Development of a Methodology for Determination of Dioxins and Dioxin-like PCBs in Meconium by Gas Chromatography Coupled to High-Resolution Mass Spectrometry (GC-HRMS)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sample Preparation Procedure Results
2.2. Analysis of Real Samples
3. Materials and Methods
3.1. Subject Recruitment and Sample Collection
3.2. Standards and Reagents
3.3. Extraction Procedures
3.3.1. Ultrasonic Assisted Extraction (UAE)
3.3.2. Selective Pressurized Liquid Extraction (SPLE)
3.3.3. Microwave-Assisted Extraction (MAE)
3.4. Clean Up
3.5. GC-HRMS Analysis
3.6. Quality Assurance/Quality Control (QA/QC)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- WHO. Exposure to Dioxins and Dioxin-like Substances: A Major Public Health Concern. Available online: https://www.who.int/publications-detail-redirect/WHO-CED-PHE-EPE-19.4.4 (accessed on 13 June 2023).
- Fernández-Cruz, T.; Álvarez-Silvares, E.; Domínguez-Vigo, P.; Simal-Gándara, J.; Martínez-Carballo, E. Prenatal exposure to organic pollutants in northwestern Spain using non-invasive matrices (placenta and meconium). Sci. Total Environ. 2020, 731, 138341. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sargis, R.M.; Volden, P.A.; Carmean, C.M.; Sun, X.J.; Brady, M.J. PCB 126 and Other Dioxin-like PCBs Specifically Suppress Hepatic PEPCK Expression via the Aryl Hydrocarbon Receptor. PLoS ONE 2012, 7, e37103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, C.; Chen, Y.; Zhao, Z.; Li, Q.; Zhou, Q.; Ye, Z.; Ge, X. Characteristics, sources and health risks of toxic species (PCDD/Fs, PAHs and heavy metals) in PM2.5 during fall and winter in an industrial area. Chemosphere 2020, 238, 124620. [Google Scholar] [CrossRef] [PubMed]
- Ssebugere, P.; Sillanpää, M.; Matovu, H.; Mubiru, E. Human and environmental exposure to PCDD/Fs and dioxin-like PCBs in Africa: A review. Chemosphere 2019, 223, 483–493. [Google Scholar] [CrossRef]
- Barr, D.B.; Bishop, A.; Needham, L.L. Concentrations of xenobiotic chemicals in the maternal-fetal unit. Reprod. Toxicol. 2007, 23, 260–266. [Google Scholar] [CrossRef]
- Morokuma, S.; Tsukimori, K.; Hori, T.; Kato, K.; Furue, M. The Vernix Caseosa is the Main Site of Dioxin Excretion in the Human Foetus. Sci. Rep. 2017, 7, 739. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Li, Y.; Wang, P.; Li, X.; Zhao, Z.; Ruan, T.; Zhang, Q. Spatial concentration, congener profiles and inhalation risk assessment of PCDD/Fs and PCBs in the atmosphere of Tianjin, China. Chin. Sci. Bull. 2013, 58, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Weldon, R.H.; LaKind, J.S. Biomonitoring of Dioxins and Furans: Levels and Trends in Humans. In Dioxin and Related Compounds; Alaee, M., Ed.; Handbook of Environmental Chemistry Volume 49; Springer International Publishing: Cham, Switzerland, 2015; pp. 277–299. [Google Scholar] [CrossRef]
- Hernández, C.S.; Pardo, O.; Corpas-Burgos, F.; Fernández, S.F.; Lopez, A.; Coscollà, C.; Vento, M.; Yusa, V. Biomonitoring of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in human milk: Exposure and risk assessment for lactating mothers and breastfed children from Spain. Sci. Total Environ. 2020, 744, 140710. [Google Scholar] [CrossRef]
- Angerer, J.; Ewers, U.; Wilhelm, M. Human biomonitoring: State of the art. Int. J. Hyg. Environ. Health 2007, 210, 201–228. [Google Scholar] [CrossRef]
- Esteban, M.; Castaño, A. Non-invasive matrices in human biomonitoring: A review. Environ. Int. 2009, 35, 438–449. [Google Scholar] [CrossRef]
- Woźniak, M.K.; Jaszczak, E.; Wiergowski, M.; Polkowska, Ż.; Namieśnik, J.; Biziuk, M. Meconium analysis as a promising diagnostic tool for monitoring fetal exposure to toxic substances: Recent trends and perspectives. TrAC Trends Anal. Chem. 2018, 109, 124–141. [Google Scholar] [CrossRef]
