Rhodiola rosea L. Extract, a Known Adaptogen, Evaluated in Experimental Arthritis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Animals and Experimental Model of Adjuvant Arthritis
5.2. Adjuvant Arthritis (AA) in Lewis Rats
5.3. The Design of the AA Experiment
- HC—(healthy control)—vehiculum
- AA—(animals with induced AA)—vehiculum
- AA-MTX—methotrexate 0.3 mg/kg twice a week
- RS—Rhodiola rosea L. dry extract 150 mg/kg daily
- RS-MTX—Rhodiola rosea L. dry extract 150 mg/kg daily and MTX 0.3 mg/kg twice a week.
5.4. Evaluation of Experimental AA
5.5. Phytochemical Composition of the Rhodiola rosea L. Dry Extract (RSE)
- Water soluble → soluble
- Particle size → 0.25 mm (60 mesh)
- Bulk density → 0.56 g/mL (from the range of 0.20–0.60 g/mL of the required value)
- Ash → 3.5 ± 0.5% (from max. 15% of the required value)
5.6. Immunological Evaluation of AA
5.7. Collagen-Induced Arthritis (CIA) Induction
5.8. Design of Collagen-Induced Arthritis
5.9. Qualitative Functional Scoring System in CIA
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Finckh, A.; Gilbert, B.; Hodkinson, B. Global epidemiology of rheumatoid arthritis. Nat. Rev. Rheumatol. 2022, 18, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Smolen, J.S. Diagnosis and Management of Rheumatoid Arthritis. JAMA 2018, 320, 1360–1372. [Google Scholar] [CrossRef]
- Wallach, D. The cybernetics of TNF: Old views and newer ones. Semin. Cell Dev. Biol. 2016, 50, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Redlich, K.; Smolen, J.S. Inflammatory bone loss: Pathogenesis and therapeutic intervention. Nat. Rev. Drug Discov. 2012, 11, 234–250. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Smolen, J.S. Joint damage in rheumatoid arthritis progresses in remission according to the Disease Activity Score in 28 joints and is driven by residual swollen joints. Arthritis Rheum. 2011, 63, 3702–3711. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef] [Green Version]
- van Ede, A.E.; Laan, R.F.; Blom, H.J.; De Abreu, R.A.; van de Putte, L.B. Methotrexate in rheumatoid arthritis: An update with focus on mechanisms involved in toxicity. Semin. Arthritis Rheum. 1998, 27, 277–292. [Google Scholar] [CrossRef]
- Weinblatt, M.E.; Kaplan, H.; Germain, B.F.; Merriman, R.C.; Solomon, S.D.; Wall, B.; Anderson, L.; Block, S.; Irby, R.; Wolfe, F. Low-dose methotrexate compared with auranofin in adult rheumatoid arthritis. Arthritis Rheum. 1990, 33, 330–338. [Google Scholar] [CrossRef]
- Grim, J.; Chládek, J.; Martínková, J. Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin. Pharmacokinet. 2003, 42, 139–151. [Google Scholar] [CrossRef]
- Visser, K.; van der Heijde, D. Optimal dosage and route of administration of methotrexate in rheumatoid arthritis: A systematic review of the literature. Ann. Rheum. Dis. 2009, 68, 1094–1099. [Google Scholar] [CrossRef]
- Albrecht, K.; Müller-Ladner, U. Side effects and management of side effects of methotrexate in rheumatoid arthritis. Clin. Exp. Rheumatol. 2010, 28, 95–101. [Google Scholar]
- Gatica, H.; Aliste, M.; Guerrero, J.; Goecke, I.A. Effects of methotrexate on the expression of the translational isoforms of glucocorticoid receptors α and β: Correlation with methotrexate efficacy in rheumatoid arthritis patients. Rheumatology 2011, 50, 1665–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesher, G.; Moore, T.L. The in vitro effects of methotrexate on peripheral blood mononuclear cells: Modulation by methyl donors and spermidine. Arthritis Rheum. 1990, 33, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Genestier, L.; Paillot, R.; Fournel, S.; Ferraro, C.; Miossec, P.; Revillard, J.P. Immunosuppressive properties of methotrexate: Apoptosis and clonal deletion of activated peripheral T cells. J. Clin. Investig. 1998, 102, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Fairbanks, L.D.; Rückemann, K.; Qiu, Y.; Hawrylowicz, C.M.; Richards, D.F.; Swaminathan, R.; Kirschbaum, B.; Simmonds, H.A. Methotrexate inhibits the first committed step of purine biosynthesis in mitogen-stimulated human T-lymphocytes: A metabolic basis for efficacy in rheumatoid arthritis? Biochem. J. 1999, 342, 143–152. [Google Scholar] [CrossRef]
- Chan, E.S.; Cronstein, B.N. Mechanisms of action of methotrexate. Bull. Hosp. Jt. Dis. 2013, 71, 5–8. [Google Scholar]
