Is Micellar Catalysis Green Chemistry?
Abstract
:1. Introduction
2. Discussion
2.1. Prevention
2.2. Atom Economy
2.3. Less Hazardous Chemical Syntheses
2.4. Designing Safer Chemicals
2.5. Safer Solvents and Auxiliaries
2.6. Design for Energy Efficiency
2.7. Use of Renewable Feedstocks
2.8. Reduce Derivatives
2.9. Catalysis
2.10. Design for Degradation
2.11. Real-Time Analysis for Pollution Prevention
2.12. Inherently Safer Chemistry for Accident Prevention
- S1 Intensification or minimization to reduce the amount of used or processed potentially hazardous materials
- S2 Substitution to reduce hazardous materials, intermediates, or utilities.
- S3 Attenuation by deploying hazardous materials under the least hazardous conditions (state, temperature, and pressure)
3. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J. Green Chemistry in the Synthesis of Pharmaceuticals. Chem. Rev. 2022, 122, 3637–3710. [Google Scholar] [CrossRef] [PubMed]
- Schaub, T. Efficient Industrial Organic Synthesis and the Principles of Green Chemistry. Chem. A Eur. J. 2021, 27, 1865–1869. [Google Scholar] [CrossRef] [PubMed]
- ACS 12 Principles of Green Chemistry. Available online: https://www.acs.org/greenchemistry/principles/12-principles-of-green-chemistry.html (accessed on 2 May 2023).
- EC Reach. Available online: https://ec.europa.eu/environment/chemicals/reach/reach_en.htm (accessed on 2 May 2023).
- Brown, M.J.B. Foreword. In An Introduction to CHEM21 Chemical Manufacturing Methods for the 21st Century Pharmaceutical Industries; Royal Society of Chemistry: London, UK, 2016; pp. 7–18. [Google Scholar]
- EPA Basics of Green Chemistry. Available online: https://www.epa.gov/greenchemistry/basics-green-chemistry (accessed on 2 May 2023).
- ECHA. Available online: https://echa.europa.eu/ (accessed on 2 May 2023).
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Linthorst, J.A. An overview: Origins and development of green chemistry. Found. Chem. 2010, 12, 55–68. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, R.T.; Boulatov, R. The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nat. Rev. Chem. 2021, 5, 148–167. [Google Scholar] [CrossRef]
- Ardila-Fierro, K.J.; Hernández, J.G. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. ChemSusChem 2021, 14, 2145–2162. [Google Scholar] [CrossRef]
- Dyson, P.J.; Jessop, P.G. Solvent effects in catalysis: Rational improvements of catalysts via manipulation of solvent interactions. Catal. Sci. Technol. 2016, 6, 3302–3316. [Google Scholar] [CrossRef] [Green Version]
- Pena-Pereira, F.; Kloskowski, A.; Namieśnik, J. Perspectives on the replacement of harmful organic solvents in analytical methodologies: A framework toward the implementation of a generation of eco-friendly alternatives. Green Chem. 2015, 17, 3687–3705. [Google Scholar] [CrossRef]
- Lipshutz, B.H.; Gallou, F.; Handa, S. Evolution of Solvents in Organic Chemistry. ACS Sustain. Chem. Eng. 2016, 4, 5838–5849. [Google Scholar] [CrossRef]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Henderson, R.K.; Jiménez-González, C.; Constable, D.J.C.; Alston, S.R.; Inglis, G.G.A.; Fisher, G.; Sherwood, J.; Binks, S.P.; Curzons, A.D. Expanding GSK’s solvent selection guide—embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem. 2011, 13, 854. [Google Scholar] [CrossRef]
- Prat, D.; Pardigon, O.; Flemming, H.-W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; et al. Sanofi’s Solvent Selection Guide: A Step Toward More Sustainable Processes. Org. Process Res. Dev. 2013, 17, 1517–1525. [Google Scholar] [CrossRef]