- Garcia, J.A.O.; Gallardo, D.C.; Ferris i Tortajada, J.; García, M.M.P.; Grimalt, J.O. Meconium and neurotoxicants: Searching for a prenatal exposure timing. Arch. Dis. Child 2006, 91, 642–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veyhe, A.S.; Nøst, T.H.; Sandanger, T.M.; Hansen, S.; Odland, J.Ø.; Nieboer, E. Is meconium useful to predict fetal exposure to organochlorines and hydroxylated PCBs? Environ. Sci. Process. Impacts 2013, 15, 1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, Y.; Lee, S.; Kim, S.; Choi, S.; Park, J.; Kim, H.; Lee, J.; Choi, G.; Choi, S.; Kim, S.; et al. Occurrence and prenatal exposure to persistent organic pollutants using meconium in Korea: Feasibility of meconium as a non-invasive human matrix. Environ. Res. 2016, 147, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Xu, Y.; Li, W.; Han, G.; Ling, B. Prenatal exposures to persistent organic pollutants as measured in cord blood and meconium from three localities of Zhejiang, China. Sci. Total Environ. 2007, 377, 179–191. [Google Scholar] [CrossRef]
- Álvarez-Silvares, E.; Rubio-Cid, P.; González-Gómez, X.; Domínguez-Vigo, P.; Fernández-Cruz, T.; Seoane-Pillado, T.; Martínez-Carballo, E. Determination of organic pollutants in meconium and its relationship with fetal growth. Case control study in Northwestern Spain. J. Perinat. Med. 2021, 49, 884–896. [Google Scholar] [CrossRef]
- Berton, T.; Mayhoub, F.; Chardon, K.; Duca, R.; Lestremau, F.; Bach, V.; Tack, K. Development of an analytical strategy based on LC–MS/MS for the measurement of different classes of pesticides and theirs metabolites in meconium: Application and characterisation of foetal exposure in France. Environ. Res. 2014, 132, 311–320. [Google Scholar] [CrossRef]
- Meyer-Monath, M.; Chatellier, C.; Cabooter, D.; Rouget, F.; Morel, I.; Lestremau, F. Development of liquid chromatography methods coupled to mass spectrometry for the analysis of substances with a wide variety of polarity in meconium. Talanta 2015, 138, 231–239. [Google Scholar] [CrossRef]
- Peng, S.; Liu, L.; Zhang, X.; Heinrich, J.; Zhang, J.; Schramm, K.; Huang, Q.; Tian, M.; Eqani, S.; Shen, H. A nested case-control study indicating heavy metal residues in meconium associate with maternal gestational diabetes mellitus risk. Environ. Health 2015, 14, 19. [Google Scholar] [CrossRef] [Green Version]
- Muzembo, B.A.; Iwai-shimada, M.; Isobe, T.; Arisawa, K.; Shima, M.; Fukushima, T.; Nakayama, S.F. Dioxins levels in human blood after implementation of measures against dioxin exposure in Japan. Environ. Health Prev. Med. 2019, 24, 6. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Commission Regulation (EU) 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: http://data.europa.eu/eli/reg/2006/1881/2022-07-01/eng (accessed on 12 January 2023).
- López, A.; Coscollà, C.; Hernández, C.S.; Pardo, O.; Yusà, V. Dioxins and dioxin-like PCBs in the ambient air of the Valencian Region (Spain): Levels, human exposure, and risk assessment. Chemosphere 2021, 267, 128902. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EU) 2017/644 of 5 April 2017 Laying Down Methods of Sampling and Analysis for the Control of Levels of Dioxins, Dioxin-like PCBs and Non-Dioxin-like PCBs in Certain Foodstuffs and Repealing Regulation (EU) No 589/2014. Available online: http://data.europa.eu/eli/reg/2017/644/oj/spa (accessed on 14 October 2022).
- European Commission; Joint Research Centre; Robouch, P.; Stroka, J.; Haedrich, J.; Schaechtele, A.; Wenzl, T. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food. 2016. Available online: https://op.europa.eu/en/publication-detail/-/publication/200cf09a-9ad1-11e6-868c-01aa75ed71a1/language-en (accessed on 12 January 2023).
