Facile Ball Milling Preparation of Flame-Retardant Polymer Materials: An Overview
Abstract
:1. Introduction
2. Ball Milling Methods
3. Ball Milling-Assisted Fabrication of Flame Retardants
3.1. Ball Milling for Crushing
3.2. Ball Milling for Exfoliation
3.2.1. Graphene-Based Flame Retardants
3.2.2. Boron-Nitride-Based Flame Retardants
3.2.3. Black-Phosphorus-Based Flame Retardants
3.2.4. MoS2-Based Flame Retardants
3.2.5. Covalent-Organic-Framework-Based Flame Retardants
3.2.6. Layered Oyster Waste
3.2.7. Others
3.3. Ball Milling for Modification
3.4. Ball Milling for Reaction
4. Ball Milling for Mixing Flame Retardants and Polymer Matrices
5. Challenges and Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.Y.; Feng, K.; Gapeeva, A.; Meurisch, K.; Kaps, S.; Li, X.; Yu, L.M.; Mishra, Y.K.; Adelung, R.; Baum, M. Functional polymer materials for modern marine biofouling control. Prog. Polym. Sci. 2022, 127, 101516. [Google Scholar] [CrossRef]
- Fico, D.; Rizzo, D.; Casciaro, R.; Corcione, C.E. A Review of Polymer-Based Materials for Fused Filament Fabrication (FFF): Focus on Sustainability and Recycled Materials. Polymers 2022, 14, 465. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.D.; Chen, J.A.; Shao, X.C.; Zhang, L.; Dong, Y.J.; Li, W.J.; Zhang, C.; Ma, Y.G. New electropolymerized triphenylamine polymer films and excellent multifunctional electrochromic energy storage system materials with real-time monitoring of energy storage status. Chem. Eng. J. 2023, 461, 141974. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Kayode, J.F.; Akinyoola, J.O.; Ikumapayi, O.M. Shape memory polymer review for flexible artificial intelligence materials of biomedical. Mater. Chem. Phys. 2023, 293, 126930. [Google Scholar] [CrossRef]
- Chen, R.S.; Ahmad, S.; Gan, S.; Salleh, M.N.; Ab Ghani, M.H.; Tarawneh, M.A. Effect of polymer blend matrix compatibility and fibre reinforcement content on thermal stability and flammability of ecocomposites made from waste materials. Thermochim. Acta 2016, 640, 52–61. [Google Scholar] [CrossRef]
- Kalali, E.N.; Zhang, L.; Shabestari, M.E.; Croyal, J.; Wang, D.Y. Flame-retardant wood polymer composites (WPCs) as potential fire safe bio-based materials for building products: Preparation, flammability and mechanical properties. Fire Saf. J. 2019, 107, 210–216. [Google Scholar] [CrossRef]
- Mohanty, D.; Chen, S.Y.; Hung, I.M. Effect of Lithium Salt Concentration on Materials Characteristics and Electrochemical Performance of Hybrid Inorganic/Polymer Solid Electrolyte for Solid-State Lithium-Ion Batteries. Batteries 2022, 8, 173. [Google Scholar] [CrossRef]
- Sahinoz, M.; Aruntas, H.Y.; Guru, M. Processing of polymer wood composite material from pine cone and the binder of phenol formaldehyde/PVAc/molasses and improvement of its properties. Case Stud. Constr. Mater. 2022, 16, e01013. [Google Scholar]
- Vahabi, H.; Jouyandeh, M.; Parpaite, T.; Saeb, M.R.; Ramakrishna, S. Coffee Wastes as Sustainable Flame Retardants for Polymer Materials. Coatings 2021, 11, 1021. [Google Scholar] [CrossRef]
- Zhao, P.; Tian, L.; Guo, Y.; Lv, B.; Mao, X.; Li, T.; Cui, J.; Guo, J.; Yang, B. A facile method to prepare high-performance thermal insulation and flame retardant materials from amine-linked porous organic polymers. Eur. Polym. J. 2022, 162, 110918. [Google Scholar] [CrossRef]
- Vahabi, H.; Laoutid, F.; Formela, K.; Saeb, M.R.; Dubois, P. Flame-Retardant Polymer Materials Developed by Reactive Extrusion: Present Status and Future Perspectives. Polym. Rev. 2022, 62, 919–949. [Google Scholar] [CrossRef]
- Chen, W.; Liu, P.; Liu, Y.; Liu, Z. Recent advances in Two-dimensional Ti3C2Tx MXene for flame retardant polymer materials. Chem. Eng. J. 2022, 446, 137239. [Google Scholar] [CrossRef]
