Chemical Studies of Multicomponent Kidney Stones Using the Modern Advanced Research Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. FTIR-ATR
2.2. X-ray Diffraction (XRD)
2.3. Scanning Electron Microscopy SEM-EDS
2.4. XPS Spectroscopy
3. Materials and Methods
3.1. Research Material
3.2. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Evan, A.P. Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr. Nephrol. 2010, 25, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Mahamat-Saleh, Y.; Norat, T.; Riboli, E. Body fatness, diabetes, physical activity and risk of kidney stones: A sys-tematic review and meta-analysis of cohort studies. Eur. J. Epidemiol. 2018, 33, 1033–1047. [Google Scholar] [CrossRef] [PubMed]
- Stamatelou, K.K.; Francis, M.E.; Jones, C.A.; Nyberg, L.M.; Curhan, G.C. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 2003, 63, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Scales, C.D., Jr.; Smith, A.C.; Hanley, J.M.; Saigal, C.S. Urologic Diseases in America Project. Prevalence of Kidney Stones in the United States. Eur. Urol. 2012, 62, 160–165. [Google Scholar] [CrossRef]
- Romero, V.; Akpinar, H.; Assimos, D.G. Kidney stones: A global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 2010, 12, e86–e96. [Google Scholar] [PubMed]
- Stamatelou, K.; Goldfarb, D.S. Epidemiology of Kidney Stones. Healthcare 2023, 11, 424. [Google Scholar] [CrossRef] [PubMed]
- Alelign, T.; Petros, B. Kidney stone disease: An update on current concepts. Adv. Urol. 2018, 2018, 3068365. [Google Scholar] [CrossRef] [PubMed]
- Hyams, E.S.; Matlaga, B.R. Economic impact of urinary stones. Transl. Androl. Urol. 2014, 3, 278–283. [Google Scholar] [CrossRef]
- Dawson, C.H.; Tomson, C.R.V. Kidney stone disease: Pathophysiology, investigation and medical treatment. Clin. Med. 2012, 5, 467–471. [Google Scholar] [CrossRef]
- Corbo, J.; Wang, J. Kidney and ureteral stones. Emerg. Med. Clin. N. Am. 2019, 37, 637–648. [Google Scholar] [CrossRef]
- Baumann, J.M.; Affolter, B.; Meyer, R. Crystal sedimentation and stone formation. Urol. Res. 2010, 38, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Y.; Wei, W. Effect of dietary treatment and fluid intake on the prevention of recurrent calcium stones and changes in urine composition: A meta-analysis and systematic review. PLoS ONE 2021, 16, e0250257. [Google Scholar] [CrossRef] [PubMed]
- Gavin, C.T.; Ali, S.N.; Tailly, T.; Olvera-Posada, D.; Alenezi, H.; Power, N.E.; Hou, J.; Amant, A.H.S.; Luyt, L.G.; Wood, S.; et al. Novel Methods of Determining Urinary Calculi Composition: Petrographic Thin Sectioning of Calculi and Nanoscale Flow Cytometry Urinalysis. Sci. Rep. 2016, 6, 19328. [Google Scholar] [CrossRef] [PubMed]
- Aray, P.; Pandey, S.; Verma, V. Kidney stone formation and use of medicinal plants as anti-urolithiatic agent. Univers. J. Pharm. Res. 2017, 2, 43–48. [Google Scholar] [CrossRef]
- Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Obesity, weight gain, and the risk of kidney stones. J. Am. Med. Assoc. 2005, 293, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.R.; Canales, B.K.; Dominguez-Gutierrez, P.R. Randall’s plaque and calcium oxalate stone formation: Role for immun-ity and inflammation. Nat. Rev. Nephrol. 2021, 17, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Ratkalkar, V.N.; Kleinman, J.G. Mechanisms of Stone Formation. Clinic. Rev. Bone Miner. Metab. 2011, 9, 187–197. [Google Scholar] [CrossRef]
- Singh, V.K.; Rai, P.K. Kidney stone analysis techniques and the role of major and trace elements on their pathogenesis: A review. Biophys. Rev. 2014, 6, 291–310. [Google Scholar] [CrossRef]
- Khan, S.R.; Pearle, M.S.; Robertson, W.G.; Gambaro, G.; Canales, B.K.; Doizi, S.; Traxer, O.; Tiselius, H.G. Kidney stones. Nat. Rev. Dis. Primers. 2016, 2, 16008. [Google Scholar] [CrossRef]
- Zhang, D.; Li, S.; Zhang, Z.; Li, N.; Yuan, X.; Jia, Z.; Yang, J. Urinary stone composition analysis and clinical characterization of 1520 patients in central China. Sci. Rep. 2021, 11, 6467. [Google Scholar] [CrossRef]
- Khan, A.H.; Imran, S.; Talati, J.; Jafri, L. Fourier transform infrared spectroscopy for analysis of kidney stones. Investig. Clin. Urol. 2018, 59, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Uvarov, V.; Popov, I.; Shapur, N.; Abdin, T.; Gofrit, O.N.; Pode, D.; Duvdevani, M. X-ray diffraction and SEM study of kidney stones in Israel: Quantitative analysis, crystallite size determination, and statistical characterization. Environ. Geochem. Health 2011, 33, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Jaswal, B.B.S.; Sharma, J.; Rai, P.K. Spectroscopic investigations on kidney stones using Fourier transform infra-red and X-ray fluorescence spectrometry. X-ray Spectrom. 2017, 46, 283–291. [Google Scholar] [CrossRef]
- Roychowdhury, T.; Bahr, S.; Dietrich, P.; Meyer, M.; Thißen, A.; Linford, M.R. Kidney stone, by near-ambient pressure XPS. Surf. Sci. Spectra 2019, 26, 014017. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhattacharya, A.; Chatterjee, P.; Mukherjee, A.K. Structural and microstructural characterization of seven human kidney stones using FTIR spectroscopy, SEM, thermal study and X-ray Rietveld analysis. Z. Für Krist.-Crys-Talline Mater. 2014, 229, 451–458. [Google Scholar] [CrossRef]
- Chatterjee, P.; Chakraborty, A.; Mukherjee, A.K. Phase composition and morphological characterization of human kidney stones using IR spectroscopy, scanning electron microscopy and X-ray Rietveld analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 200, 33–42. [Google Scholar] [CrossRef]
- Cupisti, A.; Giannese, D.; D’Alessandro, C.; Benedetti, A.; Panichi, V.; Alfieri, C.; Castellano, G.; Messa, P. Kidney Stone Prevention: Is There a Role for Complementary and Alternative Medicine? Nutrients 2023, 15, 877. [Google Scholar] [CrossRef] [PubMed]
- Costa-Bauzá, A.; Grases, F.; Julià, F. The power of desktop scanning electron microscopy with elemental analysis for analyzing urinary stones. Urolithiasis 2023, 51, 50. [Google Scholar] [CrossRef]