- Cronstein, B.N.; Friedman, B.; Cronstein, B. Methotrexate mechanism in treatment of rheumatoid arthritis. Jt. Bone Spine 2019, 86, 301–307. [Google Scholar]
- Schweitzer, B.I.; Dicker, A.P.; Bertino, J.R. Dihydrofolate reductase as a therapeutic target. FASEB J. 1990, 4, 2441–2452. [Google Scholar] [CrossRef]
- Kawami, M.; Honda, N.; Hara, T.; Yumoto, R.; Takano, M. Investigation on inhibitory effect of folic acid on methotrexate-induced epithelial-mesenchymal transition focusing on dihydrofolate reductase. Drug Metab. Pharmacokinet. 2019, 34, 396–399. [Google Scholar] [CrossRef]
- Cronstein, B.N.; Aune, T.M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 2020, 16, 145–154. [Google Scholar] [CrossRef]
- Van der Heijde, D.; Klareskog, L.; Rodriguez Valverde, V.; Codreanu, C.; Bolosiu, H.; Melo-Gomes, J. TEMPO Study Investigators. Comparison of etanercept and methotrexate, alone and combined, in the treatment of rheumatoid arthritis: Two-year clinical and radiographic results from the TEMPO study, a double-blind, randomized trial. Arthritis Rheum. 2006, 54, 1063–1074. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.C.; Kim, C.; Lee, J.M.; Cho, W.S.; Lee, S.G.; Jeong, M. Apigenin-induced apoptosis is mediated by reactive oxygen species and activation of ERK1/2 in rheumatoid fibroblast-like synoviocytes. Chem. Biol. Interact. 2009, 182, 29–36. [Google Scholar] [CrossRef]
- Khojah, H.M.; Ahmed, S.; Abdel-Rahman, M.S.; Elhakeim, E.H. Resveratrol as an effective adjuvant therapy in the management of rheumatoid arthritis: A clinical study. Clin. Rheumatol. 2018, 37, 2035–2042. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.Y.; Pan, H.D.; Wu, J.Q.; Zhou, H.; Li, Z.G.; Qiu, P. Comparison of combination therapy with methotrexate and sinomenine or leflunomide for active rheumatoid arthritis: A randomized controlled clinical trial. Phytomedicine 2019, 57, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ren, H.; Li, K.; Xie, S.; Zhang, R.; Zhang, L. Therapeutic effect of various ginsenosides on rheumatoid arthritis. BMC Complement. Med. Ther. 2021, 21, 149. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Liu, J.; Wang, X.; Wang, J. Triptolide promotes the apoptosis and attenuates the inflammation of fibroblast-like synoviocytes in rheumatoid arthritis by down-regulating lncRNA ENST00000619282. Phytother. Res. 2021, 35, 4334–4346. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, M.; Yuan, S.; Fu, S.; Li, Y.; Li, Y.; Wang, Q.; Cao, Y.; Liu, L.; Zhang, Q. Rhodiola rosea: A Therapeutic Candidate on Cardio-Vascular Diseases. Oxid. Med. Cell Longev. 2022, 27, 1348795. [Google Scholar]
- Ivanova Stojcheva, E.; Quintela, J.C. The Effectiveness of Rhodiola rosea L. Preparations in Alleviating Various Aspects of Life-Stress Symptoms and Stress-Induced Conditions-Encouraging Clinical Evidence. Molecules 2022, 17, 3902. [Google Scholar] [CrossRef]
- Tao, H.; Wu, X.; Cao, J.; Peng, Y.; Wang, A.; Pei, J.; Xiao, J.; Wang, S.; Wang, Y. Rhodiola species: A comprehensive review of traditional use, phytochemistry, pharmacology, toxicity, and clinical study. Med. Res. Rev. 2019, 39, 1779–1850. [Google Scholar] [CrossRef]
- Panossian, A.; Wikman, G. Evidence-based efficacy of adaptogens in fatigue, and molecular mechanisms related to their stress-protective activity. Curr. Clin. Pharmacol. 2009, 4, 198–219. [Google Scholar] [CrossRef]
- Fan, F.; Yang, L.; Li, R.; Zou, X.; Li, N.; Meng, X.; Zhang, Y.; Wang, X. Salidroside as a potential neuroprotective agent for ischemic stroke: A review of sources, pharmacokinetics, mechanism and safety. Biomed. Pharmacother. 2020, 129, 110458. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Wang, C.; Xu, Y.; Zhang, Z.; Wu, X.; Ye, R.; Zhang, Q.; Han, D. Pharmacological effects of salidroside on central nervous system diseases. Biomed. Pharmacother. 2022, 156, 113746. [Google Scholar] [CrossRef] [PubMed]
- Acaroz, U.; Ince, S.; Arslan-Acaroz, D.; Gurler, Z.; Demirel, H.H.; Kucukkurt, I.; Eryavuz, A.; Kara, R.; Varol, N.; Zhu, K. Bisphenol-A induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in male Wistar albino rats: Protective role of boron. Toxicol. Res. 2019, 8, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Ngo, V.; Duennwald, M.L. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants 2022, 11, 2345. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Abdull Razis, A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef] [PubMed]
