Nanoencapsulation of Phenolic Extracts from Native Potato Clones (Solanum tuberosum spp. andigena) by Spray Drying
Abstract
:1. Introduction
2. Results and Discussions
2.1. Characterization and Selection of the Best Native Potato Clone for Nanoencapsulation of Extracts
2.2. Effect of Inlet Temperature and Airflow on Response Variables
2.2.1. Yield of Encapsulation
2.2.2. Hygroscopicity
2.2.3. Water Activity
2.2.4. Moisture
2.2.5. Antioxidant Capacity DPPH
2.2.6. Encapsulation Efficiency
2.2.7. Total Phenolic Compounds
2.2.8. Total Flavonoids
2.2.9. Optimization in the Nanoencapsulation of Extracts of the Selected Native Potato Clone
2.3. Instrumental Characterization
2.3.1. Color Analysis
2.3.2. SEM Analysis
2.3.3. Particle Size and ζ Potential
2.3.4. FTIR Analysis
2.3.5. Thermal Analysis
2.4. Release of Polyphenols in Aqueous Solution
3. Materials and Methods
3.1. Materials
3.2. Obtaining Extract from the Selected Native Potato Clone
3.3. Nanoencapsulation of Extracts of the Selected Native Potato Clone
3.4. Yield of Encapsulation
3.5. Hygroscopicity
3.6. Water Activity
3.7. Moisture
3.8. Antioxidant Capacity DPPH and ABTS
3.9. Encapsulation Efficiency
3.10. Total Phenolic Compounds
3.11. Total Flavonoids
3.12. Total Anthocyanins
3.13. Color Analysis
3.14. Analysis by Scanning Electronic Microscopy (SEM)
3.15. Particle Size and ζ Potential
3.16. Analysis by Fourier Transform Infrared Spectroscopy (FTIR)
3.17. Thermal Analysis
3.18. Release of Polyphenols in Aqueous Solution
3.19. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bratovcic, A.; Suljagic, J. Micro-and nano-encapsulation in food industry. Croat. J. Food Sci. Technol. 2019, 11, 113–121. [Google Scholar] [CrossRef]
- Ayala-Fuentes, J.C.; Chavez-Santoscoy, R.A. Nanotechnology as a Key to Enhance the Benefits and Improve the Bioavailability of Flavonoids in the Food Industry. Foods 2021, 10, 2701. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Rajakumar, G.; Chung, I.-M. Nanotechnology: Current uses and future applications in the food industry. 3 Biotech 2018, 8, 74. [Google Scholar] [CrossRef]
- Bazana, M.T.; Codevilla, C.F.; de Menezes, C.R. Nanoencapsulation of bioactive compounds: Challenges and perspectives. Curr. Opin. Food Sci. 2019, 26, 47–56. [Google Scholar] [CrossRef]
- Mishra, A.; Kumar, J.; Bhainsa, K.C. Applicability of Spray Drying Technique to Prepare Nano-Micro Carriers: A Review. Nanoarchitectonics 2022, 3, 33–45. [Google Scholar] [CrossRef]
- Samborska, K.; Poozesh, S.; Barańska, A.; Sobulska, M.; Jedlińska, A.; Arpagaus, C.; Malekjani, N.; Jafari, S.M. Innovations in spray drying process for food and pharma industries. J. Food Eng. 2022, 321, 110960. [Google Scholar] [CrossRef]
- Jafari, S.M.; Arpagaus, C.; Cerqueira, M.A.; Samborska, K. Nano spray drying of food ingredients; materials, processing and applications. Trends Food Sci. Technol. 2021, 109, 632–646. [Google Scholar] [CrossRef]
- Piñón-Balderrama, C.I.; Leyva-Porras, C.; Terán-Figueroa, Y.; Espinosa-Solís, V.; Álvarez-Salas, C.; Saavedra-Leos, M.Z. Encapsulation of active ingredients in food industry by spray-drying and nano spray-drying technologies. Processes 2020, 8, 889. [Google Scholar] [CrossRef]
- Ummi, A.S.; Siddiquee, S. Nanotechnology applications in food: Opportunities and challenges in food industry. Nanotechnol. Appl. Energy Drug Food 2019, 8, 295–308. [Google Scholar] [CrossRef]
- Assadpour, E.; Jafari, S.M. Advances in spray-drying encapsulation of food bioactive ingredients: From microcapsules to nanocapsules. Annu. Rev. Food Sci. Technol. 2019, 10, 103–131. [Google Scholar] [CrossRef]