- Cui, X.; Zhao, Z.; Zhang, G.; Chen, S.; Zhao, Y.; Lu, J. Analysis and classification of kidney stones based on Raman spectroscopy. Biomed. Opt. Express 2018, 9, 4175–4183. [Google Scholar] [CrossRef]
- Shameem, M.K.M.; Chawla, A.; Mallya, M.; Barik, B.K.; Unnikrishnan, V.K.; Kartha, V.B.; Santhosh, C. Laser-induced break-down spectroscopy-Raman: An effective complementary approach to analyze renal-calculi. J. Biophotonics 2018, 11, e201700271. [Google Scholar] [CrossRef]
- Chiu, Y.C.; Yang, H.Y.; Lu, S.H.; Chiang, H.K. Micro-Raman spectroscopy identification of urinary stone composition from ureteroscopic lithotripsy urine powder. J. Raman Spectrosc. 2009, 41, 136–141. [Google Scholar] [CrossRef]
- Chiu, Y.; Huang, Y.Y.; Chen, P.A.; Lu, S.H.; Chiu, A.W.; Chiang, H.K. Quantitative and multicomponent analysis of prevalent urinary calculi using Raman spectroscopy. J. Raman Spectrosc. 2012, 43, 992–997. [Google Scholar] [CrossRef]
- Castiglione, V.; Sacré, P.Y.; Cavalier, E.; Hubert, P.; Gadisseur, R.; Ziemons, E. Raman chemical imaging, a new tool in kidney stone structure analysis: Case-study and comparison to Fourier Transform Infrared spectroscopy. PLoS ONE 2018, 13, e0201460. [Google Scholar] [CrossRef]
- Álvarez, J.L.G.; Martínez, M.J.T.; Fernández, M.A. Development of a method for the quantitative analysis of urinary stones, formed by a mixture of two components, using infrared spectroscopy. Clin. Biochem. 2012, 45, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Campos, P.V.; Albuquerque, A.R.L.; Angélica, R.S.; Paz, S.P.A. FTIR spectral signatures of amazon inorganic phosphates: Igneous, weathering, and biogenetic origin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 251, 119476. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Roushani, M.; Pourmortazavi, S.M. Electrochemical synthesis and characterization of zinc oxalate nanoparticles. Mater. Res. Bull. 2013, 48, 1275–1280. [Google Scholar] [CrossRef]
- Durdagi, S.P.; Al-Jalawee, A.H.H.; Yalcin, P.; Bozkurt, A.S.; Salcan, S. Morphological Characterization and Phase Determi-nation of Kidney Stones Using X-Ray Diffractometer and Scanning Electron Microscopy. Chin. J. Phys. 2023, 83, 379–388. [Google Scholar] [CrossRef]
- Yapanoglu, T.; Demirel, A.; Adanur, Ş.; Yuksel, H.; Polat, Ö. X-ray diffraction analysis of urinary tract stones. Turk. J. Med. Sci. 2010, 40, 415–420. [Google Scholar] [CrossRef]
- Bali, V.; Khajuria, Y.; Sharma, J.; Rai, P.K.; Gondal, M.A.; Kumar, U.; Singh, V.K. Compositional and Morphological Studies of Kidney and Gallbladder Stones from Fundamentals to Advanced Level using SEM–EDS Technique: A Short Review. Arab. J. Sci. Eng. 2023, 48, 13–29. [Google Scholar] [CrossRef]
- Daudon, M.; Bazin, D.; André, G.; Jungers, P.; Cousson, A.; Chevallier, P.; Véron, E.; Matzen, G. Examination of whewellite kidney stones by scanning electron microscopy and powder neutron diffraction techniques. J. Appl. Cryst. 2009, 42, 109–115. [Google Scholar] [CrossRef]
- Biesinger, M.C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review. Appl. Surf. Sci. 2022, 597, 153681. [Google Scholar] [CrossRef]
