Catalytic Decomposition of H2O2 in the Aqueous Dispersions of the Potassium Polytitanates Produced in Different Conditions of Molten Salt Synthesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. PPTs Characterization
No | Reference | S, m2/g | Contents * of Tin+, at.% | [H2O]PA(25–390 °C), wt.% | ||||
---|---|---|---|---|---|---|---|---|
Ti4+ | Ti3+ | Ti2+ | ||||||
1 | (30-70-0) | 0 | 2.33 | 79.6 | 74.8 | 21.9 | 3,3 | 8.5 |
2 | (30-50-20) | 0.4 | 1.67 | 76.3 | 83.9 | 16.1 | - | 7.9 |
3 | (30-30-40) | 1.33 | 1 | 72.9 | 96.0 | 4.0 | - | 6.0 |
4 | (10-3-87) | 29.0 | 0.3 | 71.3 | 100 | - | - | 2.5 |
N No | Reference of the Obtained PPT Product | Synthesis Conditions | ||||
---|---|---|---|---|---|---|
Content of the Component, wt.% | Weight Ratio of the Components | |||||
TiO2 | KOH | KNO3 | [KNO3]/[KOH] | [KOH]/[TiO2] | ||
1 | (30-70-0) | 30 | 70 | 0 | 0 | 2.33 |
2 | (30-50-20) | 30 | 50 | 20 | 0.4 | 1.67 |
3 | (30-30-40) | 30 | 30 | 40 | 1.33 | 1 |
4 | (10-3-87) | 10 | 3 | 87 | 29 | 0.3 |
2.2. Kinetic Experiments
2.3. Mechanism of the Catalytic Decomposition of H2O2
3. Materials and Methods
3.1. PPT Synthesis
3.2. Materials Characterization
3.3. Kinetic Measurements
4. Conclusions
- The potassium polytitanate (PPT) produced via the treatment of TiO2 powder in the molten KOH-KNO3 mixtures is a new catalyst of the H2O2 decomposition in aqueous solutions.
- The potassium polytitanates synthesized using various [KNO3]/[KOH] ratios, in spite of the same chemical composition and similar quasi-amorphous layered structure, are characterized by different catalytic activities.
- The main cause of their different catalytic activity is related to various contents of TI4+ and Ti3+ in the PPT particles formed in the media characterized by different oxidizing activity.
- An increase in the [KNO3]/[KOH] ratio in the molten mixture used for the treatment supports the higher oxidation activity of the melt and reduced [Ti3+] in the final product.
- Increased contents of [Ti3+] promotes the transformation of the adsorbed hydronium ions in the additional surface Ti4+-OH (Ti4+-O(H)-Ti4+] groups, which interact with the adsorbed H2O2 molecules, forming Ti-O-O-H catalytic centers and increasing the rate of H2O2 decomposition.
- The regulated dilution of PPT-H2O2-H2O dispersion by water allows obtaining the system characterized with the constant rate of the hydrogen hydroxide decomposition as well as high and stable oxidizing conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noyori, R.; Aoki, M.; Sato, K. Green oxidation with aqueous hydrogen peroxide. Chem. Commun. 2003, 16, 1977–1986. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-F.; Phonthammachai, N.; Ramesh, K.; Zhong, Z.; White, T. Removing organic compounds from aqueous medium via wet peroxidation by gold catalysts. Environ. Sci. Technol. 2008, 42, 908–912. [Google Scholar] [CrossRef]
- Bednarz, S.; Ryś, B.; Bogdal, D. Application of Hydrogen Peroxide Encapsulated in Silica Xerogels to Oxidation Reactions. Molecules 2012, 17, 8068–8078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigoropoulou, G.; Clark, J.H.; Elings, J.A. Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant. Green Chem. 2003, 5, 1–7. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Mushtaq, S.; Al Qahtani, H.S.; Sedky, A.; Alam, M.W. Investigation of TiO2 nanoparticles synthesized by sol-gel method for effectual photodegradation, oxidation and reduction reaction. Crystals 2021, 11, 1456; [Google Scholar] [CrossRef]