- Jaganjac, M.; Milkovic, L.; Zarkovic, N.; Zarkovic, K. Oxidative stress and regeneration. Free Radic. Biol. Med. 2022, 181, 154–165. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, C.; Feng, C.; Yan, C.; Yu, Y.; Chen, Z.; Guo, C.; Wang, X. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep. 2022, 27, 45–52. [Google Scholar] [CrossRef]
- Ramos-Riera, K.P.; Pérez-Severiano, F.; López-Meraz, M.L. Oxidative stress: A common imbalance in diabetes and epilepsy. Metab. Brain Dis. 2023, 38, 767–782. [Google Scholar] [CrossRef]
- Acevedo-León, D.; Monzó-Beltrán, L.; Pérez-Sánchez, L.; Naranjo-Morillo, E.; Gómez-Abril, S.Á.; Estañ-Capell, N.; Bañuls, C.; Sáez, G. Oxidative Stress and DNA Damage Markers in Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 11664. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, L.; Zhou, X.; Meng, X.; Zhou, X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front. Immunol. 2023, 13, 1098725. [Google Scholar] [CrossRef]
- Zamudio-Cuevas, Y.; Martínez-Flores, K.; Martínez-Nava, G.A.; Clavijo-Cornejo, D.; Fernández-Torres, J.; Sánchez-Sánchez, R. Rheumatoid Arthritis and Oxidative Stress. Cell Mol. Biol. 2022, 68, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Ramazani, N.; Mahd Gharebagh, F.; Soleimanzadeh, A.; Arslan, H.O.; Keles, E.; Gradinarska-Yanakieva, D.G.; Arslan-Acaröz, D.; Zhandi, M.; Baran, A.; Ayen, E.; et al. The influence of L-proline and fulvic acid on oxidative stress and semen quality of buffalo bull semen following cryopreservation. Vet. Med. Sci. 2023, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Battistelli, M.; De Sanctis, R.; De Bellis, R.; Cucchiarini, L.; Dachà, M.; Gobbi, P. Rhodiola rosea as antioxidant in red blood cells: Ultrastructural and hemolytic behaviour. Eur. J. Histochem. 2005, 49, 243–254. [Google Scholar]
- De Sanctis, R.; De Bellis, R.; Scesa, C.; Mancini, U.; Cucchiarini, L.; Dachà, M. In vitro protective effect of Rhodiola rosea extract against hypochlorous acid-induced oxidative damage in human erythrocytes. Biofactors 2004, 20, 147–159. [Google Scholar] [CrossRef]
- Calcabrini, C.; De Bellis, R.; Mancini, U.; Cucchiarini, L.; Potenza, L.; De Sanctis, R.; Patrone, V.; Scesa, C.; Dachà, M. Rhodiola rosea ability to enrich cellular antioxidant defences of cultured human keratinocytes. Arch. Dermatol. Res. 2010, 302, 191–200. [Google Scholar] [CrossRef]
- Pooja; Bawa, A.S.; Khanum, F. Anti-inflammatory activity of Rhodiola rosea—“A second-generation adaptogen”. Phytother. Res. 2009, 23, 1099–10102. [Google Scholar] [CrossRef]
- Haršányová, T.; Wolaschka, T.; Matušová, D.; Bauerová, K. Vplyv technologických vlastností suchého extraktu na vlastnosti tabliet. Chem. Listy 2020, 114, 847–852. [Google Scholar]
- Haršányová, T.; Bauerová, K.; Matušová, D. Matrix adhesive system containing plant extract. Monatsh. Chem. 2018, 149, 883–885. [Google Scholar] [CrossRef]
- Kuncirova, V.; Ponist, S.; Mihalova, D.; Drafi, F.; Nosal, R.; Acquaviva, A.; Gardi, C.; Harmatha, J.; Hradkova, I.; Bauerova, K. N-feruloylserotonin in preventive combination therapy with methotrexate reduced inflammation in adjuvant arthritis. Fundam. Clin. Pharmacol. 2014, 28, 616–626. [Google Scholar] [CrossRef]
- Slovák, L.; Švík, K.; Mihalová, D.; Tóth, J.; Czigle, S.; Pašková, Ľ.; Bilka, F.; Bauerová, K. Ferulaldehyde Improves the Effect of Methotrexate in Experimental Arthritis. Molecules 2017, 22, 1911. [Google Scholar] [CrossRef] [Green Version]
- Rovenský, J.; Stančíkova, M.; Svík, K.; Bauerová, K.; Jurčovičová, J. The effects of β-glucan isolated from Pleurotus ostreatus on methotrexate treatment in rats with adjuvant arthritis. Rheumatol. Int. 2011, 31, 507–511. [Google Scholar] [CrossRef]