- Salamova, A.; Hermanson, M.H.; Hites, R.A. Organophosphate and Halogenated Flame Retardants in Atmospheric Particles from a European Arctic Site. Environ. Sci. Technol. 2014, 48, 6133–6140. [Google Scholar] [CrossRef]
- Harrad, S.; Drage, D.; Sharkey, M.; Stubbings, W.; Alghamdi, M.; Berresheim, H.; Coggins, M.; Rosa, A.H. Elevated concentrations of halogenated flame retardants in waste childcare articles from Ireland. Environ. Pollut. 2023, 317, 120732. [Google Scholar] [CrossRef]
- Ren, H.L.; Ge, X.; Qi, Z.H.; Lin, Q.H.; Shen, G.F.; Yu, Y.X.; An, T.C. Emission and gas-particle partitioning characteristics of atmospheric halogenated and organophosphorus flame retardants in decabromodiphenyl ethane-manufacturing functional areas. Environ. Pollut. 2023, 329, 121709. [Google Scholar] [CrossRef]
- Kerric, A.; Mazerolle, M.J.; Giroux, J.F.; Verreault, J. Halogenated flame retardant exposure pathways in urban-adapted gulls: Are atmospheric routes underestimated? Sci. Total Environ. 2023, 860, 160526. [Google Scholar] [CrossRef]
- Capozzi, S.L.; Lehman, D.C.; Venier, M. Disentangling Source Profiles and Time Trends of Halogenated Flame Retardants in the Great Lakes. Environ. Sci. Technol. 2023, 57, 1309–1319. [Google Scholar] [CrossRef]
- Eo, S.-M.; Cha, E.; Kim, D.-W. Effect of an inorganic additive on the cycling performances of lithium-ion polymer cells assembled with polymer-coated separators. J. Power Sources 2009, 189, 766–770. [Google Scholar] [CrossRef]
- Katase, F.; Kajiyama, S.; Kato, T. Macromolecular templates for biomineralization-inspired crystallization of oriented layered zinc hydroxides. Polym. J. 2017, 49, 735–739. [Google Scholar] [CrossRef]
- Sangian, D.; Ide, Y.; Bando, Y.; Rowan, A.E.; Yamauchi, Y. Materials Nanoarchitectonics Using 2D Layered Materials: Recent Developments in the Intercalation Process. Small 2018, 14, 1800551. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Li, N.; Wu, B.; Li, D.; Pan, Q.; Wang, R. Microstructural characterization and corrosion resistance evaluation of chromate-phosphate/water-soluble resin composite conversion coating on Al surfaces. Prog. Org. Coat. 2022, 173, 107205. [Google Scholar] [CrossRef]
- Gao, F.; Tong, L.F.; Fang, Z.P. Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polym. Degrad. Stab. 2006, 91, 1295–1299. [Google Scholar] [CrossRef]
- Wang, D.-L.; Liu, Y.; Wang, D.-Y.; Zhao, C.-X.; Mou, Y.-R.; Wang, Y.-Z. A novel intumescent flame-retardant system containing metal chelates for polyvinyl alcohol. Polym. Degrad. Stab. 2007, 92, 1555–1564. [Google Scholar] [CrossRef]
- Xue, M.; Zhang, X.; Wu, Z.; Wang, H.; Gu, Z.; Bao, C.; Tian, X. A Commercial Phosphorous-Nitrogen Containing Intumescent Flame Retardant for Thermoplastic Polyurethane. J. Appl. Polym. Sci. 2014, 131, 39772. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Y.; Li, Y.; Shao, Q.; Yan, X.; Han, C.; Wang, Z.; Liu, Z.; Guo, Z. Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant. Polym. Adv. Technol. 2018, 29, 668–676. [Google Scholar] [CrossRef]
- Anilkumar, Y.; Felipe, M.; de Souza, T.D.; Ram, K. Gupta, Recent Advancements in Flame-Retardant Polyurethane Foams: A Review. Ind. Eng. Chem. Res. 2022, 61, 15046–15065. [Google Scholar]
- Jiang, Y.; Yang, H.; Lin, X.; Xiang, S.; Feng, X.; Wan, C. Surface Flame-Retardant Systems of Rigid Polyurethane Foams: An Overview. Materials 2023, 16, 2728. [Google Scholar] [CrossRef] [PubMed]
- Li, F. Comprehensive Review of Recent Research Advances on Flame-Retardant Coatings for Building Materials: Chemical Ingredients, Micromorphology, and Processing Techniques. Molecules 2023, 28, 1842. [Google Scholar] [CrossRef]
