Dandelion (Taraxacum Genus): A Review of Chemical Constituents and Pharmacological Effects
Abstract
:1. Introduction
2. Materials and Methods
3. Phytology and Ethnopharmacology
3.1. Phytology
3.2. Ethnopharmacology
4. Chemical Compounds
4.1. Sesquiterpenoids and Phenolic Compounds
4.2. Essential Oils
4.3. Saccharides
4.4. Flavonoids
4.5. Sphingolipids
4.6. Triterpenoids and Sterols
4.7. Coumarins
4.8. Others
5. Pharmacological Effects
5.1. Anti-Bacterial and Anti-Oxidant Effects
5.2. Anti-Cancer Effects
5.3. Anti-Inflammatory Effects
6. Other Effects
7. Toxicity
8. Conclusions and Future Prospects
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
References
- Li, Y.; Chen, Y.; Sun-Waterhouse, D. The potential of dandelion in the fight against gastrointestinal diseases: A review. J. Ethnopharmacol. 2022, 293, 115272. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.; Gu, W.; Qiu, R.; Chao, J.; Pei, L.; Ma, L.; Guo, Y.; Tian, R. Metabolomics analysis of dandelions from different geographical regions in China. Phytochem. Anal. 2021, 32, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tian, Y.; Zhao, C.; Li, S.; Wang, T.; Qiao, B.; Fu, Y. Application of fingerprint combined with quantitative analysis and multivariate chemometric methods in quality evaluation of dandelion (Taraxacum mongolicum). R. Soc. Open Sci. 2021, 8, 210614. [Google Scholar] [CrossRef]
- Olas, B. New Perspectives on the Effect of Dandelion, Its Food Products and Other Preparations on the Cardiovascular System and Its Diseases. Nutrients 2022, 14, 1350. [Google Scholar] [CrossRef]
- Di Napoli, A.; Zucchetti, P. A comprehensive review of the benefits of Taraxacum officinale on human health. Bull. Natl. Res. Cent. 2021, 45, 1–7. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, P.; Chen, X.D. Mechanistic insights into the influence of flavonoids from dandelion on physicochemical properties and in vitro digestibility of cooked potato starch. Food Hydrocoll. 2022, 130, 107714. [Google Scholar] [CrossRef]
- Lis, B.; Olas, B. Pro-health activity of dandelion (Taraxacum officinale L.) and its food products—History and present. J. Funct. Foods 2019, 59, 40–48. [Google Scholar] [CrossRef]
- Altundag, E.; Ozturk, M. Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Procedia—Soc. Behav. Sci. 2011, 19, 756–777. [Google Scholar] [CrossRef] [Green Version]
- Dokos, C.; Hadjicosta, C.; Dokou, K.; Stephanou, N. Ethnopharmacological survey of endemic medicinal plants in Paphos district of Cyprus. Ethnobot. Leafl. 2009, 13, 1060–1068. [Google Scholar]
- Chaudhary, M.I.; He, Q.; Cheng, Y.Y.; Xiao, P.G. Ethnobotany of medicinal plants from tian mu Shan biosphere reserve, Zhejiang-province, China. Asian J. Plant Sci. 2006, 5, 646–653. [Google Scholar]
- Trak, T.H.; Giri, R.A. Inventory of the plants used by the tribals (Gujjar and bakarwal) of district kishtwar, Jammu and Kashmir (India). Indian J. Sci. Res. 2017, 13, 104–115. [Google Scholar]
- Gheno-Heredia, Y.A.; Nava-Bernal, G.; Martínez-Campos, Á.R.; Sánchez-Vera, E. Las plantas medicinales de la organización de parteras y médicos indígenas tradicionales de Ixhuatlancillo, Veracruz, México y su significancia cultural. Polibotánica 2011, 31, 199–251. [Google Scholar]
- Bhatia, H.; Sharma, Y.P.; Manhas, R.; Kumar, K. Traditional phytoremedies for the treatment of menstrual disorders in district Udhampur, J&K, India. J. Ethnopharmacol. 2015, 160, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Mahmood, A.; Mujtaba, G.; Mumtaz, M.S.; Kayani, W.K.; Khan, M.A. Indigenous medicinal knowledge of common plants from district Kotli Azad Jammu and Kashmir Pakistan. J. Med. Plant. Res. 2012, 6, 4961–4967. [Google Scholar] [CrossRef]
- Mustafa, B.; Hajdari, A.; Pajazita, Q.; Syla, B.; Quave, C.; Pieroni, A. An ethnobotanical survey of the Gollak region, Kosovo. Genet. Resour. Crop. Evol. 2011, 59, 739–754. [Google Scholar] [CrossRef]
- Pieroni, A.; Nedelcheva, A.; Dogan, Y. Local knowledge of medicinal plants and wild food plants among Tatars and Romanians in Dobruja (South-East Romania). Genet. Resour. Crop. Evol. 2014, 62, 605–620. [Google Scholar] [CrossRef]
- Rahman, I.U.; Ijaz, F.; Iqbal, Z.; Afzal, A.; Ali, N.; Afzal, M.; Khan, M.A.; Muhammad, S.; Qadir, G.; Asif, M. A novel survey of the ethno medicinal knowledge of dental problems in Manoor Valley (Northern Himalaya), Pakistan. J. Ethnopharmacol. 2016, 194, 877–894. [Google Scholar] [CrossRef]
- Kozuharova, E.; Lebanova, H.; Getov, I.; Benbassat, N.; Napier, J. Descriptive study of contemporary status of the traditional knowledge on medicinal plants in Bulgaria. Afr. J. Pharm. Pharmacol. 2013, 7, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, H.; Sharma, Y.P.; Manhas, R.; Kumar, K. Ethnomedicinal plants used by the villagers of district Udhampur, J&K, India. J. Ethnopharmacol. 2014, 151, 1005–1018. [Google Scholar] [CrossRef]
- Ummara, U.; Bokhari, T.Z.; Altaf, A.; Younis, U.; Dasti, A.A. Pharmacological study of Shogran valley flora, Pakistan. Int. J. Sci. Eng. Res. 2013, 4, 1–9. [Google Scholar]
- Trillo, C.; Arias Toledo, B.; Galetto, L.; Colantonio, S. Persistence of the use of medicinal plants in rural communities of the Western Arid Chaco [Córdoba, Argentina]. Open Complement. Med. J. 2010, 2, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Guarrera, P.M. Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium). Fitoterapia 2005, 76, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Pieroni, A.; Giusti, M.E.; Quave, C.L. Cross-cultural ethnobiology in the Western Balkans: Medical ethnobotany and ethnozoology among Albanians and Serbs in the Pešter Plateau, Sandžak, South-Western Serbia. Hum. Ecol. 2011, 39, 333–349. [Google Scholar] [CrossRef]
- Macía, M.J.; García, E.; Vidaurre, P.J. An ethnobotanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia. J. Ethnopharmacol. 2005, 97, 337–350. [Google Scholar] [CrossRef]
- Dangwal, L.R.; Sharma, A.; Rana, C.S. Ethnomedicinal plants of the Garhwal Himalaya used to cure various diseases: A case study. N. Y. Sci. J. 2010, 3, 28–31. [Google Scholar]
- Bhatt, D.; Kumar, R.; Joshi, G.; Tewari, L. Indigenous uses of medicinal plants by the Vanraji tribes of Kumaun Himalaya, India. J. Med. Plant Res. 2013, 7, 2747–2754. [Google Scholar]
- Bussmann, R.W.; Paniagua Zambrana, N.Y.; Sikharulidze, S.; Kikvidze, Z.; Kikodze, D.; Tchelidze, D.; Hart, R.E. Medicinal and food plants of Svaneti and Lechkhumi, Sakartvelo (republic of Georgia), Caucasus. Med. Aromat. Plants. 2016, 5, 1–18. [Google Scholar]
- Rana, P.K.; Kumar, P.; Singhal, V.K.; Rana, J.C. Uses of Local Plant Biodiversity among the Tribal Communities of Pangi Valley of District Chamba in Cold Desert Himalaya, India. Sci. World J. 2014, 2014, 1–15. [Google Scholar] [CrossRef]
- Fakir, H.; Korkmaz, M.; Güller, B. Medicinal plant diversity of western Mediterrenean region in Turkey. J. Appl. Biol. Sci. 2009, 3, 33–43. [Google Scholar]
- Kim, H.; Song, M.-J.; Potter, D. Medicinal efficacy of plants utilized as temple food in traditional Korean Buddhism. J. Ethnopharmacol. 2006, 104, 32–46. [Google Scholar] [CrossRef]
- Özdemir, E.; Alpınar, K. An ethnobotanical survey of medicinal plants in western part of central Taurus Mountains: Aladaglar (Nigde-Turkey). J. Ethnopharmacol. 2015, 166, 53–65. [Google Scholar] [CrossRef]