Congener | Detection Frequency (%) | Range (pg g−1 ww) | Average LOQ (pg g−1 ww) | AM a (pg g−1 ww) | AM a TEQ2005 (pg TEQ g−1 ww) | Main Congeners Contribution (%) | ||
---|---|---|---|---|---|---|---|---|
UB | MB | LB | ||||||
2378-TCDF | 80 | n.d.–0.29 | 0.03 | 0.2 | 1.5 × 10−2 | 1.5 × 10−2 | 1.5 × 10−2 | 48.8 |
12378-PECDF | 90 | n.d.–0.35 | 0.05 | 0.3 | 7.0 × 10−3 | 7.0 × 10−3 | 6.9 × 10−3 | 28.3 |
23478-PECDF | 10 | n.d.–0.1 | 0.06 | 0.1 | 1.9 × 10 −2 | 1.1 × 10 −2 | 2.9 ×10−3 | 6.3 |
123478-HXCDF | 0 | n.d. | 0.07 | - | 6.7 × 10−3 | 3.3 × 10−3 | 0.00 | 0.0 |
123678-HXCDF | 0 | n.d. | 0.04 | - | 4.5 × 10−3 | 2.2 × 10−3 | 0.00 | 0.0 |
234678-HXCDF | 0 | n.d. | 0.06 | - | 6.4 × 10−3 | 3.2 × 10−3 | 0.00 | 0.0 |
123789-HXCDF | 0 | n.d. | 0.05 | - | 5.4 × 10−3 | 2.7 × 10−3 | 0.00 | 0.0 |
1234678-HPCDF | 40 | n.d.–0.29 | 0.03 | 0.2 | 8.6 × 10−4 | 8.0 × 10−4 | 7.4 × 10−4 | 3.0 |
1234789-HPCDF | 0 | n.d. | 0.03 | - | 2.6 × 10−4 | 1.3 × 10−4 | 0.00 | 0.0 |
OCDF | 0 | n.d. | 0.06 | - | 1.7 × 10−5 | 8.6 × 10−6 | 0.00 | 0.0 |
2378-TCDD | 0 | n.d. | 0.04 | - | 3.8 × 10−2 | 1.9 × 10−2 | 0.00 | 0.0 |
12378-P × 10 CDD | 0 | n.d. | 0.07 | - | 7.0 × 10−2 | 3.5 × 10−2 | 0.00 | 0.0 |
123478-HXCDD | 0 | n.d. | 0.07 | - | 7.3 × 10−3 | 3.6 × 10−3 | 0.00 | 0.0 |
123678-HXCDD | 0 | n.d. | 0.07 | - | 7.1 × 10−3 | 3.5 × 10−3 | 0.00 | 0.0 |
123789-HXCDD | 0 | n.d. | 0.07 | - | 7.3 × 10−3 | 3.6 × 10−3 | 0.00 | 0.0 |
1234678-HPCDD | 80 | n.d.–0.57 | 0.07 | 0.4 | 3.3 × 10−3 | 3.2 × 10−3 | 3.1 × 10−3 | 12.4 |
OCDD | 100 | 0.56–1.93 | 0.08 | 1.1 | 3.3 × 10−4 | 3.3 × 10−4 | 3.3 × 10−4 | 1.3 |
Congener | Detection Frequency (%) | Range (pg g−1 ww) | Average LOQ (pg g−1 ww) | AM a (pg g−1 ww) | AM a TEQ2005 (pg TEQ g−1 ww) | Main Congeners Contribution (%) | ||
---|---|---|---|---|---|---|---|---|
UB | MB | LB | ||||||
PCB-81 | 90 | n.d.–0.46 | 0.24 | 0.3 | 8.9 × 10−5 | 8.5 × 10−5 | 8.2 × 10−5 | 3.3 |
PCB-77 | 100 | 1.40–3.18 | 0.25 | 2.1 | 2.1 × 10−4 | 2.1 × 10−4 | 2.1 × 10−4 | 9.2 |
PCB-123 | 100 | 1.34–2.50 | 0.26 | 1.9 | 5.7 × 10−5 | 5.7 × 10−5 | 5.7 × 10−5 | 2.3 |
PCB-118 | 100 | 19.48–37.42 | 0.26 | 27.4 | 8.2 × 10−4 | 8.2 × 10−4 | 8.2 × 10−4 | 32.1 |
PCB-114 | 80 | n.d.–2.02 | 0.26 | 1.2 | 3.1 × 10−5 | 3.1 × 10−5 | 3.0 × 10−5 | 1.0 |
PCB-105 | 100 | 7.52–11.82 | 0.27 | 9.4 | 2.8 × 10−4 | 2.8 × 10−4 | 2.8 × 10−4 | 11.3 |
PCB-126 | 10 | n.d.–0.27 | 0.29 | 0.3 | 2.9 × 10−2 | 1.6 × 10−2 | 2.7 × 10−3 | 9.2 |
PCB-167 | 100 | 1.46–4.70 | 0.20 | 3.1 | 9.4 × 10−5 | 9.4 × 10−5 | 9.4 × 10−5 | 3.3 |
PCB-157 | 90 | n.d.–4.18 | 0.21 | 1.8 | 5.0 × 10−5 | 5.0 × 10−5 | 4.9 × 10−5 | 1.6 |
PCB-156 | 100 | 3.79–22.62 | 0.21 | 9.2 | 2.8 × 10−4 | 2.8 × 10−4 | 2.8 × 10−4 | 9.5 |
PCB-169 | 20 | n.d.–0.49 | 0.22 | 0.4 | 7.5 × 10−3 | 5.1 × 10−3 | 2.6 × 10−3 | 17.1 |
PCB-189 | 30 | n.d.–3.90 | 0.88 | 2.1 | 4.4 × 10−5 | 3.1 × 10−5 | 1.9 × 10−5 | 0.2 |