- Cerqueira, M.Â.; Pinheiro, A.C.; Ramos, O.L.; Silva, H.; Bourbon, A.I.; Vicente, A.A. Chapter Two—Advances in Food Nanotechnology. In Emerging Nanotechnologies in Food Science; Busquets, R., Ed.; Elsevier: Boston, MA, USA, 2017; pp. 11–38. [Google Scholar]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Russo, M.; Moccia, S.; Spagnuolo, C.; Tedesco, I.; Russo, G.L. Roles of flavonoids against coronavirus infection. Chem. Biol. Interact. 2020, 328, 109211. [Google Scholar] [CrossRef]
- Gonzales, G.B.; Smagghe, G.; Grootaert, C.; Zotti, M.; Raes, K.; Camp, J.V. Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure–activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab. Rev. 2015, 47, 175–190. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; González-Paramás, A.M. Flavonoids: Functions, metabolism and biotechnology. In Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants; Wiley: Hoboken, NJ, USA, 2016; pp. 469–495. [Google Scholar] [CrossRef]
- Pei, R.; Liu, X.; Bolling, B. Flavonoids and gut health. Curr. Opin. Biotechnol. 2020, 61, 153–159. [Google Scholar] [CrossRef]
- Kandasamy, S.; Naveen, R. A review on the encapsulation of bioactive components using spray-drying and freeze-drying techniques. J. Food Process Eng. 2022, 45, e14059. [Google Scholar] [CrossRef]
- Pateiro, M.; Gómez, B.; Munekata, P.E.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules 2021, 26, 1547. [Google Scholar] [CrossRef]
- Arpagaus, C.; John, P.; Collenberg, A.; Rütti, D. Nanocapsules formation by nano spray drying. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries; Elsevier: Amsterdam, The Netherlands, 2017; pp. 346–401. [Google Scholar]
- Bordón, M.G.; Alasino, N.P.X.; Villanueva-Lazo, Á.; Carrera-Sánchez, C.; Pedroche-Jiménez, J.; del Carmen Millán-Linares, M.; Ribotta, P.D.; Martínez, M.L. Scale-up and optimization of the spray drying conditions for the development of functional microparticles based on chia oil. Food Bioprod. Process. 2021, 130, 48–67. [Google Scholar] [CrossRef]
- Chopde, S.; Datir, R.; Deshmukh, G.; Dhotre, A.; Patil, M. Nanoparticle formation by nanospray drying & its application in nanoencapsulation of food bioactive ingredients. J. Agric. 2020, 2, 100085. [Google Scholar] [CrossRef]
- Jameel, Q.Y.; Ajeel, M.A.; Mohammed, N.K. Nutritional and anti-gastro ulcerative role of the gum Arabic (Acacia senegal L.) compared to a reference drug. Funct. Foods Health Dis. 2022, 12, 294–307. [Google Scholar]
- Chranioti, C.; Tzia, C. Arabic gum mixtures as encapsulating agents of freeze-dried fennel oleoresin products. Food Bioprocess Technol. 2014, 7, 1057–1065. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, J.; Nishtha. Natural gums as corrosion inhibitor: A review. Mater. Today Proc. 2022, 16, 2215. [Google Scholar] [CrossRef]
- Almansour, K.; Ali, R.; Alheibshy, F.; Almutairi, T.J.; Alshammari, R.F.; Alhajj, N.; Arpagaus, C.; Elsayed, M.M.A. Particle Engineering by Nano Spray Drying: Optimization of Process Parameters with Hydroethanolic versus Aqueous Solutions. Pharmaceutics 2022, 14, 800. [Google Scholar] [CrossRef]
- Plati, F.; Papi, R.; Paraskevopoulou, A. Characterization of Oregano Essential Oil (Origanum vulgare L. subsp. hirtum) Particles Produced by the Novel Nano Spray Drying Technique. Foods 2021, 10, 2923. [Google Scholar] [CrossRef]
- Šturm, L.; Osojnik Črnivec, I.G.; Istenič, K.; Ota, A.; Megušar, P.; Slukan, A.; Humar, M.; Levic, S.; Nedović, V.; Kopinč, R.; et al. Encapsulation of non-dewaxed propolis by freeze-drying and spray-drying using gum Arabic, maltodextrin and inulin as coating materials. Food Bioprod. Process. 2019, 116, 196–211. [Google Scholar] [CrossRef]
- Kyriakoudi, A.; Tsimidou, M.Z. Properties of encapsulated saffron extracts in maltodextrin using the Büchi B-90 nano spray-dryer. Food Chem. 2018, 266, 458–465. [Google Scholar] [CrossRef]
