Phenolic Compounds and Organic Acid Composition of Syringa vulgaris L. Flowers and Infusions
Abstract
:1. Introduction
2. Results
2.1. Phenolic Compounds
2.2. Radical Scavenging Ability
2.3. Organic Acids
3. Discussion
4. Materials and Methods
4.1. Characteristics of Experimental Materials and Their Preparation
4.2. Experiment Design, Sample Preparation
4.3. Determination of Phenolic Compounds and Organic Acids
4.4. Determination of the Total Phenolic Content
4.5. Determination of the Total Flavonoid Content
4.6. DPPH Radical Scavenging Assay
4.7. ABTS Radical Scavenging Assay
4.8. Chemicals
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Łysiak, G.P. Ornamental flowers grown in human surroundings as a source of anthocyanins with high anti-inflammatory properties. Foods 2022, 11, 948. [Google Scholar] [CrossRef] [PubMed]
- Yigit, R.; Çoklar, H.; Akbulut, M. Some physicochemical and phytochemical properties of Syringa vulgaris L. flower tea: Influence of flower drying technique, brewing method and brewing time. J. Food Meas. Charact. 2022, 16, 4185–4197. [Google Scholar] [CrossRef]
- Woźniak, M.; Michalak, B.; Wyszomierska, J.; Dudek, M.K.; Kiss, A.K. Effects of phytochemically characterized extracts from Syringa vulgaris and isolated secoiridoids on mediators of inflammation in a human neutrophil model. Front. Pharmacol. 2018, 9, 349. [Google Scholar] [CrossRef]
- Hanganu, D.; Niculae, M.; Ielciu, I.; Olah, N.-K.; Munteanu, M.; Burtescu, R.; Stefan, R.; Olar, L.; Pall, E.; Andrei, S.; et al. Chemical profile, cytotoxic and oxidative stress reduction of different Syringa vulgaris L. extracts. Molecules 2021, 26, 3104. [Google Scholar] [CrossRef]
- Su, G.; Cao, Y.; Li, C.; Yu, X.; Tu, P.; Chai, X. Phytochemical and pharmacological progress on the genus Syringa. Chem. Cent. J. 2015, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Comp. Anal. 2017, 60, 38–50. [Google Scholar] [CrossRef]
- Kalemba-Drożdż, M. Edible Flowers; Pascal: Bielsko Biała, Poland, 2016; pp. 180–183. [Google Scholar]
- Tanaka, T.; Matsuo, Y. Production mechanisms of black tea polyphenols. Chem. Pharm. Bull. 2020, 68, 1131–1142. [Google Scholar] [CrossRef]
- Huang, W.; Lu, G.; Deng, W.-W.; Ning, J. Effects of different withering methods on the taste of Keemun black tea. LWT—Food Sci. Technol. 2022, 166, 113791. [Google Scholar] [CrossRef]
- Tóth, G.; Barabás, C.; Tóth, A.; Kéry, A.; Béni, S.; Boldizsár, I.; Varga, R.; Noszál, B. Characterization of antioxidant phenolics in Syringa vulgaris L. flowers and fruits by HPLC-DAD-ESI-MS. Biomed. Chromatogr. 2016, 30, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Toma, C.C.; Casacchia, T.; D’ippolito, C.; Statti, G. New extraction technologies for Syringa vulgaris (Oleaceae) meristematic extracts. Rev. Chim. 2017, 68, 1796–1798. [Google Scholar] [CrossRef]