- Gengenbach, T.R.; Major, G.H.; Linford, M.R.; Easton, C.D. Practical guides for x-ray photoelectron spectroscopy (XPS): Interpreting the carbon 1s spectrum. J. Vac. Sci. Technol. A. 2021, 39, 013204. [Google Scholar] [CrossRef]
- Major, G.H.; Fairley, N.; Sherwood, P.M.A.; Linford, M.R.; Terry, J.; Fernandez, V.; Artyushkova, K. Practical guide for curve fitting in x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A 2020, 38, 061203. [Google Scholar] [CrossRef]
- Chiang, Y.-C.; Chen, Y.-J.; Wu, C.-Y. Effect of Relative Humidity on Adsorption Breakthrough of CO2 on Activated Carbon Fibers. Materials 2017, 10, 1296. [Google Scholar] [CrossRef] [PubMed]
- Baltrusaitis, J.; Usher, C.R.; Grassian, V.H. Reactions of sulfur dioxide on calcium carbonate single crystal and particle surfaces at the adsorbed water carbonate interface. Phys. Chem. Chem. Phys. 2007, 9, 3011. [Google Scholar] [CrossRef] [PubMed]
- Shchukarev, A.; Korolkov, D. XPS Study of group IA carbonates. Open Chem. 2004, 2, 347–362. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. The XPS of polymers database. Surf. Spectra 2000. [Google Scholar]
- Salvi, A.M.; Langerame, F.; Pace, A.E.; Carbone, M.E.; Ciriello, R. Comparative Spectra Illustrating Degradation of CaC2O4⋅H2O During XPS Analysis. Surf. Sci. Spectra 2015, 22, 21–31. [Google Scholar] [CrossRef]
Code | Name of Chemical Compound | Chemical Formula | Percantage Composition [%] |
---|---|---|---|
Sample 35 | |||
04-009-6324 | Calcium oxalate monohydrate | Ca(C2O4)(H2O) | 100 |
Sample 37 | |||
01-075-3729 | Calcium hydroxyapatite doped with few carbonate and hydroxyls | Ca5[(PO4)2.823 (CO3)0.22 (OH)1.562] | 100 |
Sample 43 | |||
04-009-6324 | Calcium oxalate monohydrate | Ca(C2O4)(H2O) | 33 |
01-083-5351 | Hydrated calcium oxalate | Ca(C2O4)(H2O)2.35 | 5 |
01-075-3729 | Calcium hydroxyapatite doped with few carbonate and hydroxyls | Ca5[(PO4)2.823 (CO3)0.22 (OH)1.562] | 62 |
Element | BE (eV) | % At. Conc. | % St. Dev. |
---|---|---|---|
C | 284.9 | 73.9 | 3.15 |
N | 399.9 | 2.2 | 2.43 |
O | 531.9 | 18.9 | 1.58 |
Ca | 347.4 | 2.8 | 0.92 |
P | 133.4 | 0.8 | 1.33 |
Al | 74.4 | 1.0 | 2.21 |
Na | 1072.4 | 0.5 | 0.88 |
Element | BE (eV) | % At. Conc. | % St. Dev. |
---|---|---|---|
C | 284.7 | 23.1 | 0.92 |
N | 400.2 | 1.6 | 0.64 |
O | 531.7 | 44.8 | 0.76 |
Na | 1072.7 | 0.6 | 0.18 |
Mg | 1305.2 | 0.7 | 0.24 |
P | 133.2 | 13.2 | 0.36 |
Ca | 347.2 | 15.9 | 0.30 |
Element | BE (eV) | % At. Conc. | % St. Dev. |
---|---|---|---|
C 1s | 284.7 | 55.1 | 0.65 |
N 1s | 399.7 | 2.7 | 0.61 |
O 1s | 531.7 | 28.5 | 0.49 |
P | 133.2 | 4.9 | 0.37 |
Ca | 347.2 | 8.7 | 0.26 |
Sample Identifier | Name | BE (eV) | FWHM | % At. Conc. | Moieties |
---|---|---|---|---|---|
sample 35 | C 1s | 284.80 | 1.31 | 71.5 | C-C/C-H |
C 1s | 286.22 | 1.31 | 14.3 | C-OH/C-O-C | |
C 1s | 287.70 | 1.31 | 5.2 | C=O | |
C 1s | 288.70 | 1.31 | 7.4 | COOH | |
C 1s | 289.51 | 1.31 | 1.7 | carbonates | |
sample 37 | C 1s | 284.80 | 1.55 | 63.7 | C-C/C-H |