- Machado, M.H.; Almeida, A.d.R.; Maciel, M.V.d.O.B.; Vitorino, V.B.; Bazzo, G.C.; da Rosa, C.G.; Sganzerla, W.G.; Mendes, C.; Barreto, P.L.M. Microencapsulation by spray drying of red cabbage anthocyanin-rich extract for the production of a natural food colorant. Biocatal. Agric. Biotechnol. 2022, 39, 1–10. [Google Scholar] [CrossRef]
- Busch, V.M.; Pereyra-Gonzalez, A.; Šegatin, N.; Santagapita, P.R.; Poklar Ulrih, N.; Buera, M.P. Propolis encapsulation by spray drying: Characterization and stability. LWT 2017, 75, 227–235. [Google Scholar] [CrossRef]
- Ligarda-Samanez, C.A.; Moscoso-Moscoso, E.; Choque-Quispe, D.; Palomino-Rincón, H.; Martínez-Huamán, E.L.; Huamán-Carrión, M.L.; Peralta-Guevara, D.E.; Aroni-Huamán, J.; Arévalo-Quijano, J.C.; Palomino-Rincón, W.; et al. Microencapsulation of Erythrocytes Extracted from Cavia porcellus Blood in Matrices of Tara Gum and Native Potato Starch. Foods 2022, 11, 2107. [Google Scholar] [CrossRef]
- Carpentier, J.; Conforto, E.; Chaigneau, C.; Vendeville, J.-E.; Maugard, T. Microencapsulation and controlled release of α-tocopherol by complex coacervation between pea protein and tragacanth gum: A comparative study with arabic and tara gums. Innov. Food Sci. Emerg. Technol. 2022, 77, 102951. [Google Scholar] [CrossRef]
- Wardhani, D.H.; Wardana, I.N.; Ulya, H.N.; Cahyono, H.; Kumoro, A.C.; Aryanti, N. The effect of spray-drying inlet conditions on iron encapsulation using hydrolysed glucomannan as a matrix. Food Bioprod. Process. 2020, 123, 72–79. [Google Scholar] [CrossRef]
- Pedrozo, R.C.; Antônio, E.; Khalil, N.M.; Mainardes, R.M. Bovine serum albumin-based nanoparticles containing the flavonoid rutin produced by nano spray drying. Braz. J. Pharm. Sci. 2020, 56, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ligarda-Samanez, C.A.; Choque-Quispe, D.; Moscoso-Moscoso, E.; Huamán-Carrión, M.L.; Ramos-Pacheco, B.S.; Peralta-Guevara, D.E.; Cruz, G.D.; Martínez-Huamán, E.L.; Arévalo-Quijano, J.C.; Muñoz-Saenz, J.C.; et al. Obtaining and Characterizing Andean Multi-Floral Propolis Nanoencapsulates in Polymeric Matrices. Foods 2022, 11, 3153. [Google Scholar] [CrossRef]
- Choque-Quispe, D.; Mojo-Quisani, A.; Ligarda-Samanez, C.A.; Calla-Florez, M.; Ramos-Pacheco, B.S.; Zamalloa-Puma, L.M.; Peralta-Guevara, D.E.; Solano-Reynoso, A.M.; Choque-Quispe, Y.; Zamalloa-Puma, A. Preliminary Characterization of a Spray-Dried Hydrocolloid from a High Andean Algae (Nostoc sphaericum). Foods 2022, 11, 1640. [Google Scholar] [CrossRef]
- Ligarda-Samanez, C.A.; Choque-Quispe, D.; Moscoso-Moscoso, E.; Huamán-Carrión, M.L.; Ramos-Pacheco, B.S.; De la Cruz, G.; Arévalo-Quijano, J.C.; Muñoz-Saenz, J.C.; Muñoz-Melgarejo, M.; Quispe-Quezada, U.R.; et al. Microencapsulation of Propolis and Honey Using Mixtures of Maltodextrin/Tara Gum and Modified Native Potato Starch/Tara Gum. Foods 2023, 12, 1873. [Google Scholar] [CrossRef] [PubMed]
- Ah-Hen, K.; Fuenzalida, C.; Hess, S.; Contreras, A.; Vega-Gálvez, A.; Lemus-Mondaca, R. Antioxidant Capacity and Total Phenolic Compounds of Twelve Selected Potato Landrace Clones Grown in Southern Chile. Chil. J. Agric. Res. 2012, 72, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Lewis, C.E.; Walker, J.R.L.; Lancaster, J.E.; Sutton, K.H. Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I: Coloured cultivars of Solanum tuberosum L. J. Sci. Food Agric. 1998, 77, 45–57. [Google Scholar] [CrossRef]
- Tejeda, L.; Mollinedo, P.; Aliaga-Rossel, E.; Peñarrieta, J.M. Antioxidants and nutritional composition of 52 cultivars of native Andean potatoes. Potato Res. 2020, 63, 579–588. [Google Scholar] [CrossRef]
