The Improved DC Breakdown Strength Induced by Enhanced Interaction between SiO2 Nanoparticles and LLDPE Matrix
Abstract
:1. Introduction
2. Results and Discussion
2.1. SiO2-NPs Modification Results
2.2. Morphology and Structure of SiO2-NPs and LLDPE/SiO2-NPs Nanocomposites
2.3. Thermal Properties of LLDPE/SiO2-NPs Nanocomposites
2.4. Rheological Properties of LLDPE/SiO2-NPs Nanocomposites
2.5. DC Breakdown Strength of LLDPE/SiO2-NPs Nanocomposites
3. Experimental
3.1. Materials
3.2. Surface Modification of SiO2-NPs
3.3. Preparation of LLDPE Grafting SiO2-NPs Nanocomposites
3.4. Characterization of NPs Modification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fell, H.; Gilbert, A.; Jenkins, J.D.; Mildenberger, M. Nuclear Power and Renewable Energy Are both Associated with National Decarbonization. Nat. Energy 2022, 7, 25–29. [Google Scholar] [CrossRef]
- Pleşa, I.; Noţingher, P.V.; Stancu, C.; Wiesbrock, F.; Schlögl, S. Polyethylene Nanocomposites for Power Cable Insulations. Polymers 2019, 11, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zhong, L.; Zhang, K.; Gao, J.; Xu, M. Temperature Dependence of Mechanical, Electrical Properties and Crystal Structure of Polyethylene Blends for Cable Insulation. Materials 2018, 11, 1922. [Google Scholar] [CrossRef] [Green Version]
- Jarvid, M.; Johansson, A.; Kroon, R.; Bjuggren, J.M.; Wutzel, H.; Englund, V.; Gubanski, S.; Andersson, M.R.; Müller, C. A New Application Area for Fullerenes: Voltage Stabilizers for Power Cable Insulation. Adv. Mater. 2014, 27, 897–902. [Google Scholar] [CrossRef]
- Jarvid, M.; Johansson, A.; Englund, V.; Lundin, A.; Gubanski, S.; Müller, C.; Andersson, M.R. High electron affinity: A guiding criterion for voltage stabilizer design. J. Mater. Chem. A 2015, 3, 7273–7286. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Chen, X.; Meng, F.-B.; Hong, Z.; Awais, M.; Paramane, A. Enhancement of Insulation Properties of Cross-Linked Polyethylene Utilizing Aromatic Voltage Stabilizers with Electron-Withdrawing and Electron-Donating Groups. ACS Appl. Polym. Mater. 2022, 4, 1422–1430. [Google Scholar] [CrossRef]
- Englund, V.; Hjertberg, T.; Huuva, R.; Gubanski, S. Voltage Stabilisers for XLPE in High Voltage Applications. IEEE Int. Conf. Solid Dielectr. 2007, 1–2, 203–206. [Google Scholar] [CrossRef]
- Englund, V.; Huuva, R.; Gubanski, S.M.; Hjertberg, T. Synthesis and Efficiency of Voltage Stabilizers for XLPE Cable Insulation. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 1455–1461. [Google Scholar] [CrossRef]
- Englund, V.; Huuva, R.; Gubanski, S.M.; Hjertberg, T. High efficiency voltage stabilizers for XLPE cable insulation. Polym. Degrad. Stab. 2009, 94, 823–833. [Google Scholar] [CrossRef]
- Jarvid, M.; Johansson, A.; Bjuggren, J.M.; Wutzel, H.; Englund, V.; Gubanski, S.; Müller, C.; Andersson, M.R. Tailored side-chain architecture of benzil voltage stabilizers for enhanced dielectric strength of cross-linked polyethylene. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 1047–1054. [Google Scholar] [CrossRef]
- Li, X.; Guo, Q.; Sun, X.; Yang, F.; Li, W.; Yao, Z. Effective Strategy for Improving the Dielectric Strength and Insulation Lifetime of LLDPE. Ind. Eng. Chem. Res. 2019, 58, 9372–9379. [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.; Zhao, H.; Zhang, H.; Wang, X.; Han, B. Grafted UV absorber as voltage stabilizer against electrical degradation and breakdown in cross-linked polyethylene for high voltage cable insulation. Polym. Degrad. Stab. 2021, 185, 109498. [Google Scholar] [CrossRef]