- Palacios, E.; Leret, P.; De La Mata, M.J.; Fernandez, J.F.; De Aza, A.H.; Rodriguez, M.A.; Rubio-Marcos, F. Self-Forming 3D Core-Shell Ceramic Nanostructures for Halogen-Free Flame Retardant Materials. ACS Appl. Mater. Interfaces 2016, 8, 9462–9471. [Google Scholar] [CrossRef]
- Xue, B.; Niu, M.; Yang, Y.; Bai, J.; Song, Y.; Peng, Y.; Liu, X. Multi-functional carbon microspheres with double shell layers for flame retardant poly (ethylene terephthalate). Appl. Surf. Sci. 2018, 435, 656–665. [Google Scholar] [CrossRef]
- Holdsworth, A.F.; Horrocks, A.R.; Kandola, B.K. Novel metal complexes as potential synergists with phosphorus based flame retardants in polyamide 6.6. Polym. Degrad. Stab. 2020, 179, 109220. [Google Scholar] [CrossRef]
- Holdsworth, A.F.; Horrocks, A.R.; Kandola, B.K. Potential Synergism between Novel Metal Complexes and Polymeric Brominated Flame Retardants in Polyamide 6.6. Polymers 2020, 12, 1543. [Google Scholar] [CrossRef]
- Horrocks, A.R. The Potential for Bio-Sustainable Organobromine-Containing Flame Retardant Formulations for Textile Applications—A Review. Polymers 2020, 12, 2160. [Google Scholar] [CrossRef] [PubMed]
- Do, J.-L.; Friščić, T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci. 2017, 3, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Burmeister, C.F.; Kwade, A. Process engineering with planetary ball mills. Chem. Soc. Rev. 2013, 42, 7660–7667. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Dong, B.; Du, X.; Ma, S.; Wei, L.; Xu, B. Flame-Retardant Performance of Polystyrene Enhanced by Polyphenylene Oxide and Intumescent Flame Retardant. Polym. Plast. Technol. Eng. 2014, 53, 395–402. [Google Scholar] [CrossRef]
- Zhang, T.; Kuga, S.; Wu, M.; Huang, Y. Chitin Nanofibril-Based Flame Retardant for Paper Application. ACS Sustain. Chem. Eng. 2020, 8, 12360–12365. [Google Scholar] [CrossRef]
- Hwang, S.; Grätz, S.; Borchardt, L. A guide to direct mechanocatalysis. Chem. Commun. 2022, 58, 1661–1671. [Google Scholar] [CrossRef]
- Zhang, Q.; Saito, F. A review on mechanochemical syntheses of functional materials. Adv. Powder Technol. 2012, 23, 523–531. [Google Scholar] [CrossRef]
- Blumbergs, E.; Serga, V.; Shishkin, A.; Goljandin, D.; Shishko, A.; Zemcenkovs, V.; Markus, K.; Baronins, J.; Pankratov, V. Selective Disintegration-Milling to Obtain Metal-Rich Particle Fractions from E-Waste. Metals 2022, 12, 1468. [Google Scholar] [CrossRef]
- Tsuzuki, T.; McCormick, P.G. Mechanochemical synthesis of nanoparticles. J. Mater. Sci. 2004, 39, 5143–5146. [Google Scholar] [CrossRef]
- Nikolic, N.; Marinkovic, Z.; Sreckovic, T. The influence of grinding conditions on the mechanochemical synthesis of zinc stannate. J. Mater. Sci. 2004, 39, 5239–5242. [Google Scholar] [CrossRef]
- Palazon, F.; Ajjouri, Y.E.; Sebastia-Luna, P.; Lauciello, S.; Manna, L.; Bolink, H.J. Mechanochemical synthesis of inorganic halide perovskites: Evolution of phase-purity, morphology, and photoluminescence. J. Mater. Chem. C 2019, 7, 11406–11410. [Google Scholar] [CrossRef]
- Kim, M.-J.; Jeon, I.-Y.; Seo, J.-M.; Dai, L.; Baek, J.-B. Graphene Phosphonic Acid as an Efficient Flame Retardant. ACS Nano 2014, 8, 2820–2825. [Google Scholar] [CrossRef]
- Jeon, I.-Y.; Shin, S.-H.; Choi, H.-J.; Yu, S.-Y.; Jung, S.-M.; Baek, J.-B. Heavily aluminated graphene nanoplatelets as an efficient flame-retardant. Carbon 2017, 116, 77–83. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, H.; Duan, R.; Zhang, K.; Meng, W.; Li, Y.; Qu, H. Graphene doped Sn flame retardant prepared by ball milling and synergistic with hexaphenoxy cyclotriphosphazene for epoxy resin. J. Mater. Res. Technol. 2022, 17, 774–788. [Google Scholar] [CrossRef]
- Qiu, S.; Hou, Y.; Xing, W.; Ma, C.; Zhou, X.; Liu, L.; Kan, Y.; Yuen, R.K.K.; Hu, Y. Self-assembled supermolecular aggregate supported on boron nitride nanoplatelets for flame retardant and friction application. Chem. Eng. J. 2018, 349, 223–234. [Google Scholar] [CrossRef]