- Dias, M.I.; Barros, L.; Alves, R.C.; Oliveira, M.B.P.; Santos-Buelga, C.; Ferreira, I.C. Nutritional composition, antioxidant activity and phenolic compounds of wild Taraxacum sect. Ruderalia. Food Res. Int. 2014, 56, 266–271. [Google Scholar] [CrossRef]
- Hänsel, R.; Kartarahardja, M.; Huang, J.-T.; Bohlmann, F. Sesquiterpenlacton-β-d-glucopyranoside sowie ein neues eudesmanolid aus Taraxacum officinale. Phytochemistry 1980, 19, 857–861. [Google Scholar] [CrossRef]
- Zielińska, K.; Kisiel, W. Sesquiterpenoids from roots of Taraxacum laevigatum and Taraxacum disseminatum. Phytochemistry 2000, 54, 791–794. [Google Scholar] [CrossRef]
- Ahmad, V.U.; Yasmeen, S.; Ali, Z.; Khan, M.A.; Choudhary, M.I.; Akhtar, F.; Zahid, M. Taraxacin, a new guaianolide from Taraxacum wallichii. J. Nat. Prod. 2000, 63, 1010–1011. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Choo, S.-J.; Ryoo, I.-J.; Ahn, J.-S.; Yoo, I.-D. Eudesmanolides from Taraxacum mongolicum and their inhibitory effects on the production of nitric oxide. Arch. Pharmacal Res. 2011, 34, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Lee, C.; Kim, Y.H.; Ma, J.Y.; Shim, S.H. Chemical constituents of the aerial part of Taraxacum mongolicum and their chemotaxonomic significance. Nat. Prod. Res. 2017, 31, 2303–2307. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.Y.; Zhou, Q.; Peng, H.; Zhou, C.X.; Hu, M.H.; Tao, Q.F.; Hao, X.J.; Stöckigt, J.; Zhao, Y. Four new constituents from Taraxacum mongolicum. Chin. Chem. Lett. 2007, 18, 1367–1370. [Google Scholar] [CrossRef]
- Kisiel, W.; Barszcz, B. Further sesquiterpenoids and phenolics from Taraxacum officinale. Fitoterapia 2000, 71, 269–273. [Google Scholar] [CrossRef]
- Kisiel, W.; Michalska, K. Sesquiterpenoids and phenolics from Taraxacum hondoense. Fitoterapia 2005, 76, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Michalska, K.; Kisiel, W. Sesquiterpene Lactones from Taraxacum obovatum. Planta Medica 2003, 69, 181–183. [Google Scholar] [CrossRef]
- Michalska, K.; Kisiel, W. A Guaianolide Sulfate Conjugate and Other Constituents from Taraxacum alpinum. Pol. J. Chem. 2007, 81, 515. [Google Scholar] [CrossRef]
- Michalska, K.; Kisiel, W. Sesquiterpene lactones from Taraxacum erythrospermum. Biochem. Syst. Ecol. 2008, 36, 444–446. [Google Scholar] [CrossRef]
- Michalska, K.; Kisiel, W. Sesquiterpenoids from Taraxacum serotinum. Biochem. Syst. Ecol. 2009, 37, 519–521. [Google Scholar] [CrossRef]
- Michalska, K.; Marciniuk, J.; Kisiel, W. Sesquiterpenoids and phenolics from roots of Taraxacum udum. Fitoterapia 2010, 81, 434–436. [Google Scholar] [CrossRef]
- Zidorn, C.; Ellmerermuller, E.; Stuppner, H. Eudesmanolides and inositol derivatives from Taraxacum linearisquameum. Phytochemistry 1999, 51, 991–994. [Google Scholar] [CrossRef]
- Warashina, T.; Umehara, K.; Miyase, T. Constituents from the Roots of Taraxacum platycarpum and Their Effect on Proliferation of Human Skin Fibroblasts. Chem. Pharm. Bull. 2012, 60, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.; Choi, E.J.; Yoo, G.S.; Kim, K.M.; Ryu, S.Y. Desacetylmatricarin, an anti-allergic component from Taraxacum platycarpum. Planta Med. 1998, 64, 577–578. [Google Scholar] [CrossRef]
- Kashiwada, Y.; Takanaka, K.; Tsukada, H.; Miwa, Y.; Taga, T.; Tanaka, S.; Ikeshiro, Y. Sesquiterpene glucosides from anti-leukotriene B4 release fraction of Taraxacum officinale. J. Asian Nat. Prod. Res. 2001, 3, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Schütz, K.; Kammerer, D.R.; Carle, R.; Schieber, A. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 19, 179–186. [Google Scholar] [CrossRef]
- Chen, H.-J.; Inbaraj, B.S.; Chen, B.-H. Determination of Phenolic Acids and Flavonoids in Taraxacum formosanum Kitam by Liquid Chromatography-Tandem Mass Spectrometry Coupled with a Post-Column Derivatization Technique. Int. J. Mol. Sci. 2011, 13, 260–285. [Google Scholar] [CrossRef] [Green Version]
- Mo, E.J.; Ahn, J.H.; Jo, Y.H.; Kim, S.B.; Hwang, B.Y.; Lee, M.K. Inositol Derivatives and Phenolic Compounds from the Roots of Taraxacum coreanum. Molecule 2017, 22, 1349. [Google Scholar] [CrossRef] [Green Version]
- Bylka, W.; Matlawska, I.; Frański, R. Essential oil composition of Taraxacum officinale. Acta Physiol. Plant. 2009, 32, 231–234. [Google Scholar] [CrossRef]
- Hook, I.; Sheridan, H.; Wilson, G. Volatile metabolites from suspension cultures of Taraxacum officinale. Phytochemistry 1991, 30, 3977–3979. [Google Scholar] [CrossRef]
- Chen, M.; Wu, J.; Shi, S.; Chen, Y.; Wang, H.; Fan, H.; Wang, S. Structure analysis of a heteropolysaccharide from Taraxacum mongolicum Hand.-Mazz. and anticomplementary activity of its sulfated derivatives. Carbohydr. Polym. 2016, 152, 241–252. [Google Scholar] [CrossRef]
- Schütz, K.; Muks, E.; Carle, R.; Schieber, A. Separation and quantification of inulin in selected artichoke (Cynara Scolymus L.) cultivars and dandelion (Taraxacum officinale WEB. ex WIGG.) roots by high-performance anion exchange chromatography with pulsed amperometric detection. Biomed. Chromatogr. 2006, 20, 1295–1303. [Google Scholar] [CrossRef]
- Li, X.-H.; He, X.-R.; Zhou, Y.-Y.; Zhao, H.-Y.; Zheng, W.-X.; Jiang, S.-T.; Zhou, Q.; Li, P.-P.; Han, S.-Y. Taraxacum mongolicum extract induced endoplasmic reticulum stress associated-apoptosis in triple-negative breast cancer cells. J. Ethnopharmacol. 2017, 206, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Huang, K.; Zhang, Y.; Liu, S. Preparative isolation and purification of two flavonoid glycosides from Taraxacum mongolicum by high-speed counter-current chromatography. Sep. Purif. Technol. 2008, 60, 81–85. [Google Scholar] [CrossRef]
- Shi, S.; Zhao, Y.; Zhou, H.; Zhang, Y.; Jiang, X.; Huang, K. Identification of antioxidants from Taraxacum mongolicum by high-performance liquid chromatography–diode array detection–radical-scavenging detection–electrospray ionization mass spectrometry and nuclear magnetic resonance experiments. J. Chromatogr. A 2008, 1209, 145–152. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, Y.; Huang, K.; Liu, S.; Zhao, Y. Application of preparative high-speed counter-current chromatography for separation and purification of lignans from Taraxacum mongolicum. Food Chem. 2008, 108, 402–406. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, Y.; Zhao, Y.; Huang, K. Preparative isolation and purification of three flavonoid glycosides from Taraxacum mongolicum by high-speed counter-current chromatography. J. Sep. Sci. 2008, 31, 683–688. [Google Scholar] [CrossRef]
- Shi, S.; Honghao, Z.; Zhang, Y.; Zhao, Y.; Kelong, H.; Liu, S. A High-Speed Counter-Current Chromatography-- HPLC--DAD Method for Preparative Isolation and Purification of Two Polymethoxylated Flavones From Taraxacum mongolicum. J. Chromatogr. Sci. 2009, 47, 349–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.A.; Goldstone, F.; Greenham, J. Flavonoids, cinnamic acids and coumarins from the different tissues and medicinal preparations of Taraxacum officinale. Phytochemistry 1996, 42, 121–127. [Google Scholar] [CrossRef]
- Kikuchi, T.; Tanaka, A.; Uriuda, M.; Yamada, T.; Tanaka, R. Three Novel Triterpenoids from Taraxacum officinale Roots. Molecules 2016, 21, 1121. [Google Scholar] [CrossRef] [PubMed]
- Komissarenko, N.; Derkach, A. Coumarins of taraxacum-officinale. Khimiya Prir. Soedin. 1981, 4, 519. [Google Scholar]
