Investigation of the Relationship between Electronic Structures and Bioactivities of Polypyridyl Ru(II) Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Density Functional Theory (DFT) Calculations
2.2. Characterization, and Spectral Properties
2.3. Bioactivities
2.4. Cell Cytotoxicity and Bioimaging
3. Materials and Methods
3.1. General Information
3.2. Synthesis and Characterization of [Ru(tpy)(R-phen)Cl](PF6)
- [Ru(tpy)(Cl-phen)Cl](PF6) (1) (76%) Rf = 0.57 [toluene:CH3CN (1:1)]:
- [Ru(tpy)(phen)Cl](PF6) (2) (55%) Rf = 0.48 [toluene:CH3CN (1:1)]:
- [Ru(tpy)(MeO-phen)Cl](PF6) (3) (83%) Rf = 0.55 [toluene:CH3CN (1:1)]:
3.3. Theoretical Calculations
3.4. DNA Binding Studies
3.5. L-Histidine Interaction Studies
3.6. Cell Cytotoxicity
3.7. Cell Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Rosenberg, B.; Vancamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumor agents. Nature 1969, 222, 385–386. [Google Scholar] [CrossRef] [PubMed]
- Rottenberg, S.; Disler, C.; Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 2021, 21, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Mong, S.; Huang, C.H.; Prestayko, A.W.; Crooke, S.T. Effects of Second-Generation Platinum Analogs on Isolated PM-2 DNA and Their Cytotoxicity in Vitro and in vivo. Cancer Res. 1980, 40, 3318–3324. [Google Scholar] [PubMed]
- Wang, Z.; Deng, Z.; Zhu, G. Emerging platinum(IV) prodrugs to combat cisplatin resistance: From isolated cancer cells to tumor microenvironment. Dalton Trans. 2019, 48, 2536. [Google Scholar] [CrossRef]
- Anthony, E.J.; Bolitho, E.M.; Bridgewater, H.E.; Carter, O.W.L.; Donnelly, J.M.; Imberti, C.; Lant, E.C.; Lermyte, F.; Needham, R.J.; Palau, M.; et al. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. 2020, 11, 12888. [Google Scholar] [CrossRef]
- Meier-Menches, S.M.; Gerner, C.; Berger, W.; Hartinger, C.G.; Keppler, B.K. Structure—Activity relationships for ruthenium and osmium anticancer agents—Towards clinical development. Chem. Soc. Rev. 2018, 47, 909–928. [Google Scholar] [CrossRef]
- Venkatesh, V.; Berrocal-Martin, R.; Wedge, C.J.; Romero-Canelón, I.; Sanchez-Cano, C.; Song, J.-I.; Coverdale, J.P.C.; Zhang, P.; Clarkson, G.J.; Habtemariam, A.; et al. Mitochondria-targeted spin-labelled luminescent iridium anticancer complexes. Chem. Sci. 2017, 8, 8271. [Google Scholar] [CrossRef] [Green Version]
- Das, U.; Kar, B.; Pete, S.; Paira, P. Ru(ii), Ir(iii), Re(i) and Rh(iii) based complexes as next generation anticancer metallopharmaceuticals. Dalton Trans. 2021, 50, 11259–11290. [Google Scholar] [CrossRef]
- Malik, M.A.; Raza, K.; Dar, O.A.; Amadudin; Abid, M.; Wani, M.Y.; Al-Bogami, A.S.; Hashmi, A.A. Probing the antibacterial and anticancer potential of tryptamine based mixed ligand Schiff base Ruthenium(III) complexes. Bioorg. Chem. 2019, 87, 773–782. [Google Scholar] [CrossRef]
- Kavukcu, S.B.; Şahin, O.; Vatansever, H.S.; Kurt, F.O.; Korkmaz, M.; Kendirci, R.; Pelit, L.; Türkmen, H. Synthesis and cytotoxic activities of organometallic Ru(II) diamine complexes. Bioorg. Chem. 2020, 99, 103793. [Google Scholar] [CrossRef]
- Thota, S.; Rodrigues, D.A.; Crans, D.C.; Barreiro, E.J. Ru(II) Compounds: Next-Generation Anticancer Metallotherapeutics? J. Med. Chem. 2018, 61, 5805–5821. [Google Scholar] [CrossRef] [PubMed]
- Alessio, E.; Messori, L. NAMI-A and KP1019/1339, Two Iconic Ruthenium Anticancer Drug Candidates Face-toFace: A Case Story in Medicinal Inorganic Chemistry. Molecules 2019, 24, 1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trondl, R.; Heffeter, P.; Kowol, C.R.; Jakupec, M.A.; Berger, W.; Keppler, B.K. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci. 2014, 5, 2925–2932. [Google Scholar] [CrossRef] [Green Version]
- Ponte, F.; Scopelliti, D.M.; Sanna, N.; Sicilia, E.; Mazzone, G. How Computations Can Assist the Rational Design of Drugs for Photodynamic Therapy: Photosensitizing Activity Assessment of a Ru(II)-BODIPY Assembly. Molecules 2022, 27, 5635. [Google Scholar] [CrossRef]