- Gupta, Y.C.; Sharma, P.; Sharma, G.; Agnihotri, R. Edible flowers. In Proceedings of the National Conference of Floriculture for Rural and Urban Prosperity in the Scenario of Climate Change, Gangtok, India, 16–18 February 2018. [Google Scholar]
- Filipek, A.; Wyszomierska, J.; Michalak, B.; Kiss, A.K. Syringa vulgaris bark as a source of compounds affecting the release of inflammatory mediators from human neutrophils and monocytes/macrophages. Phytochem. Lett. 2019, 30, 309–313. [Google Scholar] [CrossRef]
- Varga, E.; Barabás, C.; Tóth, A.; Boldizsár, I.; Noszál, B.; Tóth, G. Phenolic composition, antioxidant and antinociceptive activities of Syringa vulgaris L. bark and leaf extracts. Nat. Prod. Res. 2019, 33, 1664–1669. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, N.; Klimowicz, A. Antioxidant properties of selected parts of Syringa vulgaris L. Pomeranian J. Life Sci. 2022, 68, 64–74. [Google Scholar] [CrossRef]
- Cui, L.; Hu, M.; Cao, P.; Niu, Y.; Li, C.; Liu, Z.; Kang, W. Chemical constituents and coagulation activity of Syringa oblata Lindl flowers. BMC Chem. 2019, 13, 108. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.-Y.; Lin, Y.-Y.; Chang, Y.-C.; Huang, W.-Y.; Lin, W.-S.; Chen, C.-Y.; Huang, S.-L.; Lin, Y.-S. Effects of infusion and storage on antioxidant activity and total phenolic content of black tea. Appl. Sci. 2020, 10, 2685. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, S.; Magnusdottir, S.G.M. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J. Agric. Food Chem. 2002, 50, 565–570. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Chisté, R.C.; Godoy, H.T.; Prado, M.A. The phenolic compounds and the antioxidant potential of infusion of herbs from the Brazilian Amazonian region. Food Res. Int. 2013, 53, 875–881. [Google Scholar] [CrossRef]
- Sentkowska, A.; Biesaga, M.; Pyrzynska, K. Effects of brewing process on phenolic compounds and antioxidant activity of herbs. Food Sci. Biotechnol. 2016, 25, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Rukeya, J.; Tao, W.; Sun, P.; Ye, X. Bioactive compounds and antioxidant activity of wolfberry infusion. Sci. Rep. 2017, 7, 40605. [Google Scholar] [CrossRef] [Green Version]