- Peng, S.; Dai, W.; Yu, H.; Wang, Y.; Wang, X.; Wang, X.; Peng, S. Anti-bacterial activity of aqueous and ethanolic extracts of Portulaca oleracea L. and Taraxacum mongolicum against pathogenic bacteria of cow mastitis. Int. J. Appl. Res. Vet. Med. 2014, 12, 210–213. [Google Scholar]
- Wang, L.; Li, L.; Gao, J.; Huang, J.; Yang, Y.; Xu, Y.; Liu, S.; Yu, W. Characterization, antioxidant and immunomodulatory effects of selenized polysaccharides from dandelion roots. Carbohydr. Polym. 2021, 260, 117796. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, N.; Liu, M. A new inositol triester from Taraxacum mongolicum. Nat. Prod. Res. 2014, 28, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhu, L.; Wang, J.; He, H.; Chang, X.; Gao, J.; Shumin, W.; Yan, T. Anti-inflammatory effects of water extract of Taraxacum mongolicum hand.-Mazz on lipopolysaccharide-induced inflammation in acute lung injury by suppressing PI3K/Akt/mTOR signaling pathway. J. Ethnopharmacol. 2015, 168, 349–355. [Google Scholar] [CrossRef]
- Oh, S.M.; Kim, H.R.; Park, Y.J.; Lee, Y.H.; Chung, K.H. Ethanolic extract of dandelion (Taraxacum mongolicum) induces estrogenic activity in MCF-7 cells and immature rats. Chin. J. Nat. Med. 2015, 13, 808–814. [Google Scholar] [CrossRef]
- Jia, Y.-Y.; Guan, R.-F.; Wu, Y.-H.; Yu, X.-P.; Lin, W.-Y.; Zhang, Y.-Y.; Liu, T.; Zhao, J.; Shi, S.-Y.; Zhao, Y. Taraxacum mongolicum extract exhibits a protective effect on hepatocytes and an antiviral effect against hepatitis B virus in animal and human cells. Mol. Med. Rep. 2014, 9, 1381–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, N.; Dong, Z.; Tian, G.; Zhu, M.; Li, C.; Bu, W.; Feng, L. Protective effects of organic acid component from Taraxacum mongolicum Hand.-Mazz. against LPS-induced inflammation: Regulating the TLR4/IKK/NF-κB signal pathway. J. Ethnopharmacol. 2016, 194, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Li, C.; Tian, G.; Zhu, M.; Bu, W.; Chen, J.; Feng, L. Organic acid component from Taraxacum mongolicum Hand.-Mazz alleviates inflammatory injury in lipopolysaccharide-induced acute tracheobronchitis of ICR mice through TLR4/NF-κB signaling pathway. Int. Immunopharmacol. 2016, 34, 92–100. [Google Scholar] [CrossRef]
- Kao, T.; Loh, C.; Inbaraj, B.S.; Chen, B. Determination of carotenoids in Taraxacum formosanum by HPLC–DAD–APCI-MS and preparation by column chromatography. J. Pharm. Biomed. Anal. 2012, 66, 144–153. [Google Scholar] [CrossRef]
- Kenny, O.; Brunton, N.P.; Walsh, D.; Hewage, C.M.; McLoughlin, P.; Smyth, T.J. Characterisation of Antimicrobial Extracts from Dandelion Root (Taraxacum officinale) Using LC-SPE-NMR. Phytotherapy Res. 2015, 29, 526–532. [Google Scholar] [CrossRef]
- Kenny, O.; Smyth, T.; Hewage, C.; Brunton, N.; McLoughlin, P. 4-Hydroxyphenylacetic acid derivatives of inositol from dandelion (Taraxacum officinale) root characterised using LC–SPE–NMR and LC–MS techniques. Phytochemistry 2013, 98, 197–203. [Google Scholar] [CrossRef]
- Melendezmartinez, A.; Britton, G.; Vicario, I.M.; Heredia, F.J. HPLC analysis of geometrical isomers of lutein epoxide isolated from dandelion (Taraxacum officinale F. Weber ex Wiggers). Phytochemistry 2006, 67, 771–777. [Google Scholar] [CrossRef]
- Demin, G.A.O. Analysis of nutritional components of Taraxacum mongolicum and its antibacterial activity. Pharmacogn. J. 2010, 2, 502–505. [Google Scholar] [CrossRef]
- Qiao, H.; Sun, T.J. Antibacterial activity of ethanol extract and fractions obtained from Taraxacum mongolicum flower. Res. J. Pharmacogn. 2014, 1, 35–39. [Google Scholar]
- Zhu, M.; Wong, P.Y.; Li, R.C. Effects of Taraxacum mongolicum on the bioavailability and disposition of ciprofloxacin in rats. J. Pharm. Sci. 1999, 88, 632–634. [Google Scholar] [CrossRef]
- Iqbal, Z.; Afzal, M.; Afzal, A.; Rahman, I.U.; Ahmed, B.; Anjum, N.; Bibi, A. In vitro antibacterial study of Taraxacum officinale leaves extracts against different bacterial pathogenic strains. J. Pharmacogn. Phytochem. 2014, 3, 15–17. [Google Scholar]
- Mir, M.A.; Sawhney, S.S.; Jassal, M.M.S. In-vitro antidiabetic studies of various extracts of Taraxacum officinale. Pharma Innov. 2015, 4, 61. [Google Scholar]
- Tettey, C.; Ocloo, A.; Nagajyothi, P.; Lee, K. An in vitro analysis of antiproliferative and antimicrobial activities of solvent fractions of Taraxacum officinale (Dandelion) leaf. J. Appl. Pharm. Sci. 2014, 4, 41–45. [Google Scholar] [CrossRef]
- Astafieva, A.A.; Rogozhin, E.I.; Odintsova, T.I.; Khadeeva, N.V.; Grishin, E.V.; Egorov, T.A. Discovery of novel antimicrobial peptides with unusual cysteine motifs in dandelion Taraxacum officinale Wigg. flowers. Peptides 2012, 36, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, D.; Predan, G.; Rizea, G.D.; Mihele, D.; Dune, A.; Ivopol, G.; Ionita, C. Antimicrobial Activity of some Hydroalcoholic Extracts of Artichoke (Cynara Scolymus), Burdock (Arctium Lappa) and Dandelion (Taraxacum officinale). Bull. Transilv. Univ. Brasov. Ser. II For. Wood Ind. Agric. Food Eng. 2013, 6, 113–120. [Google Scholar]
- Paul, N.C.; Kim, W.K.; Woo, S.K.; Park, M.S.; Yu, S.H. Diversity of endophytic fungi associated with Taraxacum coreanum and their antifungal activity. Mycobiology 2006, 34, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Chon, S.-U. Antioxidant Activity and Cytotoxicity of Different Taraxacum Species in Korea. Korean J. Crop. Sci. 2012, 57, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Park, C.M.; Park, J.Y.; Noh, K.H.; Shin, J.H.; Song, Y.S. Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-κB modulation in RAW 264.7 cells. J. Ethnopharmacol. 2011, 133, 834–842. [Google Scholar] [CrossRef]
- Chon, S.U.; Bae, C.H.; Lee, S.C. Antioxidant and cytotoxic potentials of methanol extracts from Taraxacum officinale FH Wigg. at different plant parts. Korean J. Plant Resour. 2012, 25, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Petkova, N.T.; Ivanov, I.; Topchieva, S.; Denev, P.; Pavlov, A. Biologically active substances and in vitro antioxidant activity of different extracts from dandelion (Taraxacum officinale) roots. Sci. Bulletin. Ser. F. Biotechnol. 2015, 19, 190–197. [Google Scholar] [CrossRef]
- Modaresi, M.; Resalatpour, N. The Effect of Taraxacum officinale Hydroalcoholic Extract on Blood Cells in Mice. Adv. Hematol. 2012, 2012, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mingarro, D.M.; Plaza, A.; Galán, A.; Vicente, J.A.; Martínez, M.P.; Acero, N. The effect of five Taraxacum species on in vitro and in vivo antioxidant and antiproliferative activity. Food Funct. 2015, 6, 2787–2793. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Kitts, D.D. Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro. Phytomedicine 2005, 12, 588–597. [Google Scholar] [CrossRef]
- Seo, J.-E.; Kim, G.-H. Antioxidant Activity and Differentiation Effect of Taraxacum mongolicum Extracts against Hydrogen Peroxide-induced Oxidative Damage of MC3T3-E1 Osteoblast Cells. Korean J. Food Cook. Sci. 2012, 28, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Hwang, K.H.; Park, T.K. The inhibitory activity of the Taraxacum mongolicum on monoamine oxidase. Korean J. Pharmacogn. 2006, 37, 229–234. [Google Scholar]
- García-Carrasco, B.; Fernandez-Dacosta, R.; Dávalos, A.; Ordovás, J.M.; Rodriguez-Casado, A. In vitro Hypolipidemic and Antioxidant Effects of Leaf and Root Extracts of Taraxacum Officinale. Med. Sci. 2015, 3, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Colle, D.; Arantes, L.P.; Rauber, R.; de Mattos, S.E.C.; Rocha, J.B.T.D.; Nogueira, C.W.; Soares, F.A.A. Antioxidant properties of Taraxacum officinale fruit extract are involved in the protective effect against cellular death induced by sodium nitroprusside in brain of rats. Pharm. Biol. 2012, 50, 883–891. [Google Scholar] [CrossRef]