- Chen, S.; Xu, R.; Liu, J.; Zou, X.; Qiu, L.; Kang, F.; Liu, B.; Cheng, H.-M. Simultaneous Production and Functionalization of Boron Nitride Nanosheets by Sugar-Assisted Mechanochemical Exfoliation. Adv. Mater. 2019, 31, 1804810. [Google Scholar] [CrossRef]
- Han, G.; Zhao, X.; Feng, Y.; Ma, J.; Zhou, K.; Shi, Y.; Liu, C.; Xie, X. Highly flame-retardant epoxy-based thermal conductive composites with functionalized boron nitride nanosheets exfoliated by one-step ball milling. Chem. Eng. J. 2021, 407, 127099. [Google Scholar] [CrossRef]
- Han, G.; Zhang, D.; Kong, C.; Zhou, B.; Shi, Y.; Feng, Y.; Liu, C.; Wang, D.-Y. Flexible, thermostable and flame-resistant epoxy-based thermally conductive layered films with aligned ionic liquid-wrapped boron nitride nanosheets via cyclic layer-by-layer blade-casting. Chem. Eng. J. 2022, 437, 135482. [Google Scholar] [CrossRef]
- Guo, J.; Yang, L.; Zhang, L.; Li, C. Simultaneous exfoliation and functionalization of black phosphorus by sucrose-assisted ball milling with NMP intercalating and preparation of flame retardant polyvinyl alcohol film. Polymer 2022, 255, 125036. [Google Scholar] [CrossRef]
- Duan, Z.; Wang, Y.; Bian, S.; Liu, D.; Zhang, Y.; Zhang, X.; He, R.; Wang, J.; Qu, G.; Chu, P.K.; et al. Size-dependent flame retardancy of black phosphorus nanosheets. Nanoscale 2022, 14, 2599–2604. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, J.; Wang, B.; Wang, X.; Zhou, X.; Cai, W.; Mu, X.; Hou, Y.; Hu, Y.; Song, L. Large-scale production of simultaneously exfoliated and Functionalized MXenes as promising flame retardant for polyurethane. Compos. B. Eng. 2019, 179, 107486. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Z.; Hao, M.; Wang, D. Research of hydrogen generation by the reaction of Al-based materials with water. J. Power Sources 2013, 222, 188–195. [Google Scholar] [CrossRef]
- Xie, L.; Ding, Y.; Ren, J.; Xie, T.; Qin, Y.; Wang, X.; Chen, F. Improved Hydrogen Generation Performance via Hydrolysis of MgH2 with Nb2O5 and CeO2 Doping. Mater. Trans. 2021, 62, 880–886. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, Z.X.; Tan, S.F.; Guo, J.; Xu, Z.M. Mechanochemical degradation of brominated flame retardants in waste printed circuit boards by Ball Milling. J. Hazard. Mater. 2020, 385, 121509. [Google Scholar] [CrossRef]
- Guo, X.; Geng, J.; Sun, B.; Xu, Q.; Li, Y.; Xie, S.; Xue, Y.; Yan, H. Great enhancement of efficiency of intumescent flame retardants by titanate coupling agent and polysiloxane. Polym. Adv. Technol. 2021, 32, 41–53. [Google Scholar] [CrossRef]
- Lei, Y.; Bai, Y.; Shi, Y.; Liang, M.; Zou, H.; Zhou, S. Composite nanoarchitectonics of poly(vinylidene fluoride)/graphene for thermal and electrical conductivity enhancement via constructing segregated network structure. J. Polym. Res. 2022, 29, 213. [Google Scholar] [CrossRef]
- Antonio Puertolas, J.; Jose Martinez-Morlanes, M.; Javier Pascual, F.; Morimoto, T. Influence of mechanical blending method and consolidation temperature on electrical properties of the prepared graphene nanoplatelet/UHMWPE composite. J. Polym. Res. 2023, 30, 21. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.C.W.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y.S. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef] [PubMed]
- Dudina, D.V.; Bokhonov, B.B. Materials Development Using High-Energy Ball Milling: A Review Dedicated to the Memory of M.A. Korchagin. J. Compos. Sci. 2022, 6, 188. [Google Scholar] [CrossRef]