- Barros, L.; Dueñas, M.; Dias, M.I.; Sousa, M.J.; Santos-Buelga, C.; Ferreira, I.C. Phenolic profiles of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. infusions. Food Chem. 2013, 136, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, R.; Barros, L.; Dueñas, M.; Calhelha, R.C.; Carvalho, A.M.; Santos-Buelga, C.; Queiroz, M.J.; Ferreira, I.C. Infusion and decoction of wild German chamomile: Bioactivity and characterization of organic acids and phenolic compounds. Food Chem. 2013, 136, 947–954. [Google Scholar] [CrossRef]
- Francik, S.; Francik, R.; Sadowska, U.; Bystrowska, B.; Zawiślak, A.; Knapczyk, A.; Nzeyimana, A. Identification of phenolic compounds and determination of antioxidant activity in extracts and infusions of salvia leaves. Materials 2020, 13, 5811. [Google Scholar] [CrossRef] [PubMed]
- Sasmaz, H.K.; Uzlasir, T.; Kelebek, H. Effect of infusion time on the phenolic profile and some physicochemical properties of Lavandula x intermedia cv.’SUPER’. J. Raw. Mater. Process. Foods 2020, 1, 55–71. [Google Scholar]
- Ma, X.; Moilanen, J.; Laaksonen, O.; Yang, W.; Tenhu, E.; Yang, B. Phenolic compounds and antioxidant activities of tea-type infusions processed from sea buckthorn (Hippophaë rhamnoides) leaves. Food Chem. 2019, 272, 1–11. [Google Scholar] [CrossRef]
- Schulze, J.; Tesfaye, M.; Litjens, R.H.M.G.; Bucciarelli, B.; Trepp, G.; Miller, S.; Samac, D.; Allan, D.; Vance, C.P. Malate plays a central role in plant nutrition. Plant Soil 2002, 247, 133–139. [Google Scholar] [CrossRef]
- López-Bucio, J.; Nieto-Jacobo, M.F.; Ramírez-Rodríguez, V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000, 160, 1–13. [Google Scholar] [CrossRef]
- Magdziak, Z.; Gąsecka, M.; Budka, A.; Goliński, P.; Mleczek, M. Profile and concentration of the low molecular weight organic acids and phenolic compounds created by two-year-old Acer platanoides seedlings growing under different as forms. J. Hazard. Mater. 2020, 392, 122280. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R. Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chem. 2017, 220, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Destandau, E.; Vial, J.; Jardy, A.; Hennion, M.C.; Bonnet, D.; Lancelin, P. Development and validation of a reversed-phase liquid chromatography method for the quantitative determination of carboxylic acids in industrial reaction mixtures. J. Chromatogr. A 2005, 1088, 49–56. [Google Scholar] [CrossRef]