- Prat, D.; Hayler, J.; Wells, A. A survey of solvent selection guides. Green Chem. 2014, 16, 4546–4551. [Google Scholar] [CrossRef]
- Wollensack, L.; Budzinski, K.; Backmann, J. Defossilization of pharmaceutical manufacturing. Curr. Opin. Green Sustain. Chem. 2022, 33, 100586. [Google Scholar] [CrossRef]
- Gallou, F. Sustainability as a Trigger for Innovation! Chimia 2020, 74, 538. [Google Scholar] [CrossRef]
- Cortes-Clerget, M.; Yu, J.; Kincaid, J.R.A.; Walde, P.; Gallou, F.; Lipshutz, B.H. Water as the reaction medium in organic chemistry: From our worst enemy to our best friend. Chem. Sci. 2021, 12, 4237–4266. [Google Scholar] [CrossRef]
- Parmentier, M.; Gabriel, C.M.; Guo, P.; Isley, N.A.; Zhou, J.; Gallou, F. Switching from organic solvents to water at an industrial scale. Curr. Opin. Green Sustain. Chem. 2017, 7, 13–17. [Google Scholar] [CrossRef]
- Kitanosono, T.; Kobayashi, S. Reactions in Water Involving the “On-Water” Mechanism. Chem. A Eur. J. 2020, 26, 9408–9429. [Google Scholar] [CrossRef]
- Eisenreich, F.; Palmans, A.R.A. Compartmentalized Polymers for Catalysis in Aqueous Media. In Supramolecular Catalysis; Wiley: New York, NY, USA, 2022; pp. 489–506. [Google Scholar]
- Cortes-Clerget, M.; Kincaid, J.R.A.; Akporji, N.; Lipshutz, B.H. Surfactant Assemblies as Nanoreactors for Organic Transformations. In Supramolecular Catalysis; Wiley: New York, NY, USA, 2022; pp. 467–487. [Google Scholar]
- Strukul, G.; Fabris, F.; Scarso, A. Metal Catalysis in Micellar Media. In Supramolecular Catalysis; Wiley: New York, NY, USA, 2022; pp. 451–466. [Google Scholar]
- Scarso, A.; Strukul, G. CHAPTER 12. Transition Metal Catalysis in Micellar Media: Much More than a Simple Green Chemistry Promise. In Green Synthetic Processes and Procedures; Royal Society of Chemistry: London, UK, 2019; pp. 268–288. [Google Scholar]
- Gallou, F.; Lipshutz, B.H. Organometallic Processes in Water; Springer: Berlin/Heidelberg, Germany, 2018; pp. 199–216. [Google Scholar]
- Lorenzetto, T.; Frigatti, D.; Fabris, F.; Scarso, A. Nanoconfinement Effects of Micellar Media in Asymmetric Catalysis. Adv. Synth. Catal. 2022, 364, 1776–1797. [Google Scholar] [CrossRef]
- Lipshutz, B.H.; Ghorai, S. “Designer”-Surfactant-Enabled Cross-Couplings in Water at Room Temperature. Aldrichimica Acta 2012, 45, 3–16. [Google Scholar]
- Lipshutz, B.H.; Ghorai, S.; Abela, A.R.; Moser, R.; Nishikata, T.; Duplais, C.; Krasovskiy, A. TPGS-750-M: A Second-Generation Amphiphile for Metal-Catalyzed Cross-Couplings in Water at Room Temperature. J. Org. Chem. 2011, 76, 4379–4391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klumphu, P.; Lipshutz, B.H. “Nok”: A Phytosterol-Based Amphiphile Enabling Transition-Metal-Catalyzed Couplings in Water at Room Temperature. J. Org. Chem. 2014, 79, 888–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brals, J.; Smith, J.D.; Ibrahim, F.; Gallou, F.; Handa, S. Micelle-Enabled Palladium Catalysis for Convenient sp 2–sp 3 Coupling of Nitroalkanes with Aryl Bromides in Water Under Mild Conditions. ACS Catal. 2017, 7, 7245–7250. [Google Scholar] [CrossRef]
- Handa, S.; Ibrahim, F.; Ansari, T.N.; Gallou, F. π-Allylpalladium Species in Micelles of FI-750-M for Sustainable and General Suzuki-Miyaura Couplings of Unactivated Quinoline Systems in Water. ChemCatChem 2018, 10, 4229–4233. [Google Scholar] [CrossRef]
- Bihani, M.; Bora, P.P.; Nachtegaal, M.; Jasinski, J.B.; Plummer, S.; Gallou, F.; Handa, S. Microballs Containing Ni(0)Pd(0) Nanoparticles for Highly Selective Micellar Catalysis in Water. ACS Catal. 2019, 9, 7520–7526. [Google Scholar] [CrossRef]