- Ticsihua-Huamán, J.; Arteaga-Llacza, P.; Miranda-Jara, A.; Quispe-Barrantes, P.; Miranda-Chávez, H.; Quispe-Solano, M.Á.; Chuquilín-Goicochea, R. Changes in Sugars, Dry Matter, and Characteristics Sensory of Chip of Native Potato in the Chopcca Region. In Proceedings of the 7th Brazilian Technology Symposium (BTSym’21); Springer: Cham, Switzerland, 2022; pp. 554–559. [Google Scholar]
- García-Torres, S.M.; Chire-Fajardo, G.C.; Repo-Carrasco, R.; Ureña-Peralta, M.O. Efecto de la fritura sobre los componentes bioactivos de la papa nativa (Solanum tuberosum sp.) Puka Ambrosio. Rev. Chil. Nutr. 2022, 49, 7–16. [Google Scholar] [CrossRef]
- Natividad Bardales, Á.D.; Muñoz Garay, S.G.; Villanueva Tiburcio, J.E.; Rojas Portal, R.M.; Chamorro Gómez, R.E.; Cueto Rosales, C.R.; Bravo Romaina, J.M.; Beraun Bedoya, J.R.; Mendoza Aguilar, A. Caracterización fisicoquímica de cuatro variedades de papas nativas (Solanum tuberosum) con aptitud para fritura, cultivadas en dos zonas en Huánuco. Rev. La Soc. Química Del Perú 2022, 88, 237–250. [Google Scholar] [CrossRef]
- Cerón-Lasso, M.; Alzate-Arbeláez, A.F.; Rojano, B.A.; Ñuztez-Lopez, C.E. Composición Fisicoquímica y Propiedades Antioxidantes de Genotipos Nativos de Papa Criolla (Solanum tuberosum Grupo Phureja). J. Inf. Tecnológica 2018, 29, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Villacrés, E.; Quilca, N.; Reinoso, I.A.; Monteros, C.; Muñoz, R. Valorización Nutricional y Funcional de las Papas Nativas (Solanum andígena ssp.); INIAP/CIP: Guaranda, Ecuador, 2011. [Google Scholar]
- Ćujić Nikolić, N.; Žilić, S.; Simić, M.; Nikolić, V.; Živković, J.; Marković, S.; Šavikin, K. Microencapsulates of Blue Maize Polyphenolics as a Promising Ingredient in the Food and Pharmaceutical Industry: Characterization, Antioxidant Properties, and In Vitro-Simulated Digestion. Foods 2023, 12, 1870. [Google Scholar] [CrossRef]
- Arumugham, T.; Krishnamoorthy, R.; AlYammahi, J.; Hasan, S.W.; Banat, F. Spray dried date fruit extract with a maltodextrin/gum arabic binary blend carrier agent system: Process optimization and product quality. Int. J. Biol. Macromol. 2023, 238, 124340. [Google Scholar] [CrossRef]
- Rosales-Chimal, S.; Navarro-Cortez, R.O.; Bello-Perez, L.A.; Vargas-Torres, A.; Palma-Rodríguez, H.M. Optimal conditions for anthocyanin extract microencapsulation in taro starch: Physicochemical characterization and bioaccessibility in gastrointestinal conditions. Int. J. Biol. Macromol. 2023, 227, 83–92. [Google Scholar] [CrossRef]
- Vergara, C.; Pino, M.T.; Zamora, O.; Parada, J.; Pérez, R.; Uribe, M.; Kalazich, J. Microencapsulation of Anthocyanin Extracted from Purple Flesh Cultivated Potatoes by Spray Drying and Its Effects on In Vitro Gastrointestinal Digestion. Molecules 2020, 25, 722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Tejeda, Y.V.; Salinas-Moreno, Y.; Hernández-Martínez, Á.R.; Martínez-Bustos, F. Encapsulation of purple maize anthocyanins in phosphorylated starch by spray drying. Cereal Chem. 2016, 93, 130–137. [Google Scholar] [CrossRef]
- Cortez-Trejo, M.C.; Wall-Medrano, A.; Gaytán-Martínez, M.; Mendoza, S. Microencapsulation of pomegranate seed oil using a succinylated taro starch: Characterization and bioaccessibility study. Food Biosci. 2021, 41, 100929. [Google Scholar] [CrossRef]
- Pires, F.C.S.; da Silva Pena, R. Optimization of spray drying process parameters for tucupi powder using the response surface methodology. J. Food Sci. Technol. 2017, 54, 3459–3472. [Google Scholar] [CrossRef]
- Daza, L.D.; Fujita, A.; Fávaro-Trindade, C.S.; Rodrigues-Ract, J.N.; Granato, D.; Genovese, M.I. Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food Bioprod. Process. 2016, 97, 20–29. [Google Scholar] [CrossRef]