C 1s | 286.30 | 1.55 | 15 | C-OH/C-O-C | |
C 1s | 287.60 | 1.55 | 5.5 | C=O | |
C 1s | 288.60 | 1.55 | 12.3 | COOH | |
C 1s | 289.84 | 1.55 | 3.5 | carbonates | |
sample 43 | C 1s | 284.80 | 1.49 | 68.6 | C-C/C-H |
C 1s | 286.30 | 1.49 | 10.5 | C-OH/C-O-C | |
C 1s | 287.60 | 1.49 | 4.6 | C=O | |
C 1s | 288.60 | 1.49 | 13.9 | COOH | |
C 1s | 289.46 | 1.49 | 2.4 | carbonates |
Sample Identifier | Name | BE(eV) | FWHM | % At. Conc | Moieties |
---|---|---|---|---|---|
sample 35 | O 1s | 530.61 | 1.66 | 2.1 | O−2/O=C |
O 1s | 531.56 | 1.54 | 36.1 | O=C-O-/O=P/CO3−2 (carbonates) | |
O 1s | 532.57 | 1.46 | 49.6 | HO-C | |
O 1s | 533.63 | 1.32 | 9.7 | HO-P | |
O 1s | 534.94 | 2.16 | 2.5 | O2/H2O | |
sample 37 | O 1s | 530.83 | 1.67 | 6.1 | O−2/O=C |
O 1s | 531.37 | 1.59 | 76.3 | O=C-O-/O=P/ CO3−2 (carbonates) | |
O 1s | 532.67 | 1.42 | 12.4 | HO-C | |
O 1s | 533.66 | 1.35 | 3.8 | HO-P | |
O 1s | 535.07 | 2.17 | 1.4 | O2/H2O | |
sample 43 | O 1s | 530.77 | 1.50 | 6.2 | O−2/O=C |
O 1s | 531.36 | 1.59 | 45.4 | O=C-O-/O=P/CO3−2 (carbonates) | |
O 1s | 532.28 | 1.52 | 36.2 | HO-C | |
O 1s | 533.45 | 1.53 | 10.4 | HO-P | |
O 1s | 534.76 | 1.85 | 1.7 | O2/H2O |
Sample Identifier | Name | BE (eV) | FWHM | % At Conc | Moieties |
---|---|---|---|---|---|
sample 35 | Ca 2p 3/2 | 347.44 | 1.63 | 49.2 | CaCO3/CaC2O4 |
Ca 2p 1/2 | 351.01 | 1.81 | 50.8 | CaHPO4 | |
sample 37 | Ca 2p 3/2 | 347.24 | 1.58 | 49.2 | CaCO3/CaC2O4 |
Ca 2p 1/2 | 350.81 | 1.72 | 50.8 | CaHPO4 | |
sample 43 | Ca 2p 3/2 | 347.16 | 1.62 | 50.3 | CaCO3/CaC2O4 |
Ca 2p 1/2 | 350.72 | 1.70 | 49.7 | CaHPO4 |
Sample Identifier | Name | BE (eV) | FWHM | % At. Conc. | Moieties |
---|---|---|---|---|---|
sample 35 | P 2p 3/2 | 132.90 | 2.41 | 50.5 | PO43− |
P 2p 1/2 | 133.75 | 2.41 | 49.5 | PO43− | |
sample 37 | P 2p 3/2 | 132.73 | 1.49 | 50.5 | PO43− |
P 2p 1/2 | 133.58 | 1.63 | 49.5 | PO43− | |
sample 43 | P 2p 3/2 | 132.68 | 1.62 | 50.5 | PO43− |
P 2p 1/2 | 133.53 | 1.85 | 49.5 | PO43− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sofińska-Chmiel, W.; Goliszek, M.; Drewniak, M.; Nowicka, A.; Kuśmierz, M.; Adamczuk, A.; Malinowska, P.; Maciejewski, R.; Tatarczak-Michalewska, M.; Blicharska, E. Chemical Studies of Multicomponent Kidney Stones Using the Modern Advanced Research Methods. Molecules 2023, 28, 6089. https://doi.org/10.3390/molecules28166089
Sofińska-Chmiel W, Goliszek M, Drewniak M, Nowicka A, Kuśmierz M, Adamczuk A, Malinowska P, Maciejewski R, Tatarczak-Michalewska M, Blicharska E. Chemical Studies of Multicomponent Kidney Stones Using the Modern Advanced Research Methods. Molecules. 2023; 28(16):6089. https://doi.org/10.3390/molecules28166089
Chicago/Turabian StyleSofińska-Chmiel, Weronika, Marta Goliszek, Marek Drewniak, Aldona Nowicka, Marcin Kuśmierz, Agnieszka Adamczuk, Paulina Malinowska, Ryszard Maciejewski, Małgorzata Tatarczak-Michalewska, and Eliza Blicharska. 2023. "Chemical Studies of Multicomponent Kidney Stones Using the Modern Advanced Research Methods" Molecules 28, no. 16: 6089. https://doi.org/10.3390/molecules28166089