chen, Z.; Zhang, H.; Liu, Y.; Wei, W.; Zhou, Y.; Xu, M. Uniformly Dispersed Sb-Nanodot Constructed by In Situ Confined Polymerization of Ionic Liquids for High-Performance Potassium-Ion Batteries. Molecules 2023, 28, 5212. https://doi.org/10.3390/molecules28135212
Zhang C, Chen Z, Zhang H, Liu Y, Wei W, Zhou Y, Xu M. Uniformly Dispersed Sb-Nanodot Constructed by In Situ Confined Polymerization of Ionic Liquids for High-Performance Potassium-Ion Batteries. Molecules. 2023; 28(13):5212. https://doi.org/10.3390/molecules28135212
Chicago/Turabian StyleZhang, Cunliang, Zhengyuan Chen, Haojie Zhang, Yanmei Liu, Wei Wei, Yanli Zhou, and Maotian Xu. 2023. "Uniformly Dispersed Sb-Nanodot Constructed by In Situ Confined Polymerization of Ionic Liquids for High-Performance Potassium-Ion Batteries" Molecules 28, no. 13: 5212. https://doi.org/10.3390/molecules28135212
APA StyleZhang, C., Chen, Z., Zhang, H., Liu, Y., Wei, W., Zhou, Y., & Xu, M. (2023). Uniformly Dispersed Sb-Nanodot Constructed by In Situ Confined Polymerization of Ionic Liquids for High-Performance Potassium-Ion Batteries. Molecules, 28(13), 5212. https://doi.org/10.3390/molecules28135212