- Li, J.; Yai, Y.; Wang, J.; Hua, J.; Wang, J.; Yang, Y.; Dong, C.; Zhou, Q.; Jiang, Y.; Deng, Y.; et al. Rutin, γ-aminobutyric acid, gallic acid, and caffeine negatively affect thesSweet-mellow taste of congou black tea infusions. Molecules 2019, 24, 4221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carocho, M.; Barros, L.; Antonio, A.L.; Barreira, J.C.; Bento, A.; Kaluska, I.; Ferreira, I.C. Analysis of organic acids in electron beam irradiated chestnuts (Castanea sativa Mill.): Effects of radiation dose and storage time. Food Chem. Toxicol. 2013, 55, 348–352. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.; Chen, S. Comparison of active non-volatile taste components in the viscera and adductor muscles of oyster (Ostrea rivularis Gould). Food Sci. Technol. Res. 2013, 19, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, E.A. Fruit flavor, volatile metabolism and consumer perceptions. In Fruit Quality and Its Biological Basis; Knee, M., Ed.; Sheffield Academic Press: Sheffield, UK, 2002; pp. 89–106. [Google Scholar]
- Kumar, V.; Sharma, A.; Bhardwaj, R.; Kumar Thukral, A. Analysis of organic acids of tricarboxylic acid cycle in plants using GC-MS, and system modelling. J. Anal. Sci. Technol. 2017, 8, 20. [Google Scholar] [CrossRef]
- Kaur, G.; Shivanandappa, T.B.; Kumar, M.; Singh, K. Fumaric acid protect the cadmium-induced hepatotoxicity in rats: Owing to its antioxidant, anti-inflammatory action and aid in recast the liver function. Naunyn Schmiedeberg’s Arch. Pharmacol. 2020, 393, 1911–1920. [Google Scholar] [CrossRef] [PubMed]
- Vrchovska, V.; Spilková, J.; Valentão, P.; Sousa, C.; Andrade, P.; Seabra, R.M. Antioxidative properties and phytochemical composition of Ballota nigra infusion. Food Chem. 2007, 105, 1396–1403. [Google Scholar] [CrossRef]
- Gąsecka, M.; Mleczek, M.; Siwulski, M.; Niedzielski, P. Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with selenium and zinc. Eur. Food Res. Technol. 2016, 242, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Zhuang, X.P.; Lu, Y.Y.; Yang, G.S. Extraction and determination of flavonoid in ginkgo. Chin. Herb. Med. 1992, 23, 122–124. [Google Scholar]
- Stojichevich, S.S.; Stanisavljevich, I.V.; Velichkovich, D.T.; Veljkovich, V.B.; Lazich, M.L. Comparative of the antioxidant and antimicrobial activities of Sempervium marmoreum L. extracts obtained by various extraction techniques. J. Serb. Chem. Soc. 2008, 73, 597–607. [Google Scholar] [CrossRef]
- Gąsecka, M.; Mleczek, M.; Siwulski, M.; Niedzielski, P.; Kozak, L. The effect of selenium on phenolics and flavonoids in selected edible white rot fungi. LWT-Food Sci. Technol. 2015, 63, 726–731. [Google Scholar] [CrossRef]
Syringa vulgaris | ||||||||
---|---|---|---|---|---|---|---|---|
Compound | Liliana White Flowers | Jules Simon Pink Flowers | Prof. Hoser Blue Flowers | Andenken an Ludwig Späth Purple Flowers | ||||
Non-Oxidised | Oxidised | Non-Oxidised | Oxidised | Non-Oxidised | Oxidised | Non-Oxidised | Oxidised | |