- Zi, Y.; Zhu, J.; Wang, M.; Hu, L.; Hu, Y.; Wageh, S.; Al-Hartomy, O.; Al-Ghamdi, A.; Huang, W.; Zhang, H. CdS@CdSe Core/Shell Quantum Dots for Highly Improved Self-Powered Photodetection Performance. Inorg. Chem. 2021, 60, 18608–18613. [Google Scholar] [CrossRef]
- Huang, W.; Li, C.; Gao, L.; Zhang, Y.; Wang, Y.; Huang, Z.N.; Chen, T.; Hu, L.; Zhang, H. Emerging black phosphorus analogue nanomaterials for high-performance device applications. J. Mater. Chem. C 2020, 8, 1172–1197. [Google Scholar] [CrossRef]
- Pleşa, I.; Noţingher, P.; Schlögl, S.; Sumereder, C.; Muhr, M. Properties of Polymer Composites Used in High-Voltage Applications. Polymers 2016, 8, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.; Joseph, B.; Jose, J.P.; Maria, H.J.; Main, P.; Rahman, A.A.; Francis, B.; Ahmad, Z.; Thomas, S. Recent Advances in Cross-linked Polyethylene-based Nanocomposites for High Voltage Engineering Applications: A Critical Review. Ind. Eng. Chem. Res. 2019, 58, 20863–20879. [Google Scholar] [CrossRef]
- Min, D.; Cui, H.; Wang, W.; Wu, Q.; Xing, Z.; Li, S. The coupling effect of interfacial traps and molecular motion on the electrical breakdown in polyethylene nanocomposites. Compos. Sci. Technol. 2019, 184, 107873. [Google Scholar] [CrossRef]
- Pallon, L.K.H.; Hoang, A.T.; Pourrahimi, A.M.; Hedenqvist, M.S.; Nilsson, F.; Gubanski, S.; Gedde, U.W.; Olsson, R.T. The impact of MgO nanoparticle interface in ultra-insulating polyethylene nanocomposites for high voltage DC cables. J. Mater. Chem. A 2016, 4, 8590–8601. [Google Scholar] [CrossRef]
- Peng, S.; Dang, B.; Zhou, Y.; Hu, J.; He, J. Functionalized TiO2 Nanoparticles Tune the Aggregation Structure and Trapping Property of Polyethylene Nanocomposites. J. Phys. Chem. C 2016, 120, 24754–24761. [Google Scholar] [CrossRef]
- Said, A.; Abd-Allah, M.A.; Nawar, A.G.; Elsayed, A.E.; Kamel, S. Enhancing the electrical and physical nature of high-voltage XLPE cable dielectric using different nanoparticles. J. Mater. Sci. Mater. Electron. 2022, 33, 7435–7443. [Google Scholar] [CrossRef]
- Balazs, A.C.; Emrick, T.; Russell, T.P. Nanoparticle Polymer Composites: Where Two Small Worlds Meet. Science 2006, 314, 1107–1110. [Google Scholar] [CrossRef] [PubMed]
- Mackay, M.E.; Tuteja, A.; Duxbury, P.M.; Hawker, C.J.; Van Horn, B.; Guan, Z.; Chen, G.; Krishnan, R.S. General Strategies for Nanoparticle Dispersion. Science 2006, 311, 1740–1743. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 739–753. [Google Scholar] [CrossRef]
- Meng, F.-B.; Chen, X.; Shi, Y.; Hong, Z.; Zhu, H.; Muhammad, A.; Paramane, A.; Wang, Y.; Huang, R.; Deng, X. Spraying Core–Shell ZnO to Achieve High Insulation Performance for HVDC Cable Factory Joints. ACS Appl. Energy Mater. 2022, 5, 7681–7691. [Google Scholar] [CrossRef]
- Diao, J.; Huang, X.; Jia, Q.; Liu, F.; Jiang, P. Thermoplastic isotactic polypropylene/ethylene-octene polyolefin copolymer nanocomposite for recyclable HVDC cable insulation. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1416–1429. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, X.; Min, D.; Li, S.-T.; Jiang, P. Recyclable Dielectric Polymer Nanocomposites with Voltage Stabilizer Interface: Toward New Generation of High Voltage Direct Current Cable Insulation. ACS Sustain. Chem. Eng. 2018, 7, 513–525. [Google Scholar] [CrossRef]
- Zhang, L.; Khani, M.M.; Krentz, T.M.; Huang, Y.; Zhou, Y.; Benicewicz, B.C.; Nelson, J.K.; Schadler, L.S. Suppression of space charge in crosslinked polyethylene filled with poly(stearyl methacrylate)-grafted SiO2 nanoparticles. Appl. Phys. Lett. 2017, 110, 132903. [Google Scholar] [CrossRef] [Green Version]