Sample | UB | MB | LB | ||||||
---|---|---|---|---|---|---|---|---|---|
∑PCDD/Fs | ∑dl-PCBs | ∑(PCDD/F + dl-PCBs) | ∑PCDD/Fs | ∑dl-PCBs | ∑(PCDD/F + dl-PCBs) | ∑PCDD/Fs | ∑dl-PCBs | ∑(PCDD/F + dl-PCBs) | |
S1 | 0.172 | 0.043 | 0.215 | 0.095 | 0.030 | 0.125 | 0.018 | 0.016 | 0.034 |
S2 | 0.260 | 0.041 | 0.301 | 0.153 | 0.022 | 0.174 | 0.046 | 0.002 | 0.048 |
S3 | 0.209 | 0.034 | 0.243 | 0.119 | 0.018 | 0.137 | 0.029 | 0.002 | 0.031 |
S4 | 0.182 | 0.026 | 0.208 | 0.103 | 0.014 | 0.116 | 0.023 | 0.001 | 0.024 |
S5 | 0.241 | 0.052 | 0.293 | 0.139 | 0.033 | 0.173 | 0.038 | 0.014 | 0.052 |
S6 | 0.185 | 0.037 | 0.222 | 0.107 | 0.033 | 0.140 | 0.028 | 0.029 | 0.058 |
S7 | 0.266 | 0.042 | 0.308 | 0.140 | 0.022 | 0.162 | 0.014 | 0.002 | 0.016 |
S8 | 0.171 | 0.035 | 0.206 | 0.099 | 0.018 | 0.117 | 0.026 | 0.002 | 0.028 |
S9 | 0.160 | 0.029 | 0.189 | 0.090 | 0.015 | 0.106 | 0.021 | 0.002 | 0.023 |
S10 | 0.146 | 0.042 | 0.188 | 0.096 | 0.022 | 0.118 | 0.045 | 0.002 | 0.047 |
POPs | Mean | Common Compounds | Region | Reference |
---|---|---|---|---|
PCDD/Fs + dl-PCBs | 2.9 a | PCDD/Fs, PCB 77, 81, 126, 169 | Japan (Fukuoka) | [7] |
dl-PCBs | 0.027 b | PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189 | Spain (Ourense) | [18] |
0.29 b | PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189 | Spain (Ourense) | [2] | |
1.66 c | PCB 118 | Korea (Seoul, Anyang, Ansan, Jeju) | [16] | |
49 c | PCB 118 | Norway (Nordland, Troms, Finnmark) | [15] | |
0.67 d | PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189 | China (Zhejiang) | [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacomba, I.; López, A.; Hervàs-Ayala, R.; Coscollà, C. Development of a Methodology for Determination of Dioxins and Dioxin-like PCBs in Meconium by Gas Chromatography Coupled to High-Resolution Mass Spectrometry (GC-HRMS). Molecules 2023, 28, 5006. https://doi.org/10.3390/molecules28135006
Lacomba I, López A, Hervàs-Ayala R, Coscollà C. Development of a Methodology for Determination of Dioxins and Dioxin-like PCBs in Meconium by Gas Chromatography Coupled to High-Resolution Mass Spectrometry (GC-HRMS). Molecules. 2023; 28(13):5006. https://doi.org/10.3390/molecules28135006
Chicago/Turabian StyleLacomba, Iñaki, Antonio López, Raquel Hervàs-Ayala, and Clara Coscollà. 2023. "Development of a Methodology for Determination of Dioxins and Dioxin-like PCBs in Meconium by Gas Chromatography Coupled to High-Resolution Mass Spectrometry (GC-HRMS)" Molecules 28, no. 13: 5006. https://doi.org/10.3390/molecules28135006
APA StyleLacomba, I., López, A., Hervàs-Ayala, R., & Coscollà, C. (2023). Development of a Methodology for Determination of Dioxins and Dioxin-like PCBs in Meconium by Gas Chromatography Coupled to High-Resolution Mass Spectrometry (GC-HRMS). Molecules, 28(13), 5006. https://doi.org/10.3390/molecules28135006