- Colle, D.; Arantes, L.P.; Gubert, P.; da Luz, S.C.A.; Athayde, M.L.; Rocha, J.B.T.; Soares, F.A.A. Antioxidant Properties of Taraxacum officinale Leaf Extract Are Involved in the Protective Effect Against Hepatoxicity Induced by Acetaminophen in Mice. J. Med. Food 2012, 15, 549–556. [Google Scholar] [CrossRef]
- Choi, U.-K.; Lee, O.-H.; Yim, J.H.; Cho, C.-W.; Rhee, Y.K.; Lim, S.-I.; Kim, Y.-C. Hypolipidemic and Antioxidant Effects of Dandelion (Taraxacum officinale) Root and Leaf on Cholesterol-Fed Rabbits. Int. J. Mol. Sci. 2010, 11, 67–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.; Kitts, D.D. Antioxidant, prooxidant, and cytotoxic activities of solvent-fractionated dandelion (Taraxacum officinale) flower extracts in vitro. J. Agric. Food Chem. 2003, 51, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Takasaki, M.; Konoshima, T.; Tokuda, H.; Masuda, K.; Arai, Y.; Shiojima, K.; Ageta, H. Anti-carcinogenic Activity of Taraxacum Plant. I. Biol. Pharm. Bull. 1999, 22, 602–605. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Su, R.; Qiao, J.; Zhao, Z.; Wang, X. Flavonoids Extraction from Taraxacum officinale (Dandelion): Optimisation Using Response Surface Methodology and Antioxidant Activity. J. Chem. 2014, 2014, 956278. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.-N.; Hong, S.-H.; Song, B.-K.; Kim, C.-H.; Yoo, Y.-H.; Kim, H.-M. Taraxacum officinale induces cytotoxicity through TNF-α and IL-1α secretion in Hep G2 cells. Life Sci. 2004, 74, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.-J.; Kang, H.-J.; Jung, H.-J.; Kang, Y.-S.; Lim, C.-J.; Kim, Y.-M.; Park, E.-H. Anti-inflammatory activity of Taraxacum officinale. J. Ethnopharmacol. 2008, 115, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Park, C.M.; Youn, H.J.; Chang, H.K.; Song, Y.S. TOP1 and 2, polysaccharides from Taraxacum officinale, attenuate CCl4-induced hepatic damage through the modulation of NF-κB and its regulatory mediators. Food Chem. Toxicol. 2010, 48, 1255–1261. [Google Scholar] [CrossRef]
- Lee, M.H.; Kang, H.; Lee, K.; Yang, G.; Ham, I.; Bu, Y.; Choi, H.Y. The aerial part of Taraxacum coreanum extract has an anti-inflammatory effect on peritoneal macrophages in vitro and increases survival in a mouse model of septic shock. J. Ethnopharmacol. 2013, 146, 1–8. [Google Scholar] [CrossRef]
- Koh, Y.-J.; Cha, D.-S.; Ko, J.-S.; Park, H.-J.; Choi, H.-D. Anti-Inflammatory Effect of Taraxacum officinale Leaves on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells. J. Med. Food 2010, 13, 870–878. [Google Scholar] [CrossRef]
- Lee, K.H.; Hsu, K.C.; Wang, Y.S.; Yeh, C.C.; Chen, J.Y.; Chang, C.L.; Chi, C.H. Effects of Taraxacum mongolicum Extract on Lipopolysaccharide-Induced Nitric Oxide and Cytokines Production by Bovine Mammary Epithelial Cells. Intern. J. Appl. Res. Vet. Med. 2013, 11, 144–152. [Google Scholar]
- Lee, M.H.; Song, S.H.; Ham, I.H.; Bu, Y.M.; Kim, H.C.; Choi, H.Y. Anti-inflammatory effect and contents from the aerial part and root of the various Taraxacum spp. distributed in Korea. Korea J. Herbol. 2010, 25, 77–84. [Google Scholar]
- Jang, M.-H.; Ahn, T.-W. Inhibitory effects of Taraxacum mongolicum with phreatic water on melanin synthesis. Integr. Med. Res. 2014, 4, 76–93. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-J.; Shieh, P.-C.; Lee, J.-C.; Chen, F.-A.; Lee, C.-H.; Kuo, S.-C.; Ho, C.-T.; Kuo, D.-H.; Huang, L.-J.; Way, T.-D. Hypolipidemic activity of Taraxacum mongolicum associated with the activation of AMP-activated protein kinase in human HepG2 cells. Food Funct. 2014, 5, 1755–1762. [Google Scholar] [CrossRef]
- Liu, Q.; Yao, L.; Xu, Y.; Cheng, H.; Wang, W.; Liu, Z.; Ning, W. In vitro evaluation of hydroxycinnamoyl CoA: Quinate hydroxycinnamoyl transferase expression and regulation in Taraxacum antungense in relation to 5-caffeoylquinic acid production. Phytochemistry 2019, 162, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Domitrović, R.; Jakovac, H.; Romić, Ž; Rahelić, D.; Tadić, Ž. Antifibrotic activity of Taraxacum officinale root in carbon tetrachloride-induced liver damage in mice. J. Ethnopharmacol. 2010, 130, 569–577. [Google Scholar] [CrossRef]
- Râcz–Kotilla, E.; Râcz, G.; Solomon, A. The action of Taraxacum officinale extracts on the body weight and diuresis of laboratory animaLS. Planta Medica 1974, 26, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Karakuş, A.; Değer, Y.; Yıldırım, S. Protective effect of Silybum marianum and Taraxacum officinale extracts against oxidative kidney injuries induced by carbon tetrachloride in rats. Ren. Fail. 2016, 39, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Malki, A.L.; Abo-Golayel, M.K.; Abo-Elnaga, G.; Al-Beshri, H. Hepatoprotective effect of dandelion (Taraxacum officinale) against induced chronic liver cirrhosis. Med. Plants Res. 2013, 7, 1494–1505. [Google Scholar]
- Choi, J.H.; Shin, K.M.; Kim, N.Y.; Hong, J.P.; Lee, Y.S.; Kim, H.J.; Lee, K.T. Taraxinic Acid, a Hydrolysate of Sesquiterpene Lactone Glycoside from the Taraxacum coreanum N AKAI, Induces the Differentiation of Human Acute Promyelocytic Leukemia HL-60 Cells. Biol. Pharm. Bull. 2002, 25, 1446–1450. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.C.; Shen, J.D.; Li, Y.Y.; Huang, Q. Antidepressant effects of the water extract from Taraxacum officinale leaves and roots in mice. Pharm. Biol. 2014, 52, 1028–1032. [Google Scholar] [CrossRef]
- Ahmad, D.; Gulfraz, M.; Ahmad, M.S.; Nazir, H.; Gul, H.; Asif, S. Protective action of Taraxacum officinale on CCl4 induced hepatotoxicity in rats. Afr. J. Pharm. Pharmacol. 2014, 8, 775–780. [Google Scholar]
- Clare, B.A.; Conroy, R.S.; Spelman, K.; Cand, P.; Zhang, N.; Pang, L.; Dong, N.; Xu, D. The Diuretic Effect in Human Subjects of an Extract of Taraxacum officinale Folium over a Single Day. J. Altern. Complement. Med. 2009, 15, 929–934. [Google Scholar] [CrossRef] [Green Version]
- Davaatseren, M.; Hur, H.J.; Yang, H.J.; Hwang, J.-T.; Park, J.H.; Kim, H.-J.; Kim, M.J.; Kwon, D.Y.; Sung, M.J. Taraxacum official (dandelion) leaf extract alleviates high-fat diet-induced nonalcoholic fatty liver. Food Chem. Toxicol. 2013, 58, 30–36. [Google Scholar] [CrossRef]
- Fallah, H.H.; Zareei, A.M.; SA, Z.; SM, A. The effects of Taraxacum officinale L. and Berberis vulgaris L. root extracts on carbon tetrachloride induced liver toxicity in rats. J. Med. Plants 2010, 1, 45–52. [Google Scholar]
- Jin, Y.-R.; Jin, J.; Piao, X.-X.; Jin, N.G. The effect of Taraxacum officinale on gastric emptying and smooth muscle motility in Rodents. Neurogastroenterol. Motil. 2011, 23, 766-e333. [Google Scholar] [CrossRef]
- Liu, L.; Xiong, H.; Ping, J.; Ju, Y.; Zhang, X. Taraxacum officinale protects against lipopolysaccharide-induced acute lung injury in mice. J. Ethnopharmacol. 2010, 130, 392–397. [Google Scholar] [CrossRef]