- Cui, K.Z.; Sun, X.P.; Yang, F.H.; Feng, J.B.; Yang, S.Q.; Li, W.F.; Yao, Z.H. Preparation and Properties of LLDPE/LLDPE-g-PS/MgO@PS Nanocomposites. Polym.-Plast. Tech. Mat. 2021, 60, 1411–1419. [Google Scholar] [CrossRef]
- Meng, F.-B.; Chen, X.; Shi, Y.; Hong, Z.; Zhu, H.; Muhammad, A.; Li, H.; Paramane, A. Spraying EPDM@NPs as an efficient strategy for polyethylene-based high-voltage insulation. Chem. Eng. J. 2023, 451. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Jiang, G. Surface Modification of Magnesium Oxysulfate Whisker Based on SiO2@silane Coupling Agent and SiO2@polydopamine Double-Layer Structure for Reinforcing HDPE. Materials 2022, 15, 3272. [Google Scholar] [CrossRef]
- Salehiyan, R.; Song, H.Y.; Choi, W.J.; Hyun, K. Characterization of Effects of Silica Nanoparticles on (80/20) PP/PS Blends via Nonlinear Rheological Properties from Fourier Transform Rheology. Macromolecules 2015, 48, 4669–4679. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Zuo, M.; Liu, T.; Song, Y.H.; Zheng, Q. Segmental dynamics and rheology of miscible poly(vinylidene fluo-ride)/poly(methyl methacrylate) (70/30 by weight) blend filled with titania or poly(methyl methacrylate)-grafted titania. Compos. Sci. Technol. 2016, 123, 39–48. [Google Scholar] [CrossRef]
- Tanaka, T.; Kozako, M.; Fuse, N.; Ohki, Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 669–681. [Google Scholar] [CrossRef]
- Takada, T.; Hayase, Y.; Tanaka, Y.; Okamoto, T. Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 152–160. [Google Scholar] [CrossRef]
- Malec, D.; Truong, V.; Essolbi, R.; Hoang, T. Carrier mobility in LDPE at high temperature and pressure. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 301–303. [Google Scholar] [CrossRef]
- Bartczak, Z.; Galeski, A.; Pluta, M. Ternary blends of high-density polyeth-ylene-polystyrene-poly(ethylene/butylene-b-styrene) copolymers: Properties and orientation behavior in plane-strain compression. J. Appl. Polym. Sci. 2000, 76, 1746–1761. [Google Scholar] [CrossRef]
Sample | Tm (°C) | Tc (°C) | ΔHm (J/g) | Xc (%) |
---|---|---|---|---|
LLDPE | 128.4 | 100.3 | 126.3 | 43.1 |
G1 | 127.4 | 100.6 | 98.6 | 33.6 |
B1 | 128.7 | 100.9 | 104.4 | 35.6 |
Sample | α (kV/mm) | β |
---|---|---|
LLDPE | 312 | 7.10 |
G0.001 | 403 | 8.32 |
G0.01 | 449 | 10.7 |
G0.1 | 525 | 23.7 |
G0.5 | 440 | 14.0 |
G1 | 392 | 10.2 |
Sample | α (kV/mm) | β |
---|---|---|
LLDPE | 214 | 4.89 |
G0.001 | 336 | 7.70 |
G0.01 | 333 | 10.4 |
G0.1 | 372 | 18.5 |
G0.5 | 349 | 15.7 |
G1 | 286 | 5.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Liu, Y.; Tong, Y.; Cheng, H.; Yang, D.; Ding, J.; Guo, Q. The Improved DC Breakdown Strength Induced by Enhanced Interaction between SiO2 Nanoparticles and LLDPE Matrix. Molecules 2023, 28, 4908. https://doi.org/10.3390/molecules28134908
Lu Y, Liu Y, Tong Y, Cheng H, Yang D, Ding J, Guo Q. The Improved DC Breakdown Strength Induced by Enhanced Interaction between SiO2 Nanoparticles and LLDPE Matrix. Molecules. 2023; 28(13):4908. https://doi.org/10.3390/molecules28134908
Chicago/Turabian StyleLu, Yaqing, Yuyao Liu, Yujie Tong, Huili Cheng, Di Yang, Jiandong Ding, and Qiyang Guo. 2023. "The Improved DC Breakdown Strength Induced by Enhanced Interaction between SiO2 Nanoparticles and LLDPE Matrix" Molecules 28, no. 13: 4908. https://doi.org/10.3390/molecules28134908
APA StyleLu, Y., Liu, Y., Tong, Y., Cheng, H., Yang, D., Ding, J., & Guo, Q. (2023). The Improved DC Breakdown Strength Induced by Enhanced Interaction between SiO2 Nanoparticles and LLDPE Matrix. Molecules, 28(13), 4908. https://doi.org/10.3390/molecules28134908