- Bocz, K.; Krain, T.; Marosi, G. Effect of Particle Size of Additives on the Flammability and Mechanical Properties of Intumescent Flame Retarded Polypropylene Compounds. Int. J. Polym. Sci. 2015, 2015, 493710. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Li, X.; Tang, P.; Liu, C.; Zhang, W.; Ma, J. Attapulgite modified cotton fabric and its flame retardancy. Cellulose 2019, 26, 9311–9322. [Google Scholar] [CrossRef]
- Üreyen, M.E.; Kaynak, E. Effect of Zinc Borate on Flammability of PET Woven Fabrics. Adv. Polym. Technol. 2019, 2019, 7150736. [Google Scholar] [CrossRef] [Green Version]
- Jawaid, M.; Kian, L.K.; Alamery, S.; Saba, N.; Fouad, H.; Alothman, O.Y.; Sain, M. Development and characterization of fire retardant nanofiller from date palm biomass. Biomass Convers. Bior. 2022. [Google Scholar] [CrossRef]
- Azizi, H.; Ahmad, F.; Yusoff, P.S.M.M.; Zia-ul-Mustafa, M.I. Fire Performance, Microstructure and Thermal Degradation of an Epoxy Based Nano Intumescent Fire Retardant Coating for Structural Applications. In Proceedings of the 23rd Scientific Conference of Microscopy-Society-Malaysia (SCMSM), Univ Teknologi Petronas, Tronoh, Malaysia, 10–12 December 2014. [Google Scholar]
- Andrikopoulos, K.S.; Bounos, G.; Lainioti, G.C.; Ioannides, T.; Kallitsis, J.K.; Voyiatzis, G.A. Flame Retardant Nano-Structured Fillers from Huntite/Hydromagnesite Minerals. Nanomaterials 2022, 12, 2433. [Google Scholar] [CrossRef]
- Pate, R.; Klise, G.; Wu, B. Resource demand implications for US algae biofuels production scale-up. Appl. Energy 2011, 88, 3377–3388. [Google Scholar] [CrossRef]
- Siebert, H.M.; Wilker, J.J. Deriving Commercial Level Adhesive Performance from a Bio-Based Mussel Mimetic Polymer. ACS Sustain. Chem. Eng. 2019, 7, 13315–13323. [Google Scholar] [CrossRef]
- Gupta, I.; Gupta, O. Recent Advancements in the Recovery and Reuse of Organic Solvents Using Novel Nanomaterial-Based Membranes for Renewable Energy Applications. Membranes 2023, 13, 108. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, Z.; Yuan, J.; Wang, H.; Wang, Z.; Yang, F.; Zhan, J.; Wang, L. A new recycling strategy for preparing flame retardants from polyphenylene sulfide waste textiles. Compos. Commun. 2021, 27, 100852. [Google Scholar] [CrossRef]
- Dragoman, M.; Dragoman, D. Graphene-based quantum electronics. Prog. Quantum Electron. 2009, 33, 165–214. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.S.; Ma, C.; Chen, L.; Jiang, C.; Chen, C.; Xie, X.; Li, A.-P.; Wang, X. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 2021, 3, 791–802. [Google Scholar] [CrossRef]
- Julkapli, N.M.; Bagheri, S. Graphene supported heterogeneous catalysts: An overview. Int. J. Hydrogen Energy 2015, 40, 948–979. [Google Scholar] [CrossRef]
- Alaf, M.; Tocoglu, U.; Kartal, M.; Akbulut, H. Graphene supported heterogeneous catalysts for LiO2 batteries. Appl. Surf. Sci. 2016, 380, 185–192. [Google Scholar] [CrossRef]
- Ratnikov, P.V.; Silin, A.P. Planar Graphene-Narrow-Gap Semiconductor-Graphene Heterostructure. Bull. Lebedev Phys. Inst. 2008, 35, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, M.; Horri, A.; Sanaeepur, M.; Tavakoli, M.B. Tight-binding description of graphene-BCN-graphene layered semiconductors. J. Comput. Electron. 2020, 19, 62–69. [Google Scholar] [CrossRef]
- Zabihi, O.; Ahmadi, M.; Li, Q.; Ferdowsi, M.R.G.; Mahmoodi, R.; Kalali, E.N.; Wang, D.-Y.; Naebe, M. A sustainable approach to scalable production of a graphene based flame retardant using waste fish deoxyribonucleic acid. J. Clean. Prod. 2020, 247, 119150. [Google Scholar] [CrossRef]
- Yang, P.X.; Wu, H.G.; Yang, F.F.; Yang, J.; Wang, R.; Zhu, Z.G. A Novel Self-Assembled Graphene-Based Flame Retardant: Synthesis and Flame Retardant Performance in PLA. Polymers 2021, 13, 4216. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Men, Z.; Wang, Y.; Han, Z. Thermal Degradation and Combustion Behaviors of Polyethylene/Alumina Trihydrate/Graphene Nanoplatelets. Polymers 2019, 11, 772. [Google Scholar] [CrossRef] [Green Version]