- Nayak, C.A.; Rastogi, N.K. Effect of Selected Additives on Microencapsulation of Anthocyanin by Spray Drying. Dry. Technol. 2010, 28, 1396–1404. [Google Scholar] [CrossRef]
- Yinbin, L.; Wu, L.; Weng, M.; Tang, B.; Lai, P.; Chen, J. Effect of different encapsulating agent combinations on physicochemical properties and stability of microcapsules loaded with phenolics of plum (Prunus salicina lindl.). Powder Technol. 2018, 340, 459–464. [Google Scholar] [CrossRef]
- Mousavi Kalajahi, S.E.; Ghandiha, S. Optimization of spray drying parameters for encapsulation of Nettle (Urtica dioica L.) extract. LWT 2022, 158, 113149. [Google Scholar] [CrossRef]
- Righi da Rosa, J.; Nunes, G.L.; Motta, M.H.; Fortes, J.P.; Cezimbra Weis, G.C.; Rychecki Hecktheuer, L.H.; Muller, E.I.; Ragagnin de Menezes, C.; Severo da Rosa, C. Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocoll. 2019, 89, 742–748. [Google Scholar] [CrossRef]
- Lao, F.; Giusti, M.M. The effect of pigment matrix, temperature and amount of carrier on the yield and final color properties of spray dried purple corn (Zea mays L.) cob anthocyanin powders. Food Chem. 2017, 227, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Das, A.B.; Goud, V.V.; Das, C. Microencapsulation of anthocyanin extract from purple rice bran using modified rice starch and its effect on rice dough rheology. Int. J. Biol. Macromol. 2019, 124, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Franco, J.G.; Cefali, L.C.; Ataide, J.A.; Santini, A.; Souto, E.B.; Mazzola, P.G. Effect of nanoencapsulation of blueberry (Vaccinium myrtillus): A green source of flavonoids with antioxidant and photoprotective properties. Sustain. Chem. Pharm. 2021, 23, 100515. [Google Scholar] [CrossRef]
- Gil-Rivero, A.E.; Lopéz-Medina, E.; Mostacero-León, J.; Anthony, J. Papas nativas con potencial antioxidante, cultivadas en el norte del Perú. Boletín Latinoam. Y Del Caribe Plantas Med. Y Aromáticas 2019, 18, 289–324. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Oscar, J.-G. Extraction, Microencapsulation, Color Properties, and Experimental Design of Natural Pigments Obtained by Spray Drying. Food Eng. Rev. 2021, 13, 769–811. [Google Scholar] [CrossRef]
- Cilek, B.; Luca, A.; Hasirci, V.; Sahin, S.; Sumnu, G. Microencapsulation of phenolic compounds extracted from sour cherry pomace: Effect of formulation, ultrasonication time and core to coating ratio. Eur. Food Res. Technol. 2012, 235, 587–596. [Google Scholar] [CrossRef]
- Heng, D.; Lee, S.H.; Ng, W.K.; Tan, R.B.H. The nano spray dryer B-90. Expert Opin. Drug Deliv. 2011, 8, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Masiá, R.; López-Nicolás, R.; Periago, M.J.; Ros, G.; Lagaron, J.M.; López-Rubio, A. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem. 2015, 168, 124–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Choque-Quispe, D.; Ligarda-Samanez, C.A.; Huamán-Rosales, E.R.; Aguirre Landa, J.P.; Agreda Cerna, H.W.; Zamalloa-Puma, M.M.; Álvarez-López, G.J.; Barboza-Palomino, G.I.; Alzamora-Flores, H.; Gamarra-Villanueva, W. Bioactive Compounds and Sensory Analysis of Freeze-Dried Prickly Pear Fruits from an Inter-Andean Valley in Peru. Molecules 2023, 28, 3862. [Google Scholar] [CrossRef] [PubMed]
- Delia, S.-C.; Chávez, G.M.; León-Martínez Frank, M.; Araceli, S.-G.P.; Irais, A.-L.; Franco, A.-A. Spray drying microencapsulation of betalain rich extracts from Escontria chiotilla and Stenocereus queretaroensis fruits using cactus mucilage. Food Chem. 2019, 272, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Pashazadeh, H.; Zannou, O.; Ghellam, M.; Koca, I.; Galanakis, C.M.; Aldawoud, T.M.S. Optimization and Encapsulation of Phenolic Compounds Extracted from Maize Waste by Freeze-Drying, Spray-Drying, and Microwave-Drying Using Maltodextrin. Foods 2021, 10, 1396. [Google Scholar] [CrossRef]