- Bauerova, K.; Paulovicova, E.; Mihalova, D.; Drafi, F.; Strosova, M.; Mascia, C.; Biasi, F.; Rovensky, J.; Kucharska, J.; Gvozdjakova, A.; et al. Combined methotrexate and coenzyme Q10 therapy in adjuvant-induced arthritis evaluated using parameters of inflammation and oxidative stress. Acta Biochim. Pol. 2010, 57, 347–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drafi, F.; Bauerova, K.; Kuncirova, V.; Ponist, S.; Mihalova, D.; Fedorova, T.; Harmatha, J.; Nosal, R. Pharmacological influence on processes of adjuvant arthritis: Effect of the combination of an antioxidant active substance with methotrexate. Interdiscip. Toxicol. 2012, 5, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.; Aletaha, D.; Barton, A. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 2018, 4, 18001. [Google Scholar] [CrossRef]
- Zheng, L.X.; Li, K.X.; Hong, F.F.; Yang, S.L. Pain and bone damage in rheumatoid arthritis: Role of leukotriene B4. Clin. Exp. Rheumatol. 2019, 37, 872–878. [Google Scholar] [PubMed]
- Senthelal, S.; Li, J.; Ardeshirzadeh, S.; Thomas, M.A. Arthritis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Chauhan, K.; Jandu, J.S.; Brent, L.H.; Al-Dhahir, M.A. Rheumatoid Arthritis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Listing, J.; Kekow, J.; Manger, B.; Burmester, G.R.; Pattloch, D.; Zink, A.; Strangfeld, A. Mortality in rheumatoid arthritis: The impact of disease activity, treatment with glucocorticoids, TNFα inhibitors and rituximab. Ann. Rheum. 2015, 74, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Black, R.J.; Lester, S.; Tieu, J.; Sinnathurai, P.; Barrett, C.; Buchbinder, R.; Lassere, M.; March, L.; Proudman, S.M.; Hill, C.L. Mortality Estimates and Excess Mortality in Rheumatoid Arthritis. Rheumatology 2023, 15, 106. [Google Scholar] [CrossRef]
- Lard, L.R.; Visser, H.; Speyer, I.; van der Horst-Bruinsma, I.E.; Zwinderman, A.H.; Breedveld, F.C.; Hazes, J.M. Early versus delayed treatment in patients with recent- onset rheumatoid arthritis: Comparison of two cohorts who received different treatment strategies. Am. J. Med. 2001, 111, 446–451. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, B.; Agosti, J.; Bitton, A.; Corrigan, C.; Fraenkel, L.; Solomon, D.H. Implementation of treat- to-target for rheumatoid arthritis in the US: Analysis of baseline data from a randomized controlled trial. Arthritis Care Res. 2018, 70, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Kaban, N.; Harman, H. Paradigm guiding to tapering or discontinuation of biologic and targeted synthetic disease-modifying antirheumatic drugs in the treatment of patients with rheumatoid arthritis: Results from a local prospective study. Int. J. Rheum. Dis. 2023, 26, 689–698. [Google Scholar] [CrossRef]
- Novella-Navarro, M.; Ruiz-Esquide, V.; Torres-Ortiz, G.; Chacur, C.A.; Tornero, C.; Fernández-Fernández, E.; Monjo, I.; Sanmartí, R.; Plasencia-Rodríguez, C.; Balsa, A. A paradigm of difficult-to-treat rheumatoid arthritis: Subtypes and early identification. Clin. Exp. Rheumatol. 2023, 41, 1114–1119. [Google Scholar] [PubMed]
- Grigor, C.; Capell, H.; Stirling, A.; McMahon, A.D.; Lock, P.; Vallance, R.; Kincaid, W. Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): A single- blind randomised controlled trial. Lancet 2004, 364, 263–269. [Google Scholar] [CrossRef]
- Sergeant, J.C.; Hyrich, K.L.; Anderson, J.; Kopec-Harding, K.; Hope, H.F.; Symmons, D.P.; Barton, A.; Verstappen, S.M. Prediction of primary non-response to methotrexate therapy using demographic, clinical and psychosocial variables: Results from the UK Rheumatoid Arthritis Medication Study (RAMS). Arthritis Res. Ther. 2018, 20, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roodenrijs, N.M.T.; de Hair, M.J.H.; van der Goes, M.C.; Jacobs, J.W.G.; Welsing, P.M.J.; van der Heijde, D.; Nagy, G. Characteristics of difficult-to-treat rheumatoid arthritis: Results of an international survey. Ann. Rheum. Dis. 2018, 77, 1705–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Meeberg, M.M.; Hebing, R.C.F.; Nurmohamed, M.T.; Fidder, H.H.; Heymans, M.W.; Bouma, G.; de Bruin-Weller, M.S.; Tekstra, J.; van den Bemt, B.; de Jonge, R.; et al. A meta-analysis of methotrexate polyglutamates in relation to efficacy and toxicity of methotrexate in inflammatory arthritis, colitis and dermatitis. Br. J. Clin. Pharmacol. 2023, 89, 61–79. [Google Scholar] [CrossRef] [PubMed]
- García-González, C.M.; Baker, J. Treatment of early rheumatoid arthritis: Methotrexate and beyond. Curr. Opin. Pharmacol. 2022, 64, 102227. [Google Scholar] [CrossRef]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/herbal/rhodiolae-roseae-rhizoma-et-radix (accessed on 16 June 2014).