- Kaur, G.; Kaur, K.; Handa, S. Efficient catalysis in dynamic nanomicelles of PS-750-M suspended in water. Curr. Opin. Green Sustain. Chem. 2022, 38, 100690. [Google Scholar] [CrossRef]
- Hedouin, G.; Ogulu, D.; Kaur, G.; Handa, S. Aqueous micellar technology: An alternative beyond organic solvents. Chem. Commun. 2023, 59, 2842–2853. [Google Scholar] [CrossRef]
- La Sorella, G.; Strukul, G.; Scarso, A. Recent advances in catalysis in micellar media. Green Chem. 2015, 17, 644–683. [Google Scholar] [CrossRef]
- Lippincott, D.J.; Landstrom, E.; Cortes-Clerget, M.; Lipshutz, B.H.; Buescher, K.; Schreiber, R.; Durano, C.; Parmentier, M.; Ye, N.; Wu, B.; et al. Surfactant Technology: With New Rules, Designing New Sequences Is Required! Org. Process Res. Dev. 2020, 24, 841–849. [Google Scholar] [CrossRef]
- Sar, P.; Ghosh, A.; Scarso, A.; Saha, B. Surfactant for better tomorrow: Applied aspect of surfactant aggregates from laboratory to industry. Res. Chem. Intermed. 2019, 45, 6021–6041. [Google Scholar] [CrossRef]
- Shen, T.; Zhou, S.; Ruan, J.; Chen, X.; Liu, X.; Ge, X.; Qian, C. Recent advances on micellar catalysis in water. Adv. Colloid Interface Sci. 2021, 287, 102299. [Google Scholar] [CrossRef]
- Becker, J.; Manske, C.; Randl, S. Green chemistry and sustainability metrics in the pharmaceutical manufacturing sector. Curr. Opin. Green Sustain. Chem. 2022, 33, 100562. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Bode, M.L.; Akakios, S.G. Metrics of green chemistry: Waste minimization. Curr. Opin. Green Sustain. Chem. 2022, 33, 100569. [Google Scholar] [CrossRef]
- Benison, C.H.; Payne, P.R. Manufacturing mass intensity: 15 Years of Process Mass Intensity and development of the metric into plant cleaning and beyond. Curr. Res. Green Sustain. Chem. 2022, 5, 100229. [Google Scholar] [CrossRef]
- Jimenez-Gonzalez, C.; Lund, C. Green metrics in pharmaceutical development. Curr. Opin. Green Sustain. Chem. 2022, 33, 100564. [Google Scholar] [CrossRef]
- Roschangar, F.; Li, J.; Zhou, Y.; Aelterman, W.; Borovika, A.; Colberg, J.; Dickson, D.P.; Gallou, F.; Hayler, J.D.; Koenig, S.G.; et al. Improved iGAL 2.0 Metric Empowers Pharmaceutical Scientists to Make Meaningful Contributions to United Nations Sustainable Development Goal 12. ACS Sustain. Chem. Eng. 2022, 10, 5148–5162. [Google Scholar] [CrossRef]
- Roschangar, F.; Zhou, Y.; Constable, D.J.C.; Colberg, J.; Dickson, D.P.; Dunn, P.J.; Eastgate, M.D.; Gallou, F.; Hayler, J.D.; Koenig, S.G.; et al. Inspiring process innovation via an improved green manufacturing metric: iGAL. Green Chem. 2018, 20, 2206–2211. [Google Scholar] [CrossRef]
- Sharma, S.; Buchbinder, N.W.; Braje, W.M.; Handa, S. Fast Amide Couplings in Water: Extraction, Column Chromatography, and Crystallization Not Required. Org. Lett. 2020, 22, 5737–5740. [Google Scholar] [CrossRef]
- Sharma, S.; Kaur, G.; Handa, S. Insights into Fast Amide Couplings in Aqueous Nanomicelles. Org. Process Res. Dev. 2021, 25, 1960–1965. [Google Scholar] [CrossRef]
- Cortes-Clerget, M.; Berthon, J.-Y.; Krolikiewicz-Renimel, I.; Chaisemartin, L.; Lipshutz, B.H. Tandem deprotection/coupling for peptide synthesis in water at room temperature. Green Chem. 2017, 19, 4263–4267. [Google Scholar] [CrossRef]
- Lee, N.R.; Gallou, F.; Lipshutz, B.H. SNAr Reactions in Aqueous Nanomicelles: From Milligrams to Grams with No Dipolar Aprotic Solvents Needed. Org. Process Res. Dev. 2017, 21, 218–221. [Google Scholar] [CrossRef]