- Başyiğit, B.; Sağlam, H.; Kandemir, Ş.; Karaaslan, A.; Karaaslan, M. Microencapsulation of sour cherry oil by spray drying: Evaluation of physical morphology, thermal properties, storage stability, and antimicrobial activity. Powder Technol. 2020, 364, 654–663. [Google Scholar] [CrossRef]
- Kurozawa, L.E.; Park, K.J.; Hubinger, M.D. Effect of maltodextrin and gum arabic on water sorption and glass transition temperature of spray dried chicken meat hydrolysate protein. J. Food Eng. 2009, 91, 287–296. [Google Scholar] [CrossRef]
- Descamps, N.; Palzer, S.; Roos, Y.H.; Fitzpatrick, J.J. Glass transition and flowability/caking behaviour of maltodextrin DE 21. J. Food Eng. 2013, 119, 809–813. [Google Scholar] [CrossRef]
- Fredes, C.; Becerra, C.; Parada, J.; Robert, P. The Microencapsulation of Maqui (Aristotelia chilensis (Mol.) Stuntz) Juice by Spray-Drying and Freeze-Drying Produces Powders with Similar Anthocyanin Stability and Bioaccessibility. Molecules 2018, 23, 1227. [Google Scholar] [CrossRef] [Green Version]
- Ligarda-Samanez, C.A.; Choque-Quispe, D.; Allende-Allende, L.F.; Ramos Pacheco, B.S.; Peralta-Guevara, D.E. Calidad sensorial y proximal en conservas de mondongo de res (Bos taurus) en salsa de ají amarillo (Capsicum baccatum). Cienc. Y Tecnol. Agropecu. 2023, 24, 13. [Google Scholar] [CrossRef]
- Ligarda-Samanez, C.A.; Choque-Quispe, D.; Palomino-Rincón, H.; Ramos-Pacheco, B.S.; Moscoso-Moscoso, E.; Huamán-Carrión, M.L.; Peralta-Guevara, D.E.; Obregón-Yupanqui, M.E.; Aroni-Huamán, J.; Bravo-Franco, E.Y.; et al. Modified Polymeric Biosorbents from Rumex acetosella for the Removal of Heavy Metals in Wastewater. Polymers 2022, 14, 2191. [Google Scholar] [CrossRef]
- Choque-Quispe, D.; Ligarda-Samanez, C.A.; Ramos-Pacheco, B.S.; Leguía-Damiano, S.; Calla-Florez, M.; Zamalloa-Puma, L.M.; Colque-Condeña, L. Phenolic compounds, antioxidant capacity, and protein content of three varieties of germinated quinoa (Chenopodium quinoa Willd). Ing. E Investig. 2021, 41, 7. [Google Scholar] [CrossRef]
Properties | Phenolic Compounds (mg GAE/g) | Flavonoids (mg Quercetin Equivalent/g) | DPPH (µmol TE/g) | ABTS (µmol TE/g) | Anthocyanins (mg C3G Equivalent/g) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
± | SD | * | ± | SD | * | ± | SD | * | ± | SD | * | ± | SD | * | ||||||
Clone 1 | 6.72 | ± | 0.04 | a | 3.00 | ± | 0.18 | a | 131.57 | ± | 0.60 | a | 22.83 | ± | 0.11 | a | 7.79 | ± | 0.08 | a |
Clone 2 | 5.77 | ± | 0.06 | b | 2.31 | ± | 0.09 | b | 21.30 | ± | 1.07 | bc | 21.37 | ± | 0.25 | b | 6.23 | ± | 0.04 | b |
Clone 3 | 4.82 | ± | 0.03 | c | 2.21 | ± | 0.09 | b | 20.51 | ± | 1.16 | c | 20.38 | ± | 0.14 | c | 6.58 | ± | 0.13 | c |
Clone 4 | 6.44 | ± | 0.07 | d | 2.87 | ± | 0.33 | a | 22.89 | ± | 1.39 | b | 21.41 | ± | 0.10 | b | 7.20 | ± | 0.05 | b |
Clone 5 | 4.64 | ± | 0.04 | e | 1.90 | ± | 0.11 | c | 20.18 | ± | 0.25 | c | 20.17 | ± | 0.04 | c | 5.19 | ± | 0.34 | c |
Clone 6 | 4.57 | ± | 0.04 | e | 1.68 | ± | 0.11 | c | 15.08 | ± | 1.80 | d | 17.52 | ± | 0.06 | d | 2.53 | ± | 0.02 | d |
Run | A | B | Yield | Hygroscopicity | Aw | Moisture | DPPH | EE | Phenolic Compounds | Flavonoids |
---|---|---|---|---|---|---|---|---|---|---|
°C | L/h | % | % | % | µmol TE/g | % | mg GAE/g | mg Quercetin/g | ||
± SD | ± SD | ± SD | ± SD | ± SD | ± SD | ± SD | ± SD | |||
T1 | 96 | 120 | 66.28 ± 0.33 | 10.86 ± 0.29 | 0.44 ± 0.01 | 3.21 ± 0.09 | 1.11 ± 0.19 | 71.44 ± 0.29 | 4.35 ± 0.12 | 0.94 ± 0.14 |
T2 | 116 | 120 | 69.91 ± 0.25 | 8.65 ± 0.25 | 0.37 ± 0.02 | 2.63 ± 0.08 | 8.58 ± 0.13 | 74.57 ± 0.19 | 4.54 ± 0.09 | 1.18 ± 0.25 |