Caffeic acid | 755.7 ± 29.51 b | 19.0 ± 2.14 f | 335.4 ± 17.62 c | 9.9 ± 0.98 f | 653.4 ± 45.24 b | 114.9 ± 13.94 e | 793.8 ± 38.97 a | 189.7 ± 12.42 d |
Chlorogenic acid | 492.4 ± 15.19 d | 15.9 ± 0.29 e | 1141.3 ± 56.34 c | 17.6 ± 1.55 e | 6114.6 ± 281.83 b | 159.6 ± 11.80 de | 7825.9 ± 334.93 a | 63.5 ± 3.46 de |
p-Coumaric acid | 34.9 ± 24.7 b | 1.04 ± 0.05 e | 21.6 ± 1.12 c | 1.0 ± 0.06 e | 22.9 ± 1.35 c | 13.7 ± 3.09 d | 101.0 ± 5.42 a | 12.6 ± 0.79 e |
2,5-DHBA | 224.6 ± 14.87 b | 12.5 ± 2.08 d | 19.9 ± 1.18 d | 5.3 ± 0.24 d | 879.4 ± 17.39 a | 86.8 ± 3.53 c | 11.6 ± 1.60 d | 220.6 ± 14.67 b |
Ferulic acid | 944.2 ± 47.56 a | 2.1 ± 0.05 b | 6.5 ± 0.11 b | 1.1 ± 0.07 b | 7.0 ± 0.09 b | 30.6 ± 1.14 b | 8.3 ± 0.49 b | 28.3 ± 1.06 b |
Gallic acid | 24.4 ± 2.80 d | 12.7 ± 1.38 d | 23.1 ± 1.52 d | 8.3 ± 0.10 d | 166.2 ± 14.06 b | 163.4 ± 8.51 b | 245.6 ± 10.35 a | 67.45 ± 2.27 c |
4-HBA | 582.1 ± 20.32 b | 12.8 ± 2.28 e | 225.5 ± 13.23 d | 3.5 ± 0.05 e | 459.7 ± 16.89 c | 147.6 ± 12.80 e | 1763.8 ± 70.40 a | 126.7 ± 5.91 e |
Protocatechuic acid | nd | nd | 165.9 ± 7.90 c | 47.7 ± 79.82 d | 319.3 ± 13.27 b | nd | 767.7 ± 33.82 a | 97.8 ± 4.15 cd |
Sinapic acid | 12.6 ± 1.10 e | 10.3 ± 0.60 e | 75.9 ± 4.00 bc | 3.4 ± 0.16 e | 104.6 ± 7.23 a | 34.2 ± 1.78 d | 84.5 ± 4.96 b | 68.3 ± 2.34 c |
Syringic acid | 89.2 ± 1.35 c | 7.9 ± 0.19 e | 45.4 ± 2.07 d | 3.8 ± 0.20 e | 62.7 ± 2.62 d | 153.1 ± 9.16 b | 382.4 ± 15.81 a | 49.7 ± 1.21 d |
t-Cinnamic acid | 182.9 ± 9.87 a | 1.6 ± 0.11 e | 58.9 ± 1.21 c | 1.19 ± 0.17 e | 88.6 ± 1.73 b | 20.4 ± 1.23 d | 53.5 ± 1.65 c | 5.6 ± 0.30 e |
Vanillic acid | 102.3 ± 5.69 d | 19.4 ± 0.77 e | 43.5 ± 3.95 e | 10.3 ± 1.17 e | 224.1 ± 20.68 b | 218.7 ± 18.09 b | 311.0 ± 16.09 a | 172.7 ± 11.54 c |
Apigenin | 99.9 ± 7.37 b | 3.6 ± 0.16 e | 61.4 ± 2.33 c | 2.4 ± 0.10 e | nd | 67.7 ± 2.10 c | 266.2 ± 11.01 a | 31.8 ± 1.63 d |
Catechin | 1175.4 ± 42.04 d | 131.5 ± 18.25 e | 620.1 ± 23.35 d | 55.1 ± 4.81 e | 1684.4 ± 71.92 b | 1142.1 ± 33.51 c | 3019.0 ± 76.74 a | 1530.9 ± 60.51 c |
Luteolin | 3.3 ± 0.10 c | 1.5 ± 0.06 d | nd | nd | nd | nd | 20.5 ± 1.01 a | 10.2 ± 0.72 b |
Quercetin | 114.0 ± 9.83 b | 3.8 ± 0.08 e | 43.8 ± 1.46 d | 1.1 ± 0.07 e | 269.5 ± 4.13 a | 83.6 ± 5.40 c | 282.2 ± 16.15 a | 74.2 ± 3.78 c |
Rutin | 217.6 ± 10.48 a | 17.4 ± 0.83 e | 158.5 ± 10.00 b | 2.8 ± 0.06 e | 115.3 ± 11.55 c | 94.5 ± 5.03 c | 227.9 ± 14.79 a | 65.2 ± 1.65 d |
Sum | 5055.3 ± 133.92 c | 273.1 ± 14.84 e | 3046.9 ± 56.91 d | 174.4 ± 81.58 e | 11,172.0 ± 450.21 b | 2531.3 ± 10.81 d | 16,164.8 ± 612.45 a | 2815.6 ± 36.27 d |
Syringa vulgaris | ||||||||