- Kaibara, N.; Hotokebuchi, T.; Takagishi, K.; Katsuki, I.; Morinaga, M.; Arita, C.; Jingushi, S. Pathogenetic difference between collagen arthritis and adjuvant arthritis. J. Exp. Med. 1984, 159, 1388–1396. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, N.; Bhatt, L.K.; Prabhavalkar, K.S. Experimental animal models for rheumatoid arthritis. Immunopharmacol. Immunotoxicol. 2018, 40, 193–200. [Google Scholar] [CrossRef]
- Miyoshi, M.; Liu, S. Collagen-Induced Arthritis Models. Methods Mol. Biol. 2018, 1868, 3–7. [Google Scholar]
- Kim, E.Y.; Moudgil, K.D. The determinants of susceptibility/resistance to adjuvant arthritis in rats. Arthritis Res. Ther. 2009, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.O.; Feldmann, M.; Maini, R.N. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc. Natl. Acad. Sci. USA 1992, 89, 9784–9788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wooley, P.H.; Dutcher, J.; Widmer, M.B.; Gillis, S. Influence of a recombinant human soluble tumor necrosis factor receptor FC fusion protein on type II collagen-induced arthritis in mice. J. Immunol. 1993, 151, 6602–6607. [Google Scholar] [CrossRef] [PubMed]
- Bevaart, L.; Vervoordeldonk, M.J.; Tak, P.P. Evaluation of therapeutic targets in animal models of arthritis: How does it relate to rheumatoid arthritis? Arthritis Rheum. 2010, 62, 2192–2205. [Google Scholar] [CrossRef]
- Joosten, L.A.B.; Helsen, M.M.A.; Van de Loo, F.A.J. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice: A comparative study using anti-TNFα, anti-IL-1a/b, and IL-1Ra. Arthritis Rheum. 1996, 39, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Mori, L.; Iselin, S.; de Libero, G.; Lesslauer, W. Attenuation of collagen-induced arthritis in 55-kDa TNF receptor type I (TNFRI)-IgGI-treated and TNFRI-deficient mice. J. Immunol. 1996, 157, 3178–3182. [Google Scholar] [CrossRef] [PubMed]
- VandeLoo, A.A.J.; Vanden Berg, W.B. Effects of murine recombinant IL-1 on synovial joints in mice: Measurements of patellar carti-lage metabolism and joint inflammation. Ann. Rheum. Dis. 1990, 49, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Henderson, B.; Pettipher, E.R. Arthritogenic actions of recombinant IL-1 and TNF in the rabbit: Evidence for synergistic interactions between cytokines in vivo. Clin. Exp. Immunol. 1989, 75, 306–310. [Google Scholar]
- Zhang, Y.; Ren, G.; Guo, M.; Ye, X.; Zhao, J.; Xu, L.; Qi, J.; Kan, F.; Liu, M.; Li, D. Synergistic effects of interleukin-1β and interleukin-17A antibodies on collagen-induced arthritis mouse model. Int. Immunopharmacol. 2013, 15, 199–205. [Google Scholar] [CrossRef]
- Probert, L.; Plows, D.; Kontogeorgos, G.; Kollias, G. The type I IL-1 receptor acts in series with TNFα to induce arthritis in TNFα transgenic mice. Eur. J. Immunol. 1995, 25, 1794–1797. [Google Scholar] [CrossRef]
- Koenders, M.I.; Devesa, I.; Marijnissen, R.J.; Abdollahi-Roodsaz, S.; Boots, A.M.; Walgreen, B.; di Padova, F.E.; Nicklin, M.J.; Joosten, L.A.; van den Berg, W.B. Interleukin-1 drives pathogenic Th17 cells during spontaneous arthritis in interleukin-1 receptor antagonist-deficient mice. Arthritis Rheum. 2008, 58, 3461–3470. [Google Scholar] [CrossRef]
- Ghivizzani, S.C.; Kang, R.; Georgescu, H.I.; Lechman, E.R.; Jaffurs, D.; Engle, J.M.; Robbins, P.D. Constitutive intra-articular expression of human IL-1β following gene transfer to rabbit synovium produces all major pathologies of human rheumatoid arthritis. J. Immunol. 1997, 159, 3604–3612. [Google Scholar] [CrossRef]
- Niki, Y.; Yadmada, H.; Kikuchi, T.; Toyama, Y.; Matsumoto, H.; Fujikawa, K.; Tada, N. Membrane associated IL-1 contributes to chronic synovitis in human IL-1a transgenic mice. Arthritis Rheum. 1998, 41, 212. [Google Scholar]
- Vanden Berg, W.B. Anti-cytokine therapy in chronic destructive arthritis. Arthritis Res. 2001, 3, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendele, A.; McComb, J.T.; Gould, Y.; Mcabee, T.; Sennello, G.; Chlipala, E.; Guy, M. Animal models of arthritis: Relevance to human disease. Toxicol. Pathol. 1999, 27, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Hong, H.; Zhang, X.; Lai, W.; Wang, Y.; Chu, K.; Chen, L. Salidroside Inhibits Inflammation Through PI3K/Akt/HIF Signaling After Focal Cerebral Ischemia in Rats. Inflammation 2017, 40, 1297–1309. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Hu, R.; Wang, J.; An, Y.; Lu, L.; Long, C.; Yan, L. Salidroside Suppresses IL-1β-Induced Apoptosis in Chondrocytes via Phosphatidylinositol 3-Kinases (PI3K)/Akt Signaling Inhibition. Med. Sci. Monit. 2019, 25, 5833–5840. [Google Scholar] [CrossRef]