T3 | 96 | 150 | 66.35 ± 0.29 | 10.14 ± 0.25 | 0.42 ± 0.01 | 3.19 ± 0.06 | 4.64 ± 0.21 | 71.69 ± 0.25 | 4.36 ± 0.12 | 0.93 ± 0.08 |
T4 | 116 | 150 | 74.05 ± 0.31 | 8.09 ± 0.29 | 0.36 ± 0.01 | 2.54 ± 0.09 | 13.01 ± 0.23 | 74.93 ± 0.23 | 4.56 ± 0.17 | 1.20 ± 0.17 |
T5 | 92 | 135 | 68.96 ± 0.27 | 12.26 ± 0.19 | 0.45 ± 0.03 | 3.19 ± 0.10 | 1.19 ± 0.12 | 68.93 ± 0.18 | 4.19 ± 0.21 | 0.60 ± 0.25 |
T6 | 120 | 135 | 74.28 ± 0.24 | 7.82 ± 0.14 | 0.35 ± 0.01 | 2.45 ± 0.07 | 28.38 ± 0.14 | 89.26 ± 0.21 | 5.43 ± 0.19 | 2.18 ± 0.14 |
T7 | 106 | 114 | 67.00 ± 0.25 | 9.25 ± 0.19 | 0.39 ± 0.02 | 3.14 ± 0.08 | 5.42 ± 0.13 | 71.55 ± 0.24 | 4.35 ± 0.14 | 0.99 ± 0.10 |
T8 | 106 | 156 | 68.21 ± 0.26 | 8.10 ± 0.22 | 0.38 ± 0.01 | 2.64 ± 0.07 | 7.45 ± 0.12 | 74.08 ± 0.26 | 4.51 ± 0.13 | 1.15 ± 0.08 |
T9 | 106 | 135 | 69.15 ± 0.21 | 8.49 ± 0.19 | 0.37 ± 0.04 | 2.98 ± 0.09 | 6.33 ± 0.17 | 73.73 ± 0.23 | 4.49 ± 0.20 | 1.13 ± 0.07 |
T10 | 106 | 135 | 69.60 ± 0.22 | 8.60 ± 0.14 | 0.38 ± 0.01 | 2.85 ± 0.08 | 6.90 ± 0.13 | 73.60 ± 0.19 | 4.47 ± 0.18 | 1.14 ± 0.12 |
T11 | 106 | 135 | 69.10 ± 0.27 | 8.48 ± 0.12 | 0.38 ± 0.02 | 2.99 ± 0.07 | 6.40 ± 0.15 | 73.82 ± 0.28 | 4.49 ± 0.21 | 1.13 ± 0.13 |
T12 | 106 | 135 | 69.78 ± 0.26 | 8.61 ± 0.16 | 0.37 ± 0.01 | 2.84 ± 0.04 | 6.81 ± 0.16 | 73.58 ± 0.21 | 4.48 ± 0.08 | 1.15 ± 0.11 |
Parameter | Yield | Hygroscopicity | Aw | Moisture | DPPH | EE | Phenolic Compounds | Flavonoids |
---|---|---|---|---|---|---|---|---|
44.52 * | 13.86 * | 0.0092 * | 0.65 * | 366.90 * | 153.19 * | 0.57 * | 0.94 * | |
4.40 * | 1.05 * | 0.0003 * | 0.083 * | 14.73 * | 2.18 | 0.008 | 0.007 | |
4.14 * | 0.0064 | 3.6 × 10−5 | 0.0012 | 0.20 | 0.0030 | 2.5 × 10−5 | 0.0002 | |
6.31 * | 3.77 * | 0.0014 * | 0.0092 | 62.45 | 25.44 | 0.094 | 0.045 | |
6.75 * | 0.042 | 0.0003 * | 4.48 × 10−5 | 7.43 | 8.70 | 0.031 | 0.038 | |
p-value model | 0.0006 | 0.0002 | <0.0001 | 0.004 | 0.03 | 0.11 | 0.11 | 0.12 |
p-value (lack of fit) | 0.06 | 0.007 | 0.017 | 0.22 | 0.0002 | <0.0001 | <0.0001 | <0.0001 |
R2 | 0.96 | 0.97 | 0.99 | 0.91 | 0.82 | 0.71 | 0.71 | 0.70 |
Regression Coefficient | Yield | Hygroscopicity | Aw | Moisture | Antioxidant Capacity | EE | Phenolic Compounds | Flavonoids |
---|---|---|---|---|---|---|---|---|
β0 | 163.39 | 123.80 | 3.33 | 0.67 | 211.14 | 156.40 | 9.63 | 1.11 |
βA | −2.81 * | −1.82 * | −0.04 * | 0.07 * | −6.24 * | −3.87 * | −0.24 * | −0.15 * |
βB | 0.58 * | −0.15 * | −0.01 * | 0.009 * | 1.24 | 1.43 | 0.09 | 0.09 |
βAB | 0.007 * | 0.0003 | 0.00002 | −0.0001 | 0.002 | 0.0002 | 0.00002 | 0.00005 |
βA2 | 0.01 * | 0.008 * | 0.00015 * | −0.0004 | 0.032 | 0.02 | 0.001 | 0.0009 |
βB2 | −0.004 * | 0.0004 | 0.00003 * | −0.00001 | −0.005 | −0.005 | −0.0003 | −0.0004 |
Variable | Experimental Range | Optimal Value | Desirability | |
---|---|---|---|---|
Independent variables | Low | High | ||
A: Inlet temperature (°C) | 96 | 116 | 120 | 0.86 |
B: Air flow (L/h) | 120 | 150 | 141 | |
Dependent variables | Low | High | Experimental value | Predicted value |
( ± SD) | ( ± SD) | ( ± SD) | ||
Yield (%) | 66.28 ± 0.33 | 74.28 ± 0.24 | 73.59 ± 0.18 | 75.37 |
Hygroscopicity (%) | 7.82 ± 0.14 | 12.26 ± 0.19 | 6.82 ± 0.13 | 8.11 |
Water activity | 0.35 ± 0.01 | 0.45 ± 0.03 | 0.35 ± 0.01 | 0.35 |
Moisture (%) | 2.45 ± 007 | 3.21 ± 009 | 2.55 ± 0.11 | 2.39 |
Antioxidant capacity (µmol TE/g) | 1.11 ± 0.19 | 28.38 ± 0.14 | 23.05 ± 0.15 | 22.86 |
Encapsulation efficiency (%) | 68.93 ± 0.18 | 89.26 ± 0.21 | 81.80 ± 0.12 | 83.86 |
Phenolic Compounds (mg GAE/g) | 4.19 ± 0.21 | 5.43 ± 0.19 | 4.61 ± 0.17 | 5.10 |
Flavonoids (mg quercetin/g) | 0.6 ± 0.25 | 2.18 ± 0.14 | 1.70 ± 0.16 | 1.79 |
Treatments | L* | a* | b* | ΔE*ab | Referential Color | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