- Mahesh, A.; Jeyachandran, R.; Cindrella, L.; Thangadurai, D.; Veerapur, V.; Muralidhara Rao, D. Hepatocurative potential of sesquiterpene lactones of Taraxacum officinale on carbon tetrachloride induced liver toxicity in mice. Acta Biol. Hung. 2010, 61, 175–190. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.-R.; Lee, J.-H.; An, H.-J. Effects of Taraxacum officinale on Fatigue and Immunological Parameters in Mice. Molecules 2012, 17, 13253–13265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz, K.; Espinoza, L.; Madrid, A.; Pizarro, L.; Chamy, R. Isolation and identification of compounds from bioactive extracts of Taraxacum officinale Weber ex FH Wigg.(Dandelion) as a potential source of antibacterial agents. Evid.-Based Complement. Altern. Med. 2018, 2018, 2706417. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Ke, F.; Liu, Z.; Yang, X.; Li, X.; Xu, H.; Li, Q.; Bi, K. Uncovering the mechanisms of dandelion against triple-negative breast cancer using a combined network pharmacology, molecular pharmacology and metabolomics approach. Phytomedicine 2022, 99, 153986. [Google Scholar] [CrossRef] [PubMed]
- Baek, H.Y. In vitro free radical scavenging and hepatoprotective activities of Taraxacum mongolicum. Korean J. Pharmacogn. 2003, 34, 324–326. [Google Scholar]
- Akhtar, W.; Ali, G.; Ashraf, N.; Fatima, I.; Kayani, W.K.; Shaheen, H.; Khames, A. Efficiency of Multiple Extraction Solvents on Antioxidant, Cytotoxic, and Phytotoxic Potential of Taraxacum officinale (L.) Weber ex FH Wigg. from Poonch Valley, Azad Kashmir, Pakistan. Evid.-Based Complement. Altern. Med. 2022, 2022, 5118553. [Google Scholar] [CrossRef] [PubMed]
- Fallah, H.H.; Zaree, A.M.; Naghdi, H.B.; SM, A.; Mohammadi, R.S. The protective effect of medicinal herbs extracts including Cynara Scolymus L.; cichorium intybus L. Taraxacum officinal L. and Berberis vulgaris L. in single and in combination form in CCI4 induced rat liver toxicity. J. Med. Plants 2012, 1, 78–85. [Google Scholar]
Preparation Name | Type | Main Compositions | Function | Administration | Storage |
---|---|---|---|---|---|
Yiganning Keli | Granules | Hedyotis diffusa; Artemisia capillaris Thunb.; Lysimachia christinae Hance; Codonopsis pilosula (Franch.) Nannf.; T. mongolicum Hand.-Mazz.; Reynoutria multiflora (Thunb.) Moldenke; Paeonia suffruticosa Andr.; Smilax glabra Roxb.; Paeonia lactiflora Pall.; Melia toosendan Sieb. et Zucc. | Invigorating the qi and strengthening the spleen, activating blood and removing phlegm, removing heat, detoxification | Orally | Sealed storage |
Erding Keli | Granules | Viola yedoensis Makino; Lobelia chinensis Lour.; T. mongolicum Hand.-Mazz.; Strobilanthes cusia | Detoxification | Orally | Sealed storage |
Xiao’er Baotaikang Keli | Granules | Forsythia suspensa (Thunb.) Vahl; Rehmannia glutinosa (Gaertn.) Libosch. ex Fisch. & C.A. Mey.; Bupleurum chinense DC.; Scrophularia ningpoensis Hemsl.; Fritillaria thunbergii Miq.; T. mongolicum Hand.-Mazz; Strobilanthes cusia; Arnebia euchroma (Royle) Johnst. | Clearing the heat, relieving cough and phlegm | Orally | Sealed storage |
Xiao’er Jiebiao Keli | Granules | Lonicera japonica Thunb.; Forsythia suspensa (Thunb.) Vahl; Arctium lappa L.; T. mongolicum Hand.-Mazz; Scutellaria baicalensis Georgi; Saposhnikovia divaricata (Turcz.) Schischk.; Perilla frutescens; Schizonepeta tenuifolia Briq.; Pueraria lobata (Willd.) Ohwi; Cow-bezoar | Diffusing the lungs, clearing heat, detoxification | Orally | Sealed storage |
Niuhuang Jingnao Pian | Troche | Cow-bezoar; Lonicera japonica Thunb.; Forsythia suspensa (Thunb.) Vahl; Scutellaria baicalensis Georgi; Coptis chinensis Franch.; T. mongolicum Hand.-Mazz; Pearl; Ophiopogon japonicus (Thunb.) Rehmannia glutinosa (Gaertn.) Libosch. ex Fisch. & C.A. Mey. | Clearing away heat, detoxification | Orally | Sealed and protected from moisture |
Shuanghu Qinggan Keli | Granules | Lonicera japonica Thunb.; T. mongolicum Hand.-Mazz; Chrysanthemum indicum L.; Bunge Salvia miltiorrhiza Bunge; Reynoutria japonica Houtt.; Coptis chinensis Franch. | Clearing away heat and dampness, dispelling phlegm and widening the qi, promoting qi and promoting blood circulation | Orally | Sealed storage |
Baipuhuang Pian | Troche | Pulsatilla chinensis (Bge.) Regel; T. mongolicum Hand.-Mazz; Scutellaria baicalensis Georgi; Phellodendron amurense Rupr. | Heat and dampness, detoxification, cooling blood | Orally | Sealed storage |
Dalitong Keli | Granules | Bupleurum chinense DC.; Citrus aurantium; Saussurea costus; T. mongolicum Hand.-Mazz; Citrus reticulata Blanco; Paederia scandens (Lour.) Merr.; Corydalis yanhusuo W. T. Wang | Clearing away heat, relieving depression, stomach down | Orally | Sealed and stored in a dry place |
Fule Keli | Granules | Lonicera japonica Thunb.; Sargentodoxa cuneata (Oliv.) Rehder & E.H. Wilson; T. mongolicum Hand.-Mazz; Isatis indigotica; Paeonia veitchii Lynch; Melia toosendan Sieb. et Zucc.; Corydalis yanhusuo W. T. Wang | Clearing heat, cooling blood, relieving phlegm and pain | Orally | Sealed storage |
Lianpu Shuangqing Pian | Troche | Berberine salt; Extract of T. mongolicum Hand.-Mazz; | Detoxification, relieving dryness and dampness | Orally | Sealed storage |
Kangyan Tuire Pian | Troche | Taraxacum mongolicum Hand.-Mazz; Scutellaria baicalensis Georgi | Clearing away heat, detoxification, eliminating and dispersing swelling | Orally | Sealed and stored in a cool dry place |
Kanggusuiyan Pian | Troche | Lonicera japonica Thunb.; Viola yedoensis Makino; T. mongolicum Hand.-Mazz; Scutellaria barbata D. Don; Pulsatilla chinensis (Bge.) Regel; Hedyotis diffusa Willd. | Clearing away heat, detoxification, dissipating swelling | Orally | Sealed storage |
Nankang Pian | Troche | Hedyotis diffusa Willd.; Scutellaria baicalensis Georgi; T. mongolicum Hand.-Mazz; Paeonia veitchii Lynch; Carthamus tinctorius L.; Angelica sinensis (Oliv.) Diels; Cuscuta chinensis Lam. | Tonifying kidney and activating blood circulation, clearing heat, detoxification | Orally | Sealed storage |
Libi Pian | Troche | Scutellaria baicalensis Georgi; Xanthium sibiricum Patr.; T. mongolicum Hand.-Mazz; Magnolia biondii Pamp.; Angelica dahurica | Detoxification | Orally | Sealed storage |
Shenyan Jiere Pian | Troche | Smilax glabra Roxb.; Imperata cylindrica var. major (Nees) C. E. Hubb.; T. mongolicum Hand.-Mazz; Cinnamomum cassia (L.) J.Presl; Forsythia suspensa (Thunb.) Vahl; Nepeta cataria L. | Dispelling wind, relieving heat, diffusing the lungs | Orally | Sealed storage |
Jinpu Jiaonang | Capsule | Lonicera japonica Thunb.; T. mongolicum Hand.-Mazz; Scutellaria barbata D. Don; Curcuma zedoaria (Christm.) Roscoe; Boswellia carterii; Astragalus membranaceus var. mongholicus (Bge.) Hsiao; Codonopsis pilosula (Franch.) Nannf. | Clearing away heat, detoxification, reducing swelling and relieving pain, benefiting Qi, dissipating phlegm | Orally | Sealed storage |
Jinsang Sanjie Wan | Pill | Strobilanthes cusia; Lonicera japonica Thunb.; T. mongolicum Hand.-Mazz; Scrophularia ningpoensis Hemsl.; Ophiopogon japonicus (Thunb.) Ker-Gawler | Clearing away heat, detoxification, promoting blood circulation, removing blood stasis | Orally | Sealed storage |
Rupixiao Pian | Troche | T. mongolicum Hand.-Mazz; Trichosanthes kirilowii; Spatholobus suberectus; Aucklandia lappa Decne.; Prunella vulgaris L.; Carthamus tinctorius L. | Activating blood circulation, removing blood stasis, clearing away heat and toxic substances | Orally | Sealed storage |
Rupixiao Jiaonang | Capsule | T. mongolicum Hand.-Mazz; Trichosanthes kirilowii; Aucklandia lappa Decne.; Panax notoginseng (Burk.) F. H. Chen; Paeonia veitchii Lynch; Carthamus tinctorius L.; Scrophularia ningpoensis Hemsl. | Activating blood circulation, removing blood stasis, clearing away heat and toxic substances | Orally | Sealed storage |