- Sun, M.; Lu, Z.; Cai, P.; Zheng, L.; Zhao, J. Salidroside enhances proliferation and maintains phenotype of articular chondrocytes for autologous chondrocyte implantation (ACI) via TGF-β/Smad3 Signal. Biomed. Pharmacother. 2020, 122, 109388. [Google Scholar] [CrossRef]
- Roy, T.; Ghosh, S. Animal models of rheumatoid arthritis: Correlation and usefulness with human rheumatoid arthritis. Indo Am. J. Pharm. 2013, 3, 6131–6142. [Google Scholar]
- Filippa, M.G.; Tektonidou, M.G.; Mantzou, A.; Kaltsas, G.A.; Chrousos, G.P.; Sfikakis, P.P.; Yavropoulou, M.P. Adrenocortical dysfunction in rheumatoid arthritis: A narrative review and future directions. Eur. J. Clin. Investig. 2022, 52, 13635. [Google Scholar] [CrossRef]
- Panossian, A.; Hambardzumyan, M.; Hovhanissyan, A.; Wikman, G. The adaptogens rhodiola and schizandra modify the response to immobilization stress in rabbits by suppressing the increase of phosphorylated stress-activated protein kinase, nitric oxide and cortisol. Drug Target Insights 2007, 2, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Vora, H.P. The Effect of Methotrexate on the Cortisol Levels Relative to Adrenocorticotropic Hormone Levels in Rheumatoid Arthritis Patients in Relation to Clinical Efficacy. Bachelor’s Thesis, Union College, Schenectady, NY, USA, 2009. [Google Scholar]
- Xu, F.; Xu, J.; Xiong, X.; Deng, Y. Salidroside inhibits MAPK, NF-kappaB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation. Redox Rep. 2019, 24, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Tuo, Q.; Li, D.; Wang, X.; Li, X.; Zhang, Y.; Zhao, G.; Lin, F. Antioxidant effects of salidroside in the cardiovascular system. Evid. Based Complement. Altern. Med. 2020, 2020, 9568647. [Google Scholar]
- Hu, R.; Wang, M.Q.; Ni, S.H.; Wang, M.; Liu, L.Y.; You, H.Y.; Wu, X.H.; Wang, Y.J.; Lu, L.; Wei, L.B. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur. J. Pharmacol. 2020, 876, 172797. [Google Scholar] [CrossRef] [PubMed]
- Mirmazloum, I.; Ladányi, M.; Beinrohr, L.; Kiss-Bába, E.; Kiss, A.; György, Z. Identification of a novel UDP-glycosyltransferase gene from Rhodiola rosea and its expression during biotransformation of upstream precursors in callus culture. Int. J. Biol. Macromol. 2019, 136, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Zakharenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvast, K.S. Simultaneous Determination of 78 Compounds of Rhodiola rosea Extract by Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry. Biochem. Res. Int. 2021, 2021, 9957490. [Google Scholar] [CrossRef]
- He, D.; Liu, Z.; Wang, M.; Shu, Y.; Zhao, S.; Song, Z.; Li, H.; Liu, L.; Liang, W.; Li, W.; et al. Synergistic enhancement and hepatoprotective effect of combination of total phenolic extracts of Citrus aurantium L. and methotrexate for treatment of rheumatoid arthritis. Phytother. Res. 2019, 33, 1122–1133. [Google Scholar] [CrossRef]
- Nagaraja, H.; Hodgson, K.; Miranda-Hernandez, S.; Hughes, S.; Bangra Kulur, A.; Ketheesan, N. Flavonoid quercetin-methotrexate combination inhibits inflammatory mediators and matrix metalloproteinase expression, providing protection to joints in collagen-induced arthritis. Inflammopharmacology 2018, 26, 1219–1232. [Google Scholar]
- Bauerova, K.; Acquaviva, A.; Ponist, S.; Gardi, C.; Vecchio, D.; Drafi, F.; Arezzini, B.; Bezakova, L.; Kuncirova, V.; Mihalova, D.; et al. Markers of inflammation and oxidative stress studied in adjuvant-induced arthritis in the rat on systemic and local level affected by pinosylvin and methotrexate and their combination. Autoimmunity 2015, 48, 46–56. [Google Scholar] [CrossRef]
- Guo, B.; Zuo, Z.; Di, X.; Huang, Y.; Gong, G.; Xu, B.; Wang, L.; Zhang, X.; Liang, Z.; Hou, Y.; et al. Salidroside attenuates HALI via IL-17A-mediated ferroptosis of alveolar epithelial cells by regulating Act1-TRAF6-p38 MAPK pathway. Cell Commun. Signal. 2022, 20, 183. [Google Scholar] [CrossRef]
- Kim, E.K.; Kwon, J.E.; Lee, S.Y.; Lee, E.J.; Kim, D.S.; Moon, S.J.; Lee, J.; Kwok, S.K.; Park, S.H.; Cho, M.L. IL-17-mediated mitochondrial dysfunction impairs apoptosis in rheumatoid arthritis synovial fibroblasts through activation of autophagy. Cell Death Dis. 2017, 8, 2565. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.R. The Balance of Th17 versus Treg Cells in Autoimmunity. Int. J. Mol. Sci. 2018, 19, 730. [Google Scholar] [CrossRef] [Green Version]
- Edwards, D.; Heufelder, A.; Zimmermann, A. Therapeutic effects and safety of Rhodiola rosea extract WS® 1375 in subjects with life-stress symptoms--results of an open-label study. Phytother. Res. 2012, 26, 1220–1225. [Google Scholar] [CrossRef] [PubMed]