- Backvall, J.E. Modern Oxidation Methods, 2nd ed.; VCH-Wiley: Weinheim, Germany, 2004. [Google Scholar]
- Piera, J.; Backvall, J.-E. Catalytic oxidation of organic Substrates by molecular oxygen and hydrogen peroxide by multistep electron Transfer—A biomimetic approach. Angew. Chem. Int. Ed. 2008, 47, 3506–3523. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, H. Application of photocatalysis and sonocatalysis for treatment of organic dye wastewater and the synergistic effect of ultrasound and light. Molecules 2023, 28, 3706. [Google Scholar] [CrossRef]
- Ohno, T.; Masaki, Y.; Hirayama, S.; Matsumura, M. TiO2-photocatalyzed epoxidation of 1-decene by H2O2 under visible light. J. Catal. 2001, 204, 163–168. [Google Scholar] [CrossRef]
- Boonstra, A.H.; Mutsaers, C.A.H.A. Adsorption of hydrogen peroxide on the surface of titanium dioxide. J. Phys. Chem. 1975, 79, 1940–1943. [Google Scholar] [CrossRef]
- Li, X.; Chen, C.; Zhao, J. Mechanism of Photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 2001, 17, 4118–4122. [Google Scholar] [CrossRef]
- Takahara, Y.K.; Hanada, Y.; Ohno, T.; Ushiroda, S.; Ikeda, S.; Matsumura, M. Photooxidation of organic compounds in a solution containing hydrogen peroxide and TiO2 particles under visible light. J. Appl. Electrochem. 2005, 35, 793–797. [Google Scholar] [CrossRef]
- Yu, J.G.; Low, J.X.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed and facets. J. Am. Chem. Soc. 2014, 136, 8839–8842. [Google Scholar] [CrossRef] [PubMed]
- Kaewtip, C.; Chadpunyanun, P.; Boonamnuayvitaya, V. Effect of co-dopants in TiO2–SiO2 thin films on the formaldehyde degradation. Water Air Soil Pollut. 2012, 223, 1455–1465. [Google Scholar] [CrossRef]
- Kondo, S.; Saruhashi, K.; Seki, K.; Matsubara, K.; Miyaji, K.; Kubo, T.; Matsumoto, K.; Katsuki, T.A. μ-Oxo-μ-η2:η2-peroxo titanium complex as a reservoir of active species in asymmetric epoxidation using hydrogen peroxide. Angew. Chem. Int. Ed. 2008, 47, 10195–10198. [Google Scholar] [CrossRef]
- Shan, Z.; Lu, Z.; Wang, L.; Zhou, C.; Ren, L.; Zhang, L.; Meng, X.; Ma, S.; Xiao, F.-S. Stable bulky particles formed by TS-1 zeolite nanocrystals in the presence of H2O2. ChemCatChem 2010, 4, 407–412. [Google Scholar] [CrossRef]
- Bryliakov, K.P. Titanium catalyzed enantioselective oxidation of thioethers with hydrogen peroxide. Org. Chem. 2014, 11, 87–96. [Google Scholar] [CrossRef]
- Ji, D.; Zhao, R.; Qian, G.; Yan, L.; Suo, J. Direct synthesis, characterization and catalytic performance of novel Ti-SBA-1 cubic mesoporous molecular sieves. Appl. Catal. A 2005, 281, 39–45. [Google Scholar] [CrossRef]
- Fingerhut, A.; Vargas-Caporali, J.; Leyva-Ramírez, M.A.; Juaristi, E.; Tsogoeva, S.B. Biomimetic Non-Heme Iron-Catalyzed Epoxidation of Challenging Terminal Alkenes Using Aqueous H2O2 as an Environmentally Friendly Oxidant. Molecules 2019, 24, 3182. [Google Scholar] [CrossRef] [Green Version]
- Lolli, A.; Maslova, V.; Bonincontro, D.; Basile, F.; Ortelli, S.; Albonetti, S. Selective Oxidation of HMF via Catalytic and Photocatalytic Processes Using Metal-Supported Catalysts. Molecules 2018, 23, 2792. [Google Scholar] [CrossRef] [Green Version]
- Kamegawa, T.; Suzuki, N.; Che, M. Synthesis and unique catalytic performance of ingle-site Ti-containing hierarchical macroporous silica with mesoporous frameworks. Langmuir 2011, 27, 2873–2879. [Google Scholar] [CrossRef]