Rupixiao Keli | Granules | T. mongolicum Hand.-Mazz; Trichosanthes kirilowii; Aucklandia lappa Decne.; Panax notoginseng (Burk.) F. H. Chen; Paeonia veitchii Lynch; Carthamus tinctorius L.; Scrophularia ningpoensis Hemsl. | Activating blood circulation, removing blood stasis, clearing away heat and toxic substances | Orally | Sealed storage |
Weichang Fuyuan Gao | Paste | Pseudostellaria heterophylla (Miq.) Pax ex Pax et Hoffm.; Rheum palmatum L.; Raphanus sativus L.; T. mongolicum Hand.-Mazz; Aucklandia lappa Decne.; Astragalus membranaceus var. mongholicus (Bge.) Hsiao | Replenishing qi, activating blood and qi | Orally | Sealed and stored in a cool place |
Fufang Qingdai Wan | Pill | Indigo Naturalis; Prunus mume (Sieb.) Sieb. et Zucc.; Arnebia euchroma (Royle) Johnst.; T. mongolicum Hand.-Mazz; Portulaca oleracea L.; Dictamnus dasycarpus Turcz. | Clearing heat, cooling blood, detoxification, spotting | Orally | Sealed storage |
Fufang Jinhuanglian Keli | Granules | Forsythia suspensa (Thunb.) Vahl; Scutellaria baicalensis Georgi; Strobilanthes cusia; T. mongolicum Hand.-Mazz; Lonicera japonica Thunb. | Clearing away heat, detoxification | Orally | Sealed and stored in a cool place |
Fufang Zhenzhu Anchuang Pian | Troche | Lonicera macranthoides Hand.-Mazz; T. mongolicum Hand.-Mazz; Scutellaria baicalensis Georgi; Phellodendron amurense Rupr.; Angelica sinensis (Oliv.) Diels; Glehnia littoralis Fr. Schm. ex Miq.; Pearl; Clematis armandii Franch. | Clearing away heat, detoxification, cooling blood, eliminating erythema | Orally | Sealed storage |
Fufang Yigan Wan | Pill | Panax ginseng C.A. Mey.; Strobilanthes cusia; Chrysanthemum indicum L.; T. mongolicum Hand.-Mazz; Smilax glabra Roxb.; Plantago asiatica; Carthamus tinctorius L. | Clearing away heat and dampness, soothing the liver and spleen, dissipating phlegm | Orally | Sealed storage |
Fufang Huangbaiye Tuji | Liquid pharmaceutical preparations; | Forsythia suspensa (Thunb.) Vahl; Phellodendron amurense Rupr.; Lonicera japonica Thunb.; Centipede; T. mongolicum Hand.-Mazz | Detoxification, reducing swelling and rot | External | Sealed and stored in a cool place |
Danshitong Jiaonang | Capsule | T. mongolicum Hand.-Mazz; Artemisia capillaris Thunb.; Lysimachia christinae Hance; Bupleurum chinense DC.; Rheum palmatum L.; Scutellaria baicalensis Georgi; Citrus aurantium L. | Clearing away heat and dampness, cholagogic, stone removing | Orally | Sealed storage |
Dankang Jiaonang | Capsule | Bupleurum chinense DC.; Rheum palmatum L.; Curcuma aromatica Salisb.; T. mongolicum Hand.-Mazz; Artemisia capillaris Thunb.; Gardenia jasminoides Ellis; Mentha haplocalyx Briq. | Soothing liver, cholagogic, clearing away heat and toxins, relieving inflammation and pain | Orally | Sealed and protected from moisture |
Qianlietong Pian | Troche | Vaccaria segetalis (Neck.) Garcke; Plantago asiatica; Astragalus membranaceus var. mongholicus (Bge.) Hsiao; T. mongolicum Hand.-Mazz; Lycopus lucidus var. hirtus Regel; Illicium verum Hook. f.; Cinnamomum cassia Presl | Clearing away dampness and turbidity, removing blood stasis, dispersing stagnation | Orally | Sealed storage |
Reyanning Pian | Troche | T. mongolicum Hand.-Mazz; Reynoutria japonica Houtt.; Ixeris polycephala; Scutellaria barbata D. Don | Detoxification | Orally | Sealed storage |
Reyanning Heji | Liquid pharmaceutical preparation | T. mongolicum Hand.-Mazz; Reynoutria japonica Houtt.; Ixeris polycephala; Scutellaria barbata D. Don | Detoxification | Orally | Sealed and stored in a cool place |
Reyanning Keli | Granules | T. mongolicum Hand.-Mazz; Reynoutria japonica Houtt.; Ixeris polycephala; Scutellaria barbata D. Don | Detoxification | Orally | Sealed storage |
Langchuang Wan | Pill | Lonicera japonica Thunb.; Forsythia suspensa (Thunb.) Vahl; Coptis chinensis Franch.; T. mongolicum Hand.-Mazz; Rehmannia glutinosa (Gaertn.) Libosch. ex Fisch. & C.A. Mey.; Paeonia veitchii Lynch; Scrophularia ningpoensis Hemsl. | Clearing away heat, detoxification, cooling blood, promoting blood circulation | Orally | Sealed storage |
Xiaoyan Tuire Keli | Granules | Isatis indigotica; Viola yedoensis Makino; Glycyrrhiza uralensis Fisch. ex DC.; T. mongolicum Hand.-Mazz | Clearing away heat and detoxifying, cooling blood, reducing swelling | Orally | Sealed storage |
Xiaocuo Wan | Pill | Cimicifuga foetida L.; Bupleurum chinense DC.; Ophiopogon japonicus (Thunb.) Ker-Gawler; T. mongolicum Hand.-Mazz; Scrophularia ningpoensis Hemsl.; Dendrobium nobile Lindl.; Prunella vulgaris L. | Clearing away heat and dampness, detoxification, dispersing | Orally | Sealed storage |
Sangge Jiangzhi Wan | Pill | Taxillus chinensis (DC.) Danser; Pueraria lobata (Willd.) Ohwi; Dioscorea opposita Thunb.; T. mongolicum Hand.-Mazz; Crataegus pinnatifida Bunge; Salvia miltiorrhiza Bunge; Alisma orientalis (Sam.) Juzep. | Invigorating the kidney, strengthening the spleen, dissipating phlegm, clearing away heat and dampness | Orally | Sealed storage |
Yinpujiedu Pian | Troche | Lonicera macranthoides Hand.-Mazz; Chrysanthemum indicum L.; Prunella vulgaris L.; T. mongolicum Hand.-Mazz; Viola philippica Cav. | Detoxification | Orally | Sealed storage |
Kangfu Xiaoyan Shuan | Suppository | Viola philippica Cav.; Sophora flavescens Aiton; Patrinia scabiosaefolia Fisch.; Andrographis paniculata (Burm. f.) Nees; T. mongolicum Hand.-Mazz; Arnebia euchroma (Royle) Johnst. | Clearing away heat, detoxification, dampness and dispersing, killing insects and itching | Rectal administration | Sealed and stored in a cool place |
Pudilan Xiaoyan Koufuye | Liquid pharmaceutical preparation | T. mongolicum Hand.-Mazz; Strobilanthes cusia; Scutellaria baicalensis Georgi; Corydalis bungeana | Clearing away heat, detoxification, reducing swelling | Orally | Sealed storage |
Plant Species | Functions | Countries | References |
---|---|---|---|
T. androssovii Schischkin | Wounds, stomach disorders | Turkey | [8] |
T. cyprium H. Lindb. | Anti-cough, expectorant, dyspepsia | Cyprus | [9] |
T. fedtschenkoi Hand.- Mazz. | Wounds, stomach disorders | Turkey | [8] |
T. macrolepium Schischkin | Wounds, stomach disorders | Turkey | [8] |
T. mongolicum Hand.-Mazz | Tuberculosis, fever, acne | China | [10] |
T. oellgaardii C. C. Haw. synonym, T. officinale (L.) Weber ex F. H. Wigg | Fever, cough, dysmenorrhea, headache, constipation, stomach, pain, digestive, stomachache, skin problems, toothache, wounds, swelling, digestive disorders, peptic ulcer, migraine, abdominal complaints, blisters and rash, treatment of gastrointestinal, diseases, eczema | India, Mexico, Pakistan, Kosovo, Romania, Bulgaria, Argentina, Italy, Serbia, Bolivia, Georgia, Peru, Turkey | [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] |
T. platycarpum Dahlst. | Furuncles | Korea | [30] |
T. Stevenii (Spreng.) DC. | Toothache, abdominal spasms | Turkey | [31] |
Extracts/Compounds | Species | Formulation/Dosage | Results | References |
---|---|---|---|---|
Anti-bacteria | ||||
Ethanol extracts | T. mongolicum | In vitro; 1 g·mL−1 | T. mongolicum has a higher nutritional value, better antimicrobial effects and is an edible plant. | [78] |