- Olsson, E.M.; von Schéele, B.; Panossian, A.G. A randomised, double-blind, placebo-controlled, parallel-group study of the standardised extract shr-5 of the roots of Rhodiola rosea in the treatment of subjects with stress-related fatigue. Planta Med. 2009, 75, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber, B.L.; Sorbi, D.; French, D.L.; Marchese, M.J.; Nuovo, G.J.; Kew, R.R.; Arbeit, L.A. Markedly elevated serum MMP-9 (gelatinase B) levels in rheumatoid arthritis: A potentially useful laboratory marker. J. Clin. Immunol. 1996, 78, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Si, X.P.; Huang, J.; Han, J.; Liang, X.; Xu, X.B.; Wang, Y.T.; Li, G.Y.; Wang, H.Y.; Wang, J.H. Preventive Effects of Rhodiola rosea L. on Bleomycin-Induced Pulmonary Fibrosis in Rats. Int. J. Mol. Sci. 2016, 17, 879. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Wang, Z.; Zheng, Q.; Zhang, H. Salidroside inhibits migration and invasion of human fibrosarcoma HT1080 cells. Phytomedicine 2012, 19, 355–363. [Google Scholar] [CrossRef]
- Chrastina, M.; Pružinská, K.; Pašková, Ľ.; Vyletelová, V.; Švík, K.; Bauerová, K.; Poništ, S. Antirheumatic and antioxidant effect of combination therapy of methotrexate and carnosic acid in experimental arthritis. Eur. Pharm. J. 2022, 69, 44. [Google Scholar]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef] [Green Version]
- Lau, D.C.; Dhillon, B.; Yan, H.; Szmitko, P.E.; Verma, S. Adipokines: Molecular links between obesity and atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, 2031–2041. [Google Scholar] [CrossRef] [Green Version]
- Bray, C.; Bell, L.N.; Liang, H.; Haykal, R.; Kaiksow, F.; Mazza, J.J.; Yale, S.H. Erythrocyte Sedimentation Rate and C-reactive Protein Measurements and Their Relevance in Clinical Medicine. WMJ 2016, 115, 317–321. [Google Scholar]
- Pope, J.; Choy, E. C-reactive protein and implications in rheumatoid arthritis and associated comorbidities. Semin. Arthritis Rheum. 2021, 51, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Juanson Arabit, J.G.; Courville, R.; Kiani, D.; Chaston, J.M.; Nguyen, C.D.; Jena, N.; Liu, Z.Y.; Tata, P.; Van Etten, R.A. The impact of Rhodiola rosea on biomarkers of diabetes, inflammation, and microbiota in a leptin receptor-knockout mouse model. Sci. Rep. 2022, 12, 10581. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Hu, X.L. Effects of salidroside on the secretion of inflammatory mediators induced by lipopolysaccharide in murine macrophage cell line J774.1. Sheng Li Xue Bao 2017, 69, 41–46. [Google Scholar]
- Sun, P.; Song, S.Z.; Jiang, S.; Li, X.; Yao, Y.L.; Wu, Y.L.; Lian, L.H.; Nan, J.X. Salidroside Regulates Inflammatory Response in Raw 264.7 Macrophages via TLR4/TAK1 and Ameliorates Inflammation in Alcohol Binge Drinking-Induced Liver Injury. Molecules 2016, 21, 1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellum, B.H.; Tosse, A.; Hoybakk, K.; Thomsen, M.; Rohloff, J.; Georg Nilsen, O. Potent in vitro inhibition of CYP3A4 and P-glycoprotein by Rhodiola rosea. Planta Med. 2010, 76, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Shen, D.D.; Azarnoff, D.L. Clinical pharmacokinetics of methotrexate. Clin. Pharmacokinet. 1978, 3, 1–13. [Google Scholar] [CrossRef]
- Crom, W.R. Effect of chirality on pharmacokinetics and pharmacodynamics. Am. J. Hosp. Pharm. 1992, 49, 9–14. [Google Scholar] [CrossRef]
- Bannwarth, B.; Labat, L.; Moride, Y.; Schaeverbeke, T. Methotrexate in rheumatoid arthritis: An update. Drugs 1994, 47, 25–50. [Google Scholar] [CrossRef]
- Ogushi, N.; Sasaki, K.; Shimoda, M. CAN a P-gp modulator assist in the control of methotrexate concentrations in the rat brain? -inhibitory effects of rhodamine 123, a specific substrate for P-gp, on methotrexate excretion from the rat brain and its optimal route of administration. J. Vet. Med. Sci. 2017, 79, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Gifford, A.J.; Kavallaris, M.; Ma-dafiglio, J.; Matherly, L.H.; Stewart, B.W.; Haber, M.; Norris, M.D. P-glycoprotein-mediated methotrexate resistance in CCRF-CEM sub-lines deficient in methotrexate accumulation due to a point mutation in the reduced folate carrier gene. Int. J. Cancer 1998, 78, 176–181. [Google Scholar] [CrossRef]
- Liu, R.; Song, Y.; Li, C.; Zhang, Z.; Xue, Z.; Huang, Q.; Yu, L.; Zhu, D.; Cao, Z.; Lu, A.; et al. The naturally occurring flavonoid nobiletin reverses methotrexate resistance via inhibition of P-glycoprotein synthesis. J. Biol. Chem. 2022, 298, 101756. [Google Scholar] [CrossRef] [PubMed]
- Demirpolat, A.; Akman, F.; Kazachenko, A.S. An Experimental and Theoretical Study on Essential Oil of Aethionema sancakense: Characterization, Molecular Properties and RDG Analysis. Molecules 2022, 27, 6129. [Google Scholar] [CrossRef] [PubMed]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes (Official Journal L 276/33). Available online: https://eur-lex.europa.eu/eli/dir/2010/63/oj (accessed on 22 September 2010).