- Tran, V.Q.; Doan, H.T.; Nguyen, N.T.; Do, C.V. Preparation of Graphene Nanoplatelets by Thermal Shock Combined with Ball Milling Methods for Fabricating Flame-Retardant Polymers. J. Chem. 2019, 2019, 5284160. [Google Scholar] [CrossRef]
- Duan, R.; Wu, H.; Li, J.; Zhou, Z.; Meng, W.; Liu, L.; Qu, H.; Xu, J. Phosphor nitrile functionalized UiO-66-NH2/graphene hybrid flame retardants for fire safety of epoxy. Colloids Surf. A 2022, 635, 128093. [Google Scholar] [CrossRef]
- Li, J.; Lyu, Y.; Li, C.; Zhang, F.; Li, K.; Li, X.; Li, J.; Kim, K.-H. Development of strong, tough and flame-retardant phenolic resins by using Acacia mangium tannin-functionalized graphene nanoplatelets. Int. J. Biol. Macromol. 2023, 227, 1191–1202. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Jiang, Z.; Zhu, K.; Zhang, Y.; Zhu, M.; Wang, C.; Wang, H.; Ren, A. Highly flame-retardant and low toxic polybutylene succinate composites with functionalized BN@APP exfoliated by ball milling. J. Appl. Polym. Sci. 2022, 139, 52217. [Google Scholar] [CrossRef]
- Gibertini, E.; Carosio, F.; Aykanat, K.; Accogli, A.; Panzeri, G.; Magagnin, L. Silica-encapsulated red phosphorus for flame retardant treatment on textile. Surf. Interfaces 2021, 25, 101252. [Google Scholar] [CrossRef]
- Chen, X.; Lan, W.; Dou, W. Polystyrene nanospheres coated red phosphorus flame retardant for polyamide 66. J. Appl. Polym. Sci. 2022, 139, e52772. [Google Scholar] [CrossRef]
- Yin, S.; Ren, X.; Lian, P.; Zhu, Y.; Mei, Y. Synergistic Effects of Black Phosphorus/Boron Nitride Nanosheets on Enhancing the Flame-Retardant Properties of Waterborne Polyurethane and Its Flame-Retardant Mechanism. Polymers 2020, 12, 1487. [Google Scholar] [CrossRef]
- Qiu, S.; Yang, W.; Wang, X.; Hu, Y. Phthalocyanine zirconium diazo passivation of black phosphorus for efficient smoke suppression, flame retardant and mechanical enhancement. Chem. Eng. J. 2023, 453, 139759. [Google Scholar] [CrossRef]
- Qu, Z.; Wu, K.; Xu, C.-A.; Li, Y.; Jiao, E.; Chen, B.; Meng, H.; Cui, X.; Wang, K.; Shi, J. Facile Construction of a Flexible Film with Ultrahigh Thermal Conductivity and Excellent Flame Retardancy for a Smart Fire Alarm. Chem. Mater. 2021, 33, 3228–3240. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, K.; Xu, C.-A.; Li, Y.; Jiao, E.; Chen, B.; Meng, H.; Cui, X.; Shi, J.; Wu, K. Simultaneous enhancement in thermal conductivity and flame retardancy of flexible film by introducing covalent bond connection. Chem. Eng. J. 2021, 421, 129729. [Google Scholar] [CrossRef]
- Zou, B.; Qiu, S.; Qian, Z.; Wang, J.; Zhou, Y.; Xu, Z.; Yang, W.; Xing, W. Phosphorus/Nitrogen-Codoped Molybdenum Disulfide/Cobalt Borate Nanostructures for Flame-Retardant and Tribological Applications. ACS Appl. Nano Mater. 2021, 4, 10495–10504. [Google Scholar] [CrossRef]
- Yang, Z.; Kang, X.; Lu, S.; Wang, Z.; Fang, X.; Li, J.; Liu, B.; Ding, T.; Xu, Y. Synergistic effects of molybdenum disulfide on a novel intumescent flame retardant polyformaldehyde system. J. Appl. Polym. Sci. 2023, 140, e53385. [Google Scholar] [CrossRef]
- Qiu, S.; Hu, Y.; Shi, Y.; Hou, Y.; Kan, Y.; Chu, F.; Sheng, H.; Yuen, R.K.K.; Xing, W. In situ growth of polyphosphazene particles on molybdenum disulfide nanosheets for flame retardant and friction application. Compos. Part A Appl. 2018, 114, 407–417. [Google Scholar] [CrossRef]
- Wang, X.; Ji, H.; Wang, F.; Cui, X.; Liu, Y.; Du, X.; Lu, X. NiFe2O4-based magnetic covalent organic framework nanocomposites for the efficient adsorption of brominated flame retardants from water. Microchim. Acta 2021, 188, 161. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Mao, Y.; Wang, D.; Fu, S. B-N-P-linked covalent organic frameworks for efficient flame retarding and toxic smoke suppression of polyacrylonitrile composite fiber. Chem. Eng. J. 2022, 430, 133120. [Google Scholar] [CrossRef]