Ethanol extracts from flowers | T. mongolicum | In vitro; Gram-negative bacteria (125 to 250 μg·mL−1) and Gram-positive bacteria (62.5 to 250 μg·mL−1) | The anti-bacterial test results showed that this fraction strongly inhibited the growth of all of the microorganisms, especially P. aeruginosa and B. subtilis (with MIC values of 125 μg·mL−1 and 62.5 μg·mL−1, respectively) | [79] |
Aqueous and ethanol extracts | T. mongolicum | In vitro; 0.125, 0.25, 0.5 g·mL−1 | It could inhibit these bacteria at different level in which ethanolic extracts of P. oleracea L. generally had higher anti-bacterial activities than aqueous extracts. | [66] |
Water extracts | T. mongolicum | In vivo; 20 mg·kg−1 | The possibility of a multifactorial drug−drug interaction existed between extracts and ciprofloxacin. Thus, the implications of concomitant dosing of the two agents should not be overlooked. | [80] |
Extracts from leaves | T. officinale | In vitro | It was found to be effective against all the tested Bacterial pathogens P. aeruginosa, E. coli, S. aureus, B. Subtilis and M. luteus. | [81] |
Extracts from roots | T. officinale | In vitro | It exhibited considerable α-amylase and α-glucosidase inhibitory activities. | [82] |
Extracts from leaves | T. officinale | In vitro | It displayed excellent antimicrobial activity against S. aureus and E. coli. | [83] |
Peptides | T. officinale | In vitro | It displayed high antimicrobial activity both against fungal and bacterial pathogens. | [84] |
Ethanol extracts from leaves | T. officinale | In vitro | It had shown an antimicrobial activity against the bacterial strains of E. coli and S. abony, but had not shown any antimicrobial activity against S. aureus. | [85] |
Endophytic fungi | T. coreanum | In vitro | The results indicated that the endophytic fungis had the ability to antifungal. | [86] |
Anti-oxidant | ||||
Methanol extracts | T. coreanum | In vitro | Its anti-oxidant activity was presented in a dose-dependent pattern. | [87] |
Extracts | T. officinale | In vitro | It inhibited oxidative stress through elevated de novo synthesis of anti-oxidative enzymes and suppression of iNOS expression by NF-B inactivation. | [88] |
Methanol extracts | T. mongolicum | In vitro | The anti-oxidant activity of T. mongolicum was presented in a dose-dependent pattern. | [89] |
Extracts | T. officinale | In vitro | Dandelion root was a valuable source of dietary fibers and natural anti-oxidants. | [90] |
Ethanol extracts | T. officinale | In vivo; 50,100, and 200 mg·kg−1 (20 days) | The study indicated efficacy of dandelion extract on RBC (group) and HB (group) in doses of 50,100, and 200 mg·kg−1 and in 200 mg·kg−1 on WBC (group) to achieve normal body balance. | [91] |
Methanol extracts | T. officinale | In vitro | Its anti-oxidant activity was presented in a dose-dependent pattern. | [87,89] |
Methanol extracts | T. obovatum | In vivo and in vitro | The results found the extracts to be the most promising species with anti-oxidative capacity and only T. lacistrum to present reliable cytotoxicity over HeLa and HepG2 cell lines, with an interesting SI. A proper species determination, using its distribution or deep botanical description, was required for plants of the genus Taraxacum, as pharmacological abilities mainly vary between species. | [92] |
Methanol extracts | T. marginellum | In vivo and in vitro | ||
Methanol extracts | T. hispanicum | In vivo and in vitro | ||
Methanol extracts | T. lambinonii | In vivo and in vitro | ||
Methanol extracts | T. lacistrum | In vivo and in vitro | ||
Ethanol from flowers | T. officinale | In vitro; 50, 100, 150 μg·mL−1 | The prevention of living cells from peroxyl radical-induced oxidation in the presence of dandelion flower extract suggested that the standardized extract had biological anti-oxidant activity. | [93] |
Extracts | T. mongolicum | In vitro | The extracts suppressed the damage to osteoblasts under oxidative stress and are potential anti-oxidant materials for preventing bone diseases. | [94] |
Methanol extracts | T. mongolicum | In vivo and in vitro | The extracts had significantly inhibitory activities on monoamine oxidase-A/B. | [95] |
Ethanol extracts from the roots and leaves | T. officinale | In vitro; 400, 500, and 600 µg·mL−1 | The extracts showed effective anti-oxidant activity correlating with total flavonoid and polyphenol contents. | [96] |
Ethanol extracts from fruit | T. officinale | In vivo; 1, 5, 10, and 20 μg·mL−1 | The extracts protected against SNP-induced decreases in cellular viability and increased in lipid peroxidation in the cortex, hippocampus, and striatum of rats. | [97] |
Ethanol extracts from leaves | T. officinale | In vivo; 0.1, 0.5 mg·kg−1 | The results clearly demonstrated the hepatoprotective effect of extracts against the toxicity induced by acetaminophen. | [98] |
Granules of leaves and roots | T. officinale | In vivo; 250 g·day−1 (4 weeks) | The treatment with dandelion root and leaf positively changed plasma anti-oxidant enzyme activities in cholesterol-fed rabbits. | [99] |
Methanol extracts | T. sect. Ruderalia | In vitro | The vegetative parts gave higher anti-oxidant activity, which could be related to its higher content in phenolic acids. | [32] |
Extracts from flowers | T. officinale | In vitro; 0, 0.5, 1.0, and 2.5 µg·mL−1 | The extracts possessed both anti-oxidant and cytotoxic properties which could, in part, be attributed to the presence of luteolin and luteolin 7-glucoside. | [93,100] |
Anti-cancer | ||||
Methanol extracts from shoots/roots | T. coreanum | In vitro 200, 400 mg·kg−1 | Calu-6; IC50 = 140.2/101.6 mg·kg−1 | [87] |
Methanol extracts from shoots/roots | T. mongolicum | In vitro 200/400 mg·kg−1 | Calu-6; IC50 = 83.4/66.4 mg·kg−1 | [87] |
Methanol extracts from shoots/roots | T. officinale | In vitro 200, 400 mg·kg−1 | Calu-6; IC50 = 165.6/978.4 mg·kg−1 | [87] |
Ethanol extracts | T. mongolicum | In vitro | It induced G2/M phase arrest and activated apoptosis in MDA-MB-231 cells through ER stress. | [57] |
Methanol–water extracts from roots | T. japonicum | In vivo | An extract of the roots of the plant could be a valuable chemopreventive agent against chemical carcinogenesis. | [101] |
Flavonoids extraction | T. officinale | In vitro | The anti-oxidant activity of the purified flavonoids displayed strong ablilty. | [102] |
Extracts | T. officinale | In vitro; 2–0.02 mg·mL−1 | The extracts induced cytotoxicity through TNF-α and IL-1α secretion in HepG2 cells. | [103] |
Anti-inflammatory | ||||
Ethanol extracts | T. officinale | In vivo; 50, 100 and 200 mg·kg−1 | The extract possessed acute anti-inflammatory activity. | [104] |
Polysaccharides | T. officinale | In vivo; 304, 92 mg·kg−1 (7 days) | The polysaccharides had a hepatoprotective effect by modulating inflammatory responses and ameliorating oxidative stress. | [105] |
Ethanol extracts | T. coreanum | In vitro and in vivo; 0, 10, 25, 50, 100, 200, and 400 mg·mL−1 | The extracts possessed potent anti-inflammatory activity in vitro and in vivo, which occurred at least partly through inhibition of pro-inflammatory signaling and mediator release. | [106] |
Chloroform extracts | T. officinale | In vitro | The fraction significantly suppressed production of NO, PGE2, and two pro-inflammatory cytokines (TNF-α and IL-1β) in a dose-dependent manner with 50% inhibitory concentration values of 66.51, 90.96, 114.76, and 171.06 μg·mL−1, respectively. | [107] |