- Morgado, E.; de Abreu, M.A.; Moure, G.T.; Marinkovic, B.A.; Jardim, P.M.; Araujo, A.S. Characterization of nanostructured titanates obtained by alkali treatment of TiO2-anatases with distinct crystal sizes. Chem. Mater. 2007, 19, 665–676. [Google Scholar] [CrossRef]
- Shahid, M.; El Saliby, I.; McDonagh, A.; Tijing, L.D.; Kim, J.-H.; Shon, H.K. Synthesis and characterization of potassium polytitanate for photocatalytic degradation of crystal violet. J. Environ. Sci. 2014, 26, 2348–2354. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Monjaras, T.; Gorokhovsky, A.; Escalante Garcia, J.I. Molten salt synthesis and characterization of potassium polytitanate ceramic precursors with varied TiO2/K2O molar ratios. J. Am. Ceram. Soc. 2008, 91, 3058–3065. [Google Scholar] [CrossRef]
- Guyodo, Y.; Bonville, P.; Till, J.L.; Ona-Nguema, G.; Lagroix, F.; Menguy, N. Constraining the Origins of the Magnetism of Lepidocrocite (γ-FeOOH): A Mössbauer and Magnetization Study. Front. Earth Sci. 2016, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Miranda, M.A.R.; Sasaki, J.M. The limit of application of the Scherrer equation. Acta Crystallogr. 2018, A74, 54–65. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef]
- Kanna, M.; Wongnawa, S.; Sherdshoopongse, P.; Boonsin, P. Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface. Songklanakarin J. Sci. Technol. 2005, 27, 1017–1026. [Google Scholar]
- Bezrodna, T.; Puchkovska, G.; Shymanovska, V.; Baran, J.; Ratajczak, H. IR-analysis of H-bonded H2O on the pure TiO2 surface. J. Mol. Struct. 2004, 700, 175–181. [Google Scholar] [CrossRef]
- Khalil, K.M.S.; Zaki, I.Z. Synthesis of high surface area titania powders via basic hydrolysis of Titanium (IV) isopropoxide. Powder Technol. 1997, 92, 233–239. [Google Scholar] [CrossRef]
- Huang, L.; Peng, F.; Ohuchi, F.S. “In situ” XPS study of band structures at Cu2O/TiO2 heterojunctions interface. Surf. Sci. 2009, 603, 2825–2834. [Google Scholar] [CrossRef]
- Adamiec, M.; Talik, E.; W’ojcik, K. Photoelectron spectroscopy of PbTiO3:Mn single crystals. J. Alloys Compd. 2007, 442, 222–224. [Google Scholar] [CrossRef]
- Steinfeld, J.I.; Francisco, J.S.; Hase, W.L. Chemical Kinetics and Dynamics, 2nd ed.; Prentice-Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Ichinose, H.; Terasaki, M.; Katsuki, H. Synthesis of peroxo-modified anatase sol from peroxo titanic acids solution. J. Ceram. Soc. Jpn. 1996, 104, 715–718. [Google Scholar] [CrossRef] [Green Version]
- Bonino, F.; Damin, A.; Ricchiardi, G.; Ricci, M.; Spano, G.; D’Aloisio, R.; Zecchina, A.; Lamberti, C.; Prestipino, C.; Bordiga, S. Ti-peroxo species in the TS-1/H2O2/H2O system. J. Phys. Chem. B 2004, 108, 3573–3583. [Google Scholar] [CrossRef]
- Bordiga, S.; Damin, A.; Bonino, F.; Ricchiardi, G.; Zecchina, A.; Tagliapietra, R.; Lamberti, C. Resonance Raman effects in TS-1: The structure of Ti(iv) species and reactivity towards H2O, NH3 and H2O2: An in situ study. Phys. Chem. Chem. Phys. 2003, 5, 4390–4393. [Google Scholar] [CrossRef]
- Do, S.-H.; Batchalor, B.; Lee, H.-K.; Kong, S.-H. Hydrogen peroxide decomposition on manganese oxide (pyrolusite): Kinetics, intermediates, and mechanism. Chemosphere 2009, 75, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Shen, Y.F.; Wang, J.Y.; Chen, X.; O’Young, C.-L.; Suib, S.L. Studies of decomposition of H2O2 over manganese oxide octahedral molecular sieve materials. J. Catal. 1998, 176, 321–328. [Google Scholar] [CrossRef]