- Chen, Y.; Bai, L.; Zhang, P.; Zhao, H.; Zhou, Q. The Development of Ru(II)-Based Photoactivated Chemotherapy Agents. Molecules 2021, 26, 5679. [Google Scholar] [CrossRef]
- Monro, S.; Colón, K.L.; Yin, H.; Roque, J., III; Konda, P.; Gujar, S.; Thummel, R.P.; Lilge, L.; Cameron, C.G.; McFarland, S.A. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem. Rev. 2019, 119, 797–828. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Rees, T.W.; Ke, L.; Ji, L.; Chao, H. Harnessing ruthenium(II) as photodynamic agents: Encouraging advances in cancer therapy. Coord. Chem. Rev. 2018, 363, 17–28. [Google Scholar] [CrossRef]
- Samala, S.; Lim, W.; You, D.K.; Lee, K.M.; Jo, H.; Ok, K.M.; Park, J.; Lee, C.-H. Synthesis, photophysical properties and photo-induced cytotoxicity of novel tris(diazatriphenylene)ruthenium (II) complex. Bioorg. Chem. 2022, 128, 106044. [Google Scholar] [CrossRef]
- Conti, L.; Macedi, E.; Giorgi, C.; Valtancoli, B.; Fusi, V. Combination of light and Ru(II) polypyridyl complexes: Recent advances in the development of new anticancer drugs. Coord. Chem. Rev. 2022, 469, 214656. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Zheng, Y.; Tan, C.P.; Sun, J.H.; Zhang, W.; Ji, L.N.; Mao, Z.W. Graphene Oxide Decorated with Ru(II)–Polyethylene Glycol Complex for Lysosome-Targeted Imaging and Photodynamic/Photothermal Therapy. ACS Appl. Mater. Interfaces 2017, 9, 6761–6771. [Google Scholar] [CrossRef]
- Elias, M.G.; Mehanna, S.; Elias, E.; Khnayzer, R.S.; Daher, C.F. A photoactivatable chemotherapeutic Ru(II) complex bearing bathocuproine ligand efficiently induces cell death in human malignant melanoma cells through a multi-mechanistic pathway. Chem. Biol. Interact. 2021, 348, 109644. [Google Scholar] [CrossRef] [PubMed]
- Poynton, F.E.; Bright, S.A.; Blasco, S.; Williams, D.C.; Kelly, J.M.; Gunnlaugsson, T. The development of ruthenium(ii) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem. Soc. Rev. 2017, 46, 7706–7756. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, R.; Zhang, W.; Liu, J.; Wang, Y.-L.; Du, Z.; Song, B.; Xu, Z.P.; Yuan, J. “Dual-Key-and-Lock” Ruthenium Complex Probe for Lysosomal Formaldehyde in Cancer Cells and Tumors. J. Am. Chem. Soc. 2019, 141, 8462–8472. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kou, J.; Hou, X.; Zhao, Z.; Chao, H. A ruthenium(II) anthraquinone complex as the theranostic agent combining hypoxia imaging and HIF-1a inhibition. Inorg. Chim. Acta 2017, 454, 176–183. [Google Scholar] [CrossRef]
- Lazić, D.; Arsenijević, A.; Puchta, R.; Bugarčić, D.; Rilak, A. DNA binding properties, histidine interaction and cytotoxicity studies of water soluble ruthenium(II) terpyridine complexes. Dalton Trans. 2016, 45, 4633–4646. [Google Scholar] [CrossRef] [Green Version]
- Notaro, A.; Jakubaszek, M.; Rotthowe, N.; Maschietto, F.; Vinck, R.; Felder, P.S.; Goud, B.; Tharaud, M.; Ciofini, I.; Bedioui, F.; et al. Increasing the Cytotoxicity of Ru(II) Polypyridyl Complexes by Tuning the Electronic Structure of Dioxo Ligands. J. Am. Chem. Soc. 2020, 142, 6066–6084. [Google Scholar] [CrossRef]
- Lu, Y.; Hou, Z.; Li, M.; Wang, N.; Wang, J.; Ni, F.; Zhao, Y.; Zhang, B.; Xi, N. Increasing the cytotoxicity of Ru(II) polypyridyl complexes by tuning the electron-donating ability of 1,10-phenanthroline ligands. Dalton Trans. 2022, 51, 16224. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, J.; Kong, D.; Yang, Y.; Guo, L.; Jia, X.; Zhong, G.; Liu, Z. Potent half-sandwich Ru(Ⅱ) N^N (aryl-BIAN) complexes: Lysosome-mediated apoptosis, in vitro and in vivo anticancer activities. Eur. J. Med. Chem. 2020, 207, 112763. [Google Scholar] [CrossRef]