- Mu, X.; Zhan, J.; Feng, X.; Yuan, B.; Qiu, S.; Song, L.; Hu, Y. Novel Melamine/o-Phthalaldehyde Covalent Organic Frameworks Nanosheets: Enhancement Flame Retardant and Mechanical Performances of Thermoplastic Polyurethanes. ACS Appl. Mater. Interfaces 2017, 9, 23017–23026. [Google Scholar] [CrossRef]
- Mu, X.; Pan, Y.; Ma, C.; Zhan, J.; Song, L. Novel Co3O4/covalent organic frameworks nanohybrids for conferring enhanced flame retardancy, smoke and CO suppression and thermal stability to polypropylene. Mater. Chem. Phys. 2018, 215, 20–30. [Google Scholar] [CrossRef]
- Ren, J.; Wang, Y.; Piao, J.; Cui, J.; Guan, H.; Jiao, C.; Chen, X. Facile construction of phosphorus-free and green organic-inorganic hybrid flame-retardant system: For improving fire safety of EP. Prog. Org. Coat. 2023, 179, 107489. [Google Scholar] [CrossRef]
- Ren, J.; Wang, Y.; Piao, J.; Ou, M.; Lian, R.; Cui, J.; Guan, H.; Liu, L.; Jiao, C.; Chen, X. Facile construction of organic–inorganic hybrid flame-retardant system based on fully biomass: Improving the fire safety and mechanical property of epoxy resin. Chem. Eng. J. 2023, 460, 141775. [Google Scholar] [CrossRef]
- Ren, J.; Piao, J.; Wang, Y.; Wang, Y.; Feng, T.; Liu, L.; Jiao, C.; Chen, X. Facile synthesis of bio-based phosphorus/nitrogen compound for high efficiency flame retardant finishing of cotton fabric. Cellulose 2023, 30, 1245–1264. [Google Scholar] [CrossRef]
- Huang, S.-C.; Deng, C.; Chen, H.; Li, Y.-M.; Zhao, Z.-Y.; Wang, S.-X.; Wang, Y.-Z. Novel Ultrathin Layered Double Hydroxide Nanosheets with In Situ Formed Oxidized Phosphorus as Anions for Simultaneous Fire Resistance and Mechanical Enhancement of Thermoplastic Polyurethane. ACS Appl. Polym. Mater. 2019, 1, 1979–1990. [Google Scholar] [CrossRef]
- Bi, X.; Meng, W.; Meng, Y.; Di, H.; Li, J.; Xie, J.; Xu, J.; Fang, L. Novel [BMIM]PF6 modified flake-ANP flame retardant: Synthesis and application in epoxy resin. Polym. Test. 2021, 101, 107284. [Google Scholar] [CrossRef]
- Ou, H.; Xu, J.; Liu, B.; Xue, H.; Weng, Y.; Jiang, J.; Xu, G. Study on synergistic expansion and flame retardancy of modified kaolin to low density polyethylene. Polymer 2021, 221, 123586. [Google Scholar] [CrossRef]
- Wang, Y.; Piao, J.; Ren, J.; Feng, T.; Wang, Y.; Liu, W.; Dong, H.; Chen, W.; Jiao, C.; Chen, X. Simultaneously improving the hydrophobic property and flame retardancy of aluminum hypophosphite using rare earth based coupling agent for epoxy composites. Polym. Adv. Technol. 2023, 34, 1154–1169. [Google Scholar] [CrossRef]
- Członka, S.; Kairytė, A.; Miedzińska, K.; Strąkowska, A. Polyurethane Hybrid Composites Reinforced with Lavender Residue Functionalized with Kaolinite and Hydroxyapatite. Materials 2021, 14, 415. [Google Scholar] [CrossRef]
- Miedzińska, K.; Członka, S.; Strąkowska, A.; Strzelec, K. Vermiculite Filler Modified with Casein, Chitosan, and Potato Protein as a Flame Retardant for Polyurethane Foams. Int. J. Polym. Sci. 2021, 22, 10825. [Google Scholar] [CrossRef]
- Członka, S.; Kairytė, A.; Miedzińska, K.; Strąkowska, A. Polyurethane Composites Reinforced with Walnut Shell Filler Treated with Perlite, Montmorillonite and Halloysite. Int. J. Mol. Sci. 2021, 22, 7304. [Google Scholar] [CrossRef]