---|---|---|---|---|---|---|---|---|
Compound | Liliana White Flowers | Jules Simon Pink Flowers | Prof. Hoser Blue Flowers | Andenken an Ludwig Späth Purple Flowers | ||||
Non-Oxidised | Oxidised | Non-Oxidised | Oxidised | Non-Oxidised | Oxidised | Non-Oxidised | Oxidised | |
Caffeic acid | 62.5 ± 1.93 c | 1.7 ± 0.38 f | 146.1 ± 4.29 a | 53.6 ± 1.51 d | nd | nd | 73.8 ± 3.97 b | 14.8 ± 0.77 e |
Chlorogenic acid | 52.2 ± 1.43 b | 2.5 ± 0.26 d | 21.6 ± 1.00 c | 1.9 ± 0.07 d | nd | 49.9 ± 1.27 b | 2.0 ± 0.43 d | 95.1 ± 10.09 a |
p-Coumaric acid | 9.2 ± 0.45 a | 2.5 ± 0.30 d | 8.3 ± 0.42 b | 3.2 ± 0.20 cd | nd | nd | 3.5 ± 0.17 c | nd |
2,5-DHBA | 312.1 ± 8.34 b | 152.6 ± 3.67 c | 102.4 ± 2.39 de | 68.7 ± 2.24 f | nd | 126.2 ± 5.45 cd | 653.7 ± 22.62 a | 78.3 ± 4.28 ef |
Ferulic acid | nd | nd | 38.4 ± 1.42 a | nd | 1.8 ± 0.33 c | nd | 21.6 ± 1.41 b | nd |
Gallic acid | 97.1 ± 2.96 a | nd | nd | nd | nd | nd | 7.3 ± 0.66 c | 34.3 ± 1.44 b |
4-HBA | 627.5 ± 20.60 a | 16.1 ± 0.78 d | 250.3 ± 6.34 b | 201.2 ± 5.64 c | nd | 19.8 ± 0.39 d | 12.5 ± 0.98 d | 212.4 ± 2.62 c |
Protocatechuic acid | nd | nd | nd | nd | nd | 60.1 ± 1.14 b | 7.1 ± 0.40 c | 135.0 ± 3.80 a |
Sinapic acid | 7.9 ± 0.39 b | 54.8 ± 2.56 a | 3.3 ± 0.24 c | nd | nd | nd | nd | nd |
Syringic acid | 191.8 ± 5.10 b | 26.9 ± 1.99 ef | 56.7 ± 1.15 d | 38.8 ± 1.76 de | 433.9 ± 22.54 a | 8.5 ± 0.62 f | 14.7 ± 0.91 ef | 135.9 ± 9.75 c |
t- Cinnamic acid | 22.5 ± 1.18 a | 2.6 ± 0.37 c | nd | nd | nd | nd | 11.9 ± 0.89 b | 13.1 ± 1.16 b |
Vanillic acid | 667.1 ± 25.46 a | 43.9 ± 2.58 c | nd | nd | nd | nd | 7.4 ± 0.57 c | 122.2 ± 3.43 b |
Apigenin | nd | nd | 9.7 ± 0.56 b | 2.8 ± 0.19 c | nd | nd | 23.2 ± 2.43 a | nd |
Catechin | 77.0 ± 1.72 b | nd | nd | nd | nd | 14.7 ± 0.51 c | 13.5 ± 0.80 c | 195.5 ± 9.50 a |
Kaempferol | 272.9 ± 7.90 a | 50.2 ± 1.45 e | 125.4 ± 5.18 b | 60.6 ± 2.36 de | 5.5 ± 0.18 f | 9.8 ± 0.21 f | 71.2 ± 2.56 d | 90.3 ± 1.39 c |
Quercetin | 20.5 ± 1.22 b | nd | nd | nd | nd | nd | 64.5 ± 2.75 a | nd |
Rutin | nd | 17.6 ± 0.47 d | 21.7 ± 0.53 c | 8.5 ± 0.33 e | nd | nd | 56.5 ± 2.89 a | 40.3 ± 1.20 b |
Sum | 2420.9 ± 59.62 a | 371.6 ± 6.00 e | 790.7 ± 0.59 d | 439.2 ± 6.84 e | 441.2 ± 22.21 e | 289.0 ± 4.86 f | 1044.4 ± 21.84 c | 1167.1 ± 40.18 b |
Syringa vulgaris | ||||||||
---|---|---|---|---|---|---|---|---|
Acid | Liliana White Flowers | Jules Simon Pink Flowers | Prof. Hoser Blue Flowers | Andenken an Ludwig Späth Purple Flowers | ||||
Non-Oxidised | Oxidised | Non-Oxidised | Oxidised | Non-Oxidised | Oxidised | Non-Oxidised | Oxidised | |