- Adeniyi, A.A.; Ajibade, P.A. The Anticancer Activities of Some Nitrogen Donor Ligands Containing bis-Pyrazole, Bipyridine, and Phenanthroline Moiety Using Docking Methods. Bioorg. Chem. Appl. 2018, 2018, 5796287. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Yu, F.; Lv, C.; Choo, J.; Chen, L. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chem. Soc. Rev. 2017, 46, 2237. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Z.; Zhang, Y.; Zhang, C.; Wei, J.; Bin, Z.; Wang, X.; Zhang, D.; Duan, L. Suppressing Competitive Coordination Reaction for Ohmic Cathode Contact Using Amino-Substituted Organic Ligands and Air-Stable Metals. CCS Chem. 2021, 3, 367–376. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, W.; Xiao, W.; Zeng, W.; Chen, T.; Huang, W.; Wu, X.; Kang, Y.; Dong, J.; Luo, W.; et al. Novel biodegradable two-dimensional vanadene augmented photoelectro-fenton process for cancer catalytic therapy. Biomaterials 2022, 289, 121791. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, A.A.; Mendoza-Ferri, M.-G.; Hanif, M.; Keppler, B.K.; Dyson, P.J.; Hartinger, C.G. Understanding the interactions of diruthenium anticancer agents with amino acids. JBIC J. Biol. Inorg. Chem. 2018, 23, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Gómez, J.; García-Herbosa, G.; Cuevas, J.V.; Arnáiz, A.; Carbayo, A.; Muñoz, A.; Falvello, L.; Fanwick, P.E. Diastereospecific and Diastereoselective Syntheses of Ruthenium(II) Complexes Using N,N′ Bidentate Ligands Aryl-pyridin-2-ylmethyl-amine ArNH-CH2-2-C5H4N and Their Oxidation to Imine Ligands. Inorg. Chem. 2006, 45, 2483–2493. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Lakowicz, J.; Piszczek, G. DNA dynamics: A fluorescence resonance energy transfer study using a long-lifetime metal-ligand complex. Arch. Pharmacal Res. 2002, 25, 143–150. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, P.; Yu, B.; Chen, Y.; Wang, J.; Ji, L.; Chao, H. Targeting nucleus DNA with a cyclometalated dipyridophen-azineruthenium(II) complex. J. Med. Chem. 2014, 57, 8971–8983. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Ueda, T.; Wano, Y.; Nakamura, T. DNA Damage and Cell Killing by Camptothecin and Its Derivative in Human Leukemia HL-60 Cells. Jpn. J. Cancer Res. 1993, 84, 566–573. [Google Scholar] [CrossRef]
- Jaxel, C.; Kohn, K.W.; Wani, M.C.; Wall, M.E.; Pommier, Y. Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase I: Evidence for a specific receptor site and a relation to antitumor activity. Cancer Res. 1989, 49, 1465–1469. [Google Scholar]
- Lu, Y.; Motiur Rahman, A.F.M.; Jahng, Y. Studies on the reactions of 3,2′-polymethylene-2-phenylbenzo[b]-1,10-phenanth-rolines with Ru(tpy)Cl3 and properties of the products. Arch. Pharmacal Res. 2017, 40, 563–570. [Google Scholar] [CrossRef]
- Lu, Y.; Karim, M. Synthesis and Properties of 2,2′-Oxybis(1,10-phenanthroline) and 2,4-Dioxa-1,3(2,9)-diphenanthrolinacyclobutaphane. Bull. Korean Chem. Soc. 2018, 39, 599–600. [Google Scholar] [CrossRef]
- Kaveevivitchai, N.; Zong, R.; Tseng, H.-W.; Chitta, R.; Thummel, R.P. Further Observations on Water Oxidation Catalyzed by Mononuclear Ru(II) Complexes. Inorg. Chem. 2012, 51, 2930–2939. [Google Scholar] [CrossRef] [PubMed]
- Laha, P.; Bhunia, S.; Patra, S. Dual emissive cyclometallated iridium complexes: Synthesis, structure and photophysical properties. Dye. Pigment. 2023, 210, 110939. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Z.; Lu, Y.; Zhang, B.; Motiur Rahman, A.F.M.; Zhao, Y.; Xi, N.; Wang, N.; Wang, J. Investigation of the Relationship between Electronic Structures and Bioactivities of Polypyridyl Ru(II) Complexes. Molecules 2023, 28, 5035. https://doi.org/10.3390/molecules28135035
Hou Z, Lu Y, Zhang B, Motiur Rahman AFM, Zhao Y, Xi N, Wang N, Wang J. Investigation of the Relationship between Electronic Structures and Bioactivities of Polypyridyl Ru(II) Complexes. Molecules. 2023; 28(13):5035. https://doi.org/10.3390/molecules28135035
Chicago/Turabian StyleHou, Zhiying, Yang Lu, Bin Zhang, A. F. M. Motiur Rahman, Yufen Zhao, Ning Xi, Ning Wang, and Jinhui Wang. 2023. "Investigation of the Relationship between Electronic Structures and Bioactivities of Polypyridyl Ru(II) Complexes" Molecules 28, no. 13: 5035. https://doi.org/10.3390/molecules28135035
APA StyleHou, Z., Lu, Y., Zhang, B., Motiur Rahman, A. F. M., Zhao, Y., Xi, N., Wang, N., & Wang, J. (2023). Investigation of the Relationship between Electronic Structures and Bioactivities of Polypyridyl Ru(II) Complexes. Molecules, 28(13), 5035. https://doi.org/10.3390/molecules28135035