- European Medicines Agency. Regulatory Acceptance of 3R (Replacement, Reduction, Refinement) Testing Approaches—Scientific Guideline. Available online: https://www.ema.europa.eu/en/regulatory-acceptance-3r-replacement-reduction-refinement-testing-approaches-scientific-guideline (accessed on 24 February 2017).
- Van Eden, W.; Thole, J.E.; van der Zee, R.; Noordzij, A.; van Embden, J.D.; Hensen, E.J.; Cohen, I.R. Cloning of the Mycobacterial Epitope Recognized by T Lymphocytes in Adjuvant Arthritis. Nature 1988, 331, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Xie, Z.; Xi, Y.; Liu, L.; Li, Z.; Qin, D. How to Model Rheumatoid Arthritis in Animals: From Rodents to Non-Human Primates. Front. Immunol. 2022, 13, 887460. [Google Scholar] [CrossRef]
- Bauerova, K.; Ponist, S.; Mihalova, D.; Drafi, F.; Kuncirova, V. Utilization of adjuvant arthritis model for evaluation of new approaches in rheumatoid arthritis therapy focused on regulation of immune processes and oxidative stress. Interdiscip. Toxicol. 2011, 4, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponist, S.; Gardi, C.; Paskova, L.; Svik, K.; Slovak, L.; Bilka, F.; Tedesco, I.; Bauerova, K.; Russo, L.G. Modulation of methotrexate efficacy by green tea polyphenols in rat adjuvant arthritis. PharmaNutrition 2020, 14, 100228. [Google Scholar] [CrossRef]
- Figueira, M.E.; Câmara, M.B.; Direito, R.; Rocha, J.; Serra, A.T.; Duarte, C.M.; Fernandes, A.; Freitas, M.; Fernandes, E.; Marques, M.C.; et al. Chemical characterization of a red raspberry fruit extract and evaluation of its pharmacological effects in experimental models of acute inflammation and collagen-induced arthritis. Food Funct. 2014, 5, 3241–3251. [Google Scholar] [CrossRef]
Experimental Group | Arithmetic Mean 1 | SEM 2 |
---|---|---|
HC | 0.00 | ± 0.00 |
CIA | 3.71 + | ± 0.18 |
RS | 2.29 * | ± 0.18 |
Experimental Group | Concentration Arithmetic Mean 1 [µg/mL] | SEM 2 |
---|---|---|
HC | 762.1 | ±76.9 |
AA | 1775.1 + | ±141.0 |
MTX | 1913.0 | ±80.2 |
RS | 2544.8 | ±269.9 |
RS-MTX | 929.2 * | ±109.3 |
Score | Condition |
---|---|
0 | Normal |
1 | Mild, but definite redness and swelling of the ankle or wrist, or apparent redness and swelling limited to individual digits, regardless of the number of affected digits |
2 | Moderate redness and swelling of ankle or wrist |
3 | Severe redness and swelling of the entire paw including digits |
4 | Maximally inflamed limb with involvement of multiple joints (mobility severely impaired) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drafi, F.; Bauerova, K.; Chrastina, M.; Taghdisiesfejír, M.; Rocha, J.; Direito, R.; Figueira, M.E.; Sepodes, B.; Ponist, S. Rhodiola rosea L. Extract, a Known Adaptogen, Evaluated in Experimental Arthritis. Molecules 2023, 28, 5053. https://doi.org/10.3390/molecules28135053
Drafi F, Bauerova K, Chrastina M, Taghdisiesfejír M, Rocha J, Direito R, Figueira ME, Sepodes B, Ponist S. Rhodiola rosea L. Extract, a Known Adaptogen, Evaluated in Experimental Arthritis. Molecules. 2023; 28(13):5053. https://doi.org/10.3390/molecules28135053
Chicago/Turabian StyleDrafi, Frantisek, Katarina Bauerova, Martin Chrastina, Mohsen Taghdisiesfejír, João Rocha, Rosa Direito, Maria Eduardo Figueira, Bruno Sepodes, and Silvester Ponist. 2023. "Rhodiola rosea L. Extract, a Known Adaptogen, Evaluated in Experimental Arthritis" Molecules 28, no. 13: 5053. https://doi.org/10.3390/molecules28135053