- Niu, L.; Xu, J.; Yang, W.; Zhao, J.; Su, J.; Guo, Y.; Liu, X. Research on nano-Sb2O3 flame retardant in char formation of PBT. Ferroelectrics 2018, 523, 14–21. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Xu, C.; Luque, R. Development and characterization of novel poly(ether ether ketone)/ZnO bionanocomposites. J. Mater. Chem. B 2014, 2, 3065. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Guo, Y.; Chu, Y.; Chen, T.; Zhang, Q.; Li, C.; Jiang, J.; Chen, T.; Yu, Y.; Liu, L. Solvent-free and electron transfer-induced phosphorus and nitrogen-containing heterostructures for multifunctional epoxy resin. Compos. B Eng. 2022, 240, 109999. [Google Scholar] [CrossRef]
- Fiss, B.G.; Hatherly, L.; Stein, R.S.; Friščić, T.; Moores, A. Mechanochemical Phosphorylation of Polymers and Synthesis of Flame-Retardant Cellulose Nanocrystals. ACS Sustain. Chem. Eng. 2019, 7, 7951. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, M.; Kuga, S.; Ewulonu, C.M.; Huang, Y. Cellulose Nanofibril-Based Flame Retardant and Its Application to Paper. ACS Sustain. Chem. Eng. 2020, 8, 10222–10229. [Google Scholar] [CrossRef]
- Xu, J.; Liu, X.; Yang, W.; Niu, L.; Zhao, J.; Ma, B.; Kang, C. Influence of montmorillonite on the properties of halogen–antimony flame retardant polypropylene composites. Polym. Compos. 2019, 40, 1930–1938. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Wang, Q. Preparation of High Loading Magnesium Hydroxide Flame Retardant Polypropylene by Solid State Shear Milling. J. Compos. Mater. 2007, 41, 1995–2003. [Google Scholar] [CrossRef]
- Prabhakar, M.N.; Rehman Shah, A.U.; Song, J.-I. Improved flame-retardant and tensile properties of thermoplastic starch/flax fabric green composites. Carbohydr. Polym. 2017, 168, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Pi, H.; Guo, S.; Ning, Y. Mechanochemical improvement of the flame-retardant and mechanical properties of zinc borate and zinc borate-aluminum trihydrate-filled poly(vinyl chloride). J. Appl. Polym. Sci. 2003, 89, 753–762. [Google Scholar] [CrossRef]
- Gao, C.; Shi, Y.; Chen, Y.; Zhu, S.; Feng, Y.; Lv, Y.; Yang, F.; Liu, M.; Shui, W. Constructing segregated polystyrene composites for excellent fire resistance and electromagnetic wave shielding. J. Colloid Interface Sci. 2022, 606, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xie, Y.; Chen, R.; Zheng, R.; Wu, H.; Sheng, X.; Xie, D.; Mei, Y. A low-density polyethylene composite with phosphorus-nitrogen based flame retardant and multi-walled carbon nanotubes for enhanced electrical conductivity and acceptable flame retardancy. Front. Chem. Sci. Eng. 2021, 15, 1332–1345. [Google Scholar] [CrossRef]
- Mio, H.; Kano, J.; Saito, F. Scale-up method of planetary ball mill. Chem. Eng. Sci. 2004, 59, 5906–5916. [Google Scholar] [CrossRef]
- Santhanam, P.R.; Dreizin, E.L. Predicting conditions for scaled-up manufacturing of materials prepared by ball milling. Powder Technol. 2012, 221, 403–411. [Google Scholar] [CrossRef]
- Holdsworth, A.F.; Eccles, H.; Halman, A.M.; Mao, R.; Bond, G. Low-Temperature Continuous Flow Synthesis of Metal Ammonium Phosphates. Sci. Rep. 2018, 8, 13547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Lin, X.; Deng, K.; Yang, H.; Yan, C. Facile Ball Milling Preparation of Flame-Retardant Polymer Materials: An Overview. Molecules 2023, 28, 5090. https://doi.org/10.3390/molecules28135090
Feng X, Lin X, Deng K, Yang H, Yan C. Facile Ball Milling Preparation of Flame-Retardant Polymer Materials: An Overview. Molecules. 2023; 28(13):5090. https://doi.org/10.3390/molecules28135090
Chicago/Turabian StyleFeng, Xiaming, Xiang Lin, Kaiwen Deng, Hongyu Yang, and Cheng Yan. 2023. "Facile Ball Milling Preparation of Flame-Retardant Polymer Materials: An Overview" Molecules 28, no. 13: 5090. https://doi.org/10.3390/molecules28135090
APA StyleFeng, X., Lin, X., Deng, K., Yang, H., & Yan, C. (2023). Facile Ball Milling Preparation of Flame-Retardant Polymer Materials: An Overview. Molecules, 28(13), 5090. https://doi.org/10.3390/molecules28135090