Water extracts | T. mongolicum | In vitro; 10, 100, 1000 μg·mL−1 | Treatment of extracts significantly inhibited NO production in LPS-stimulated MACT cells. | [108] |
Water extracts | T. mongolicum | In vivo | T. mongolicum could exert some of its anti-inflammatory and pharmacological effects by affecting the activity of PI3K/Akt/mTOR in LPS-induced acute lung injury in mice. | [69] |
Organic acid | T. mongolicum | In vivo; 5 mg·kg−1 | Organic acid could improve LPS-induced histopathological damage of tracheal tissues through the regulation of TLR4/NF-κB and TLR4/IKK/NF-κB signaling pathways and could be beneficial for the treatment of acute tracheobronchitis. | [72,73] |
Methanol extracts | T. officinale | In vitro; 50, 100, 200, 400 μg·mL−1 | The results of RAW 264.7 macrophage cells indicated the extracts had excellent anti-inflammatory effects. | [109] |
Methanol extracts | T. hallaisanense | |||
Methanol extracts | T. ohwianum | |||
Methanol extracts | T. coreanum | |||
Methanol extracts | T. platycarpum | |||
Ethanol extracts | T. officinale | In vitro | The extracts possessed marked anti-inflammatory activity. | [104] |
Other effects | ||||
Methanol extracts | T. mongolicum | In vitro; 5, 10, 50, 100, 500, 1000 μg·mL−1 | By the results of cytotoxicity of TAM on the B16F10 cell, little cytotoxicity was exhibited from every concentration from 5 g·mL−1 to 1000 g·mL−1. | [110] |
1β,3β-dihydroxy-eudesman-11(13)-en-6α,12-olide | T. mongolicum | In vitro | This compound was found to have an inhibitory activity on nitric oxide production with an IC50 of 38.9 µM in activated RAW 264.7 cells. | [36] |
1β,3β-dihydroxyeudesman-6α,12-olide | T. mongolicum | In vitro | This compound was found to have an inhibitory activity on nitric oxide production with an IC50 of 32.4 µM in activated RAW 264.7 cells. | [36] |
Water extracts | T. mongolicum | In vitro | The results showed no significantly cytotoxic effects on the MAC-T cells at 1–1000 μg·mL−1 of extracts. | [108] |
Ethanol extracts | T. mongolicum | In vitro; 0, 50, 100, 200, and 400 mg·mL−1 | It possessed the most effective hypolipidemic activity in HepG2 cells. | [111] |
Chlorogenic acids | T. antungense | In vitro | TaHQT1 and TaHQT2 function in the biosynthesis of 5-caffeoylquinic acid, but the genes showed tissue-specific expression patterns, suggesting a mechanism for the regulation of 5-caffeoylquinic acid production. | [112] |
Ethanol extracts | T. mongolicum | In vitro | The results demonstrated the potential estrogenic activities of the extract, providing scientific evidence supporting their use in traditional medicine. | [70] |
Ethanol extracts | T. mongolicum | In vitro | The extracts at 50–100 µg·mL−1 improved D-galactosamine, thioacetamide and tert-butyl hydroperoxide (t-BHP)-injured rat hepatocytes, and produced protection rates of 42.2, 34.6, and 43.8% at 100 µg·mL−1, respectively. | [71] |
Water–ethanol extracts from roots | T. officinale | In vivo; 200, 600 mg·kg−1 (10 days) | Hepatic Cu/Zn SOD activity decreased in intoxicated mice and normalized in extract-treated groups. | [113] |
Extracts | T. officinale | In vivo; 50 mg·kg−1 (30 days) | The body weight of mice and rats was decreased after administration of extracts. | [114] |
Extracts | T. officinale | In vivo; 100 mg·kg−1 (20 days) | The extracts which were used against histopathological changes in the kidney caused by toxication showed a corrective effect, which were supported by biochemical parameters. | [115] |
Water extracts of leaves | T. officinale | In vitro; 25 mg·kg−1 (14 days) | The study revealed that leaf extract could afford a significant protection against CCl4-induced hepatocellular injury. | [116] |
Extracts of leaves | T. officinale | In vitro; 0.2 g·mL−1 | The methylene chloride inhibited as much as 97% of proliferation of the SGT cells and only about 7% of the RAW 246.7 cells. Ethyl acetate and butanol fractions inhibited 42.03% and 24.35% proliferation of the SGT cells, respectively, and only 12% and 8% of the RAW 246.7 cells. | [83] |
Taraxinic acid | T. coreanum | in vitro | The induction of HL-60 cell maturation by taraxinic acid may have potential as a therapeutic approach for the treatment of leukemia. | [117] |
Methanol extracts | T. platycarpum | In vitro | The triterpene fraction had an effect on the proliferation of normal skin fibroblasts at a concentration of 10 or 5.0 μg·mL−1, but some compounds showed cytotoxicity and anti-proliferative activity toward fibroblasts at the same concentration. | [47] |
The water extracts from roots and leaves | T. officinale | In vivo; 50, 100, and 200 mg·kg−1 | The results clearly demonstrated the antidepressant effects of extracts in animal models of behavioral despair and suggested the mechanism involved in the neuroendocrine system. | [118] |
Methanol extracts from leaves | T. officinale | In vivo; 150, 300 mg·kg−1 | The results revealed that leaf extracts had protective effects against CCl4- induced liver toxicity and damage. | [119] |
Granules of leaves and roots | T. officinale | In vivo; 250 g·day−1 (4 weeks) | The treatment with dandelion root and leaf positively changed lipid profiles in cholesterol-fed rabbits. | [99] |
Ethanol extracts | T. officinale | In vivo; 1 g·mL−1 (1 day) | It showed promising potential as a diuretic in humans. | [120] |
Extracts from leaves | T. officinale | In vivo; 2 g·kg−1 (10 weeks) | The extracts may represent a promising approach for the prevention of high-fat diet-induced nonalcoholic fatty liver. | [121] |
Root extracts | T. officinale | In vivo; 250, 500, 750 mg·kg−1 | The administration of extracts ameliorated CCl4 induced liver damage. | [122] |
Desacetylmatricarin | T. platycarpum | In vitro | The results showed a potent inhibitory activity upon the β-hexosaminidase release from RBL-2H3 cells in a dose-dependent manner and the IC50 was 7.5 μM. | [48] |
Extracts | T. officinale | In vivo; 100 mg·kg−1 | n-Butanol fraction-induced increase in gastric emptying was related to smooth muscle contraction. | [123] |
Water extracts | T. officinale | In vivo; 2.5, 5, and 10 mg·kg−1 | The extracts protected against lipopolysaccharide-induced acute lung injury in mice. | [124] |
Ethanol extracts | T. officinale | In vivo; 150 mg·kg−1 (1 week) | The extracts exhibited hepatoprotective activity in CCl4- induced hepatic damage in mice. | [125] |
Water extracts | T. officinale | In vivo; 10, 100 mg·kg−1 (10 days) | The extracts improved fatigue-related indicators and immunological parameters in mice. | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, M.; Zhang, X.; Song, H.; Zhang, Y. Dandelion (Taraxacum Genus): A Review of Chemical Constituents and Pharmacological Effects. Molecules 2023, 28, 5022. https://doi.org/10.3390/molecules28135022
Fan M, Zhang X, Song H, Zhang Y. Dandelion (Taraxacum Genus): A Review of Chemical Constituents and Pharmacological Effects. Molecules. 2023; 28(13):5022. https://doi.org/10.3390/molecules28135022
Chicago/Turabian StyleFan, Min, Xiao Zhang, Huaping Song, and Yakong Zhang. 2023. "Dandelion (Taraxacum Genus): A Review of Chemical Constituents and Pharmacological Effects" Molecules 28, no. 13: 5022. https://doi.org/10.3390/molecules28135022
APA StyleFan, M., Zhang, X., Song, H., & Zhang, Y. (2023). Dandelion (Taraxacum Genus): A Review of Chemical Constituents and Pharmacological Effects. Molecules, 28(13), 5022. https://doi.org/10.3390/molecules28135022