- Laursen, A.B.; Man, I.C.; Trinhammer, O.L.; Rossmeisl, J.; Dahl, S. The sabatier principle illustrated by catalytic H2O2 decomposition on metal surfaces. J. Chem. Educ. 2011, 88, 1711–1715. [Google Scholar] [CrossRef]
- Semenov, N.N. Some Problems in Chemical Kinetics and Reactivity; V.2; Princeton University Press: Princeton, NJ, USA, 1959. [Google Scholar]
- Rao, G.R.; Sahu, H.R.; Mishra, B.G. Surface and catalytic properties of Cu–Ce–O composite oxides prepared by combustion method. Colloids Surf. A 2003, 220, 261–269. [Google Scholar] [CrossRef]
- Falcon, H.; Carbonio, R.E.; Fierro, J.L.G. Correlation of oxidation states in LaFexNi1−xO3+δ Oxides with Catalytic Activity for H2O2 Decomposition. J. Catal. 2001, 203, 264–272. [Google Scholar] [CrossRef]
- Voitko, K.; Tóth, A.; Demianenko, E.; Dobos, G.; Berke, B.; Bakalinska, B.; Grebenyuk, A.; Tombácz, E.; Kuts, V.; Tarasenko, Y.; et al. Catalytic performance of carbon nanotubes in H2O2 decomposition: Experimental and quantum chemical study. J. Colloid Interface Sci. 2015, 437, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Deraz, N.-A.M. Catalytic decomposition of H2O2 on promoted cobaltic oxide catalysts. Mater. Lett. 2002, 57, 914–920. [Google Scholar] [CrossRef]
- Alam, M.W.; Khalid, N.R.; Naeem, S.; Niaz, N.A.; Ahmad Mir, T.; Nahvi, I.; Souayeh, B.; Zaidi, N. Novel Nd-N/TiO2 Nanoparticles for Photocatalytic and antioxidant applications using hydrothermal approach. Materials 2022, 15, 6658. [Google Scholar] [CrossRef] [PubMed]
- Afanasiev, P.; Geantet, C. Synthesis of solid materials in molten nitrates. Coord. Chem. Rev. 1998, 2, 1725–1752. [Google Scholar] [CrossRef]
- Hasan, M.A.; Zaki, M.I.; Pasupulety, L.; Kumari, K. Promotion of the hydrogen peroxide decomposition activity of manganese oxide catalysts. Appl. Catal. A 1999, 181, 171–179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorokhovsky, A.; Morozova, N.; Yurkov, G.; Grapenko, O.; Kozinkin, A.; Kozakov, A.; Nikolskiy, A.; Tretyachenko, E.; Semenov, A.; Solodilov, V. Catalytic Decomposition of H2O2 in the Aqueous Dispersions of the Potassium Polytitanates Produced in Different Conditions of Molten Salt Synthesis. Molecules 2023, 28, 4945. https://doi.org/10.3390/molecules28134945
Gorokhovsky A, Morozova N, Yurkov G, Grapenko O, Kozinkin A, Kozakov A, Nikolskiy A, Tretyachenko E, Semenov A, Solodilov V. Catalytic Decomposition of H2O2 in the Aqueous Dispersions of the Potassium Polytitanates Produced in Different Conditions of Molten Salt Synthesis. Molecules. 2023; 28(13):4945. https://doi.org/10.3390/molecules28134945
Chicago/Turabian StyleGorokhovsky, Alexander, Natalia Morozova, Gleb Yurkov, Olga Grapenko, Alexander Kozinkin, Alexei Kozakov, Anatoliy Nikolskiy, Elena Tretyachenko, Andrey Semenov, and Vitaliy Solodilov. 2023. "Catalytic Decomposition of H2O2 in the Aqueous Dispersions of the Potassium Polytitanates Produced in Different Conditions of Molten Salt Synthesis" Molecules 28, no. 13: 4945. https://doi.org/10.3390/molecules28134945
APA StyleGorokhovsky, A., Morozova, N., Yurkov, G., Grapenko, O., Kozinkin, A., Kozakov, A., Nikolskiy, A., Tretyachenko, E., Semenov, A., & Solodilov, V. (2023). Catalytic Decomposition of H2O2 in the Aqueous Dispersions of the Potassium Polytitanates Produced in Different Conditions of Molten Salt Synthesis. Molecules, 28(13), 4945. https://doi.org/10.3390/molecules28134945