Acetic | 346.0 ± 4.45 d | 55.4 ± 0.91 e | 385.1 ± 5.84 d | nd | 1320.7 ± 93.07 a | 1005.6 ± 111.33 b | 737.1 ± 4.90 c | 922.2 ± 53.27 b |
Citric | 10.7 ± 0.62 d | 22.7 ± 2.10 c | 7.2 ± 0.04 de | 31.6 ± 1.78 c | nd | 183.1 ± 5.41 b | 30.3 ± 3.24 c | 236.5 ± 5.83 a |
Fumaric | 0.3 ± 0.02 de | 0.2 ± 0.01 e | 4.3 ± 0.12 a | 0.6 ± 0.03 d | 0.9 ± 0.08 c | 0.4 ± 0.08 de | 2.0 ± 0.24 b | 0.5 ± 0.03 de |
Lactic | 15.0 ± 0.86 c | nd | 16.2 ± 0.22 c | 39.2 ± 3.18 b | 42.2 ± 1.13 b | nd | 149.1 ± 3.19 a | nd |
Malic | 29.6 ± 0.77 b | 1.3 ± 0.24 d | nd | nd | 12.2 ± 1.54 c | nd | 44.6 ± 2.45 a | 44.6 ± 2.78 a |
Malonic | 25.9 ± 0.49 e | 100.6 ± 1.54 d | 17.6 ± 0.50 e | 37.0 ± 3.44 e | 383.0 ± 5.59 c | 998.6 ± 37.35 b | 344.0 ± 5.79 c | 1047.0 ± 12.28 a |
Oxalic | 9.3 ± 0.13 d | 5.0 ± 0.24 ef | 7.3 ± 0.19 de | 1.6 ± 0.22 f | 20.5 ± 1.17 c | 50.7 ± 3.07 b | 9.5 ± 0.53 d | 73.8 ± 1.56 a |
Quinic | 37.0 ± 0.23 d | 5.3 ± 0.27 e | 32.4 ± 2.99 d | 1.6 ± 0.22 e | 121.7 ± 4.37 c | 199.7 ± 9.11 a | 35.3 ± 1.99 d | 154.5 ± 5.88 b |
Succinic | 73.9 ± 1.13 d | 6.3 ± 0.13 f | 50.2 ± 1.81 e | 3.5 ± 2.10 f | 259.2 ± 5.99 a | 90.0 ± 2.24 c | 135.8 ± 1.53 b | nd |
Sum | 547.7 ± 3.90 d | 196.8 ± 1.32 e | 520.1 ± 9.08 d | 115.1 ± 5.18 e | 2160.4 ± 93.07 b | 2528.1 ± 63.4 a | 1487.7 ± 6.95 c | 2479.0 ± 54.64 a |
Syringa vulgaris | ||||||||
---|---|---|---|---|---|---|---|---|
Acid | Liliana White Flowers | Jules Simon Pink Flowers | Prof. Hoser Blue Flowers | Andenken an Ludwig Späth Purple Flowers | ||||
Non-Oxidised | Oxidised | Non-Oxidised | Oxidised | Non-Oxidised | Oxidised | Non-Oxidised | Oxidised | |
Acetic | 8.3 ± 0.21 d | 22.1 ± 0.6 b | 10.1 ± 0.3 c | 1.4 ± 0.02 f | nd | nd | 32.2 ± 0.5 a | 6.5 ± 0.1 e |
Citric | 1.3 ± 0.03 c | nd | nd | 1.9 ± 0.01 b | 4.3 ± 0.01 a | nd | nd | nd |
Fumaric | nd | nd | nd | nd | nd | nd | 0.3 ± 0.01 a | nd |
Lactic | nd | nd | 9.0 ± 0.2 c | nd | nd | nd | 15.7 ± 0.3 b | 182.4 ± 3 a |
Malic | 0.7 ± 0.02 d | nd | 1.2 ± 0.03 d | nd | nd | 13.4 ± 0.2 a | 8.5 ± 0.1 c | 113.2 ± 2 a |
Malonic | 3.2 ± 0.08 c | 4.8 ± 0.1 c | 14.9 ± 0.4 b | 2.8 ± 0.02 c | nd | 12.9 ± 0.2 b | 12.0 ± 0.2 b | 191.5 ± 3 a |
Oxalic | 1.1 ± 0.03 b | 0.3 ± 0.01 e | 1.2 ± 0.03 a | 0.2 ± 0.01 f | 0.2 ± 0.00 g | nd | 0.4 ± 0.01 d | 0.7 ± 0.01 c |
Quinic | nd | 9.2 ± 0.3 c | 2.8 ± 0.07 d | nd | 1.9 ± 0.01 e | nd | 25.3 ± 0.4 b | 27.4 ± 0.5 a |
Succinic | 10.6 ± 0.3 d | 110.2 ± 3 a | 68.0 ± 1.8 b | nd | nd | nd | 28.3 ± 0.5 c | 28.3 ± 0.5 c |
Sum | 25.2 ± 0.6 e | 146.5 ± 4.2 b | 107.2 ± 2.8 d | 6.4 ± 0.03 f | 6.4 ± 0.01 f | 26.4 ± 0.3 e | 122.6 ± 2 c | 550.1 ± 9.1 a |
Compound | Retention Time [min.] | Calibration Curve | R2 | Recovery [%] |