± SD | * | ± SD | * | ± SD | * | ± SD | * | ||||||
T1 | 83.60 | 0.41 | ad | 7.49 | 0.18 | a | −1.61 | 0.03 | a | 66.79 | 0.39 | ac | |
T2 | 84.55 | 0.39 | b | 7.35 | 0.24 | ab | −1.55 | 0.01 | ag | 67.73 | 0.37 | b | |
T3 | 85.00 | 0.43 | b | 6.80 | 0.19 | c | −1.19 | 0.02 | b | 68.14 | 0.41 | b | |
T4 | 84.54 | 0.62 | b | 7.49 | 0.34 | a | −1.05 | 0.03 | c | 67.75 | 0.59 | b | |
T5 | 84.69 | 0.28 | b | 6.26 | 0.13 | d | −1.33 | 0.02 | d | 67.79 | 0.27 | b | |
T6 | 83.38 | 0.08 | a | 7.20 | 0.06 | b | −0.68 | 0.03 | e | 66.58 | 0.07 | a | |
T7 | 82.09 | 0.51 | c | 6.68 | 0.06 | ae | −1.44 | 0.01 | f | 65.23 | 0.51 | d | |
T8 | 84.29 | 0.15 | bd | 7.42 | 0.04 | ab | −1.53 | 0.03 | g | 67.47 | 0.15 | bc | |
T9 | 83.21 | 0.47 | a | 6.66 | 0.05 | ce | −1.43 | 0.09 | f | 66.34 | 0.47 | a | |
T10 | 83.18 | 0.55 | a | 6.51 | 0.09 | de | −1.50 | 0.03 | fg | 66.30 | 0.55 | a | |
T11 | 83.20 | 0.47 | a | 6.67 | 0.05 | ce | −1.44 | 0.09 | f | 66.34 | 0.47 | a | |
T12 | 83.18 | 0.55 | a | 6.51 | 0.08 | de | −1.50 | 0.03 | fg | 66.30 | 0.54 | a | |
Toptimal | 82.39 | 0.42 | c | 5.76 | 0.07 | f | −1.85 | 0.06 | h | 65.45 | 0.01 | d |
Treatments | Particle Size (nm) | ζ Potential (mV) | ||||
---|---|---|---|---|---|---|
±SD | * | ±SD | * | |||
T1 | 143.58 | 0.01 | a | −25.02 | 0.01 | a |
T2 | 136.33 | 0.03 | b | −28.30 | 0.07 | b |
T3 | 159.37 | 0.02 | c | −33.16 | 0.03 | c |
T4 | 134.02 | 0.03 | d | −22.79 | 0.08 | d |
T5 | 133.09 | 0.02 | e | −31.12 | 0.02 | e |
T6 | 148.12 | 0.03 | f | −24.38 | 0.01 | f |
T7 | 156.87 | 0.04 | g | −33.57 | 0.06 | g |
T8 | 165.13 | 0.05 | h | −26.38 | 0.05 | h |
T9 | 156.40 | 0.02 | i | −27.51 | 0.03 | i |
T10 | 153.10 | 0.03 | j | −23.85 | 0.02 | j |
T11 | 155.30 | 0.04 | k | −29.39 | 0.03 | k |
T12 | 156.10 | 0.03 | l | −28.93 | 0.05 | l |
Optimal | 148.14 | 0.02 | f | −29.41 | 0.04 | k |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ligarda-Samanez, C.A.; Choque-Quispe, D.; Moscoso-Moscoso, E.; Palomino-Rincón, H.; Taipe-Pardo, F.; Aguirre Landa, J.P.A.; Arévalo-Quijano, J.C.; Muñoz-Saenz, J.C.; Quispe-Quezada, U.R.; Huamán-Carrión, M.L.; et al. Nanoencapsulation of Phenolic Extracts from Native Potato Clones (Solanum tuberosum spp. andigena) by Spray Drying. Molecules 2023, 28, 4961. https://doi.org/10.3390/molecules28134961
Ligarda-Samanez CA, Choque-Quispe D, Moscoso-Moscoso E, Palomino-Rincón H, Taipe-Pardo F, Aguirre Landa JPA, Arévalo-Quijano JC, Muñoz-Saenz JC, Quispe-Quezada UR, Huamán-Carrión ML, et al. Nanoencapsulation of Phenolic Extracts from Native Potato Clones (Solanum tuberosum spp. andigena) by Spray Drying. Molecules. 2023; 28(13):4961. https://doi.org/10.3390/molecules28134961
Chicago/Turabian StyleLigarda-Samanez, Carlos A., David Choque-Quispe, Elibet Moscoso-Moscoso, Henry Palomino-Rincón, Fredy Taipe-Pardo, John Peter Aguirre Aguirre Landa, José C. Arévalo-Quijano, Jenny C. Muñoz-Saenz, Uriel R. Quispe-Quezada, Mary L. Huamán-Carrión, and et al. 2023. "Nanoencapsulation of Phenolic Extracts from Native Potato Clones (Solanum tuberosum spp. andigena) by Spray Drying" Molecules 28, no. 13: 4961. https://doi.org/10.3390/molecules28134961
APA StyleLigarda-Samanez, C. A., Choque-Quispe, D., Moscoso-Moscoso, E., Palomino-Rincón, H., Taipe-Pardo, F., Aguirre Landa, J. P. A., Arévalo-Quijano, J. C., Muñoz-Saenz, J. C., Quispe-Quezada, U. R., Huamán-Carrión, M. L., Gutiérrez-Gómez, E., Sucari-León, R., Luciano-Alipio, R., Muñoz-Saenz, J. M., & Guzmán Gutiérrez, R. J. (2023). Nanoencapsulation of Phenolic Extracts from Native Potato Clones (Solanum tuberosum spp. andigena) by Spray Drying. Molecules, 28(13), 4961. https://doi.org/10.3390/molecules28134961