---|---|---|---|---|
Oxalic | 1.007 | y = 267553x + 5542.8 | 0.9962 | 87 |
Quinic | 1.106 | y = 70546x−836.3 | 0.9816 | 95 |
Malonic | 1.314 | y = 46849x + 221.41 | 0.9853 | 97 |
Lactic | 1.462 | y = 1669.4x + 1.4949 | 0.9929 | 90 |
Citric | 1.579 | y = 70345x − 14764 | 0.9951 | 90 |
Acetic | 1.605 | y = 36463x + 17143 | 0.9829 | 95 |
Malic | 1.895 | y = 92480x − 2263.2 | 0.9911 | 92 |
Succinic | 1.99 | y = 18434x − 687.09 | 0.9891 | 100 |
Fumaric | 2.114 | y =7878614x + 480.24 | 0.9895 | 95 |
Gallic acid | 2.28 | y = 5173.6x + 52.429 | 0.9984 | 94 |
Protocatechuic acid | 4.02 | y = 4544.8x − 6.8547 | 0.9997 | 90 |
2,5-DHBA | 7.21 | y = 1053.5x + 35.048 | 0.9926 | 92 |
4-HBA | 7.68 | y = 4827.5x + 91.143 | 0.9983 | 96 |
Vanillic acid | 9.12 | y = 5224.6x + 88 | 0.9988 | 85 |
Catechin | 9,41 | y = 6086.4x − 124.43 | 0.9982 | 89 |
Caffeic acid | 10.04 | y = 9534.5x + 21.157 | 0.9947 | 91 |
Syringic acid | 10.62 | y = 7944.6x + 15.566 | 0.9981 | 94 |
p-Coumaric acid | 12.18 | y = 14480x − 152.61 | 0.9981 | 89 |
Chlorogenic acid | 14.04 | y = 3534x − 6.4819 | 0.9991 | 92 |
Ferulic acid | 14.24 | y = 12317x − 81.88 | 0.9993 | 91 |
Sinapic acid | 15.19 | y = 11260x − 187.39 | 0.9952 | 94 |
Rutin | 15.52 | y = 3007x − 42.036 | 0.9964 | 93 |
t-Cinnamic acid | 21.41 | y = 17917x + 144.58 | 0.9962 | 97 |
Quercetin | 22.02 | y = 1814.2x + 16.337 | 0.9986 | 97 |
Luteolin | 22.82 | y = 6222.2x − 62.422 | 0.9982 | 96 |
Apigenin | 25.67 | y = 9411.8x − 25.855 | 0.9958 | 93 |
Kaempferol | 26.14 | y = 4681.4x + 20.916 | 0.9989 | 87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gąsecka, M.; Krzymińska-Bródka, A.; Magdziak, Z.; Czuchaj, P.; Bykowska, J. Phenolic Compounds and Organic Acid Composition of Syringa vulgaris L. Flowers and Infusions. Molecules 2023, 28, 5159. https://doi.org/10.3390/molecules28135159
Gąsecka M, Krzymińska-Bródka A, Magdziak Z, Czuchaj P, Bykowska J. Phenolic Compounds and Organic Acid Composition of Syringa vulgaris L. Flowers and Infusions. Molecules. 2023; 28(13):5159. https://doi.org/10.3390/molecules28135159
Chicago/Turabian StyleGąsecka, Monika, Agnieszka Krzymińska-Bródka, Zuzanna Magdziak, Piotr Czuchaj, and Joanna Bykowska. 2023. "Phenolic Compounds and Organic Acid Composition of Syringa vulgaris L. Flowers and Infusions" Molecules 28, no. 13: 5159. https://doi.org/10.3390/molecules28135159
APA StyleGąsecka, M., Krzymińska-Bródka, A., Magdziak, Z., Czuchaj, P., & Bykowska, J. (2023). Phenolic Compounds and Organic Acid Composition of Syringa vulgaris L. Flowers and Infusions. Molecules, 28(13), 5159. https://doi.org/10.3390/molecules28135159