- Parmentier, M.; Wagner, M.; Wickendick, R.; Baenziger, M.; Langlois, A.; Gallou, F. A General Kilogram Scale Protocol for Suzuki–Miyaura Cross-Coupling in Water with TPGS-750-M Surfactant. Org. Process Res. Dev. 2020, 24, 1536–1542. [Google Scholar] [CrossRef]
- Wood, A.B.; Nandiwale, K.Y.; Mo, Y.; Jin, B.; Pomberger, A.; Schultz, V.L.; Gallou, F.; Jensen, K.F.; Lipshutz, B.H. Continuous flow Suzuki–Miyaura couplings in water under micellar conditions in a CSTR cascade catalyzed by Fe/ppm Pd nanoparticles. Green Chem. 2020, 22, 3441–3444. [Google Scholar] [CrossRef]
- Cortes-Clerget, M.; Akporji, N.; Zhou, J.; Gao, F.; Guo, P.; Parmentier, M.; Gallou, F.; Berthon, J.-Y.; Lipshutz, B.H. Bridging the gap between transition metal- and bio-catalysis via aqueous micellar catalysis. Nat. Commun. 2019, 10, 2169. [Google Scholar] [CrossRef] [Green Version]
- Akporji, N.; Singhania, V.; Dussart-Gautheret, J.; Gallou, F.; Lipshutz, B.H. Nanomicelle-enhanced, asymmetric ERED-catalyzed reductions of activated olefins. Applications to 1-pot chemo- and bio-catalysis sequences in water. Chem. Commun. 2021, 57, 11847–11850. [Google Scholar] [CrossRef]
- Cavarzan, A.; Bianchini, G.; Sgarbossa, P.; Lefort, L.; Gladiali, S.; Scarso, A.; Strukul, G. Catalytic Asymmetric Baeyer-Villiger Oxidation in Water by Using Pt II Catalysts and Hydrogen Peroxide: Supramolecular Control of Enantioselectivity. Chem. A Eur. J. 2009, 15, 7930–7939. [Google Scholar] [CrossRef]
- Scarso, A.; Strukul, G. Asymmetric Sulfoxidation of Thioethers with Hydrogen Peroxide in Water Mediated by Platinum Chiral Catalyst. Adv. Synth. Catal. 2005, 347, 1227–1234. [Google Scholar] [CrossRef]
- Colladon, M.; Scarso, A.; Strukul, G. Towards a Greener Epoxidation Method: Use of Water-Surfactant Media and Catalyst Recycling in the Platinum-Catalyzed Asymmetric Epoxidation of Terminal Alkenes with Hydrogen Peroxide. Adv. Synth. Catal. 2007, 349, 797–801. [Google Scholar] [CrossRef]
- Trentin, F.; Chapman, A.M.; Scarso, A.; Sgarbossa, P.; Michelin, R.A.; Strukul, G.; Wass, D.F. Platinum(II) Diphosphinamine Complexes for the Efficient Hydration of Alkynes in Micellar Media. Adv. Synth. Catal. 2012, 354, 1095–1104. [Google Scholar] [CrossRef]
- Cavarzan, A.; Scarso, A.; Strukul, G. Efficient nitrile hydration mediated by RuII catalysts in micellar media. Green Chem. 2010, 12, 790. [Google Scholar] [CrossRef]
- Tasca, E.; La Sorella, G.; Sperni, L.; Strukul, G.; Scarso, A. Micellar promoted multi-component synthesis of 1,2,3-triazoles in water at room temperature. Green Chem. 2015, 17, 1414–1422. [Google Scholar] [CrossRef]
- Bayissa, L.D.; Ohmae, Y.; Hojo, M. Influences of Micelle Formation and Added Salts on the Hydrolysis Reaction Rate of p -Nitrophenyl Benzoate in Aqueous Buffered Media. Int. J. Chem. Kinet. 2017, 49, 71–82. [Google Scholar] [CrossRef]
- Abe, Y.; Watanabe, H.; Fujiwara, M. Micellar Effects on the Hydrolysis Reaction of an Anionic Surfactant in Aqueous Solution. Langmuir 2018, 34, 13979–13992. [Google Scholar] [CrossRef]
- Hastings, C.J.; DiNola, M.S.; Petratos, E.; Veltri, E.J. Catalysis and inhibition of ester hydrolysis by encapsulation in micelles derived from designer surfactant TPGS-750-M. Tetrahedron 2023, 133, 133271. [Google Scholar] [CrossRef]
- Schmidt, M.; Deckwerth, J.; Schomäcker, R.; Schwarze, M. Alkaline Hydrolysis of Methyl Decanoate in Surfactant-Based Systems. J. Org. Chem. 2018, 83, 7398–7406. [Google Scholar] [CrossRef]
- Lorenzetto, T.; Berton, G.; Fabris, F.; Scarso, A. Recent designer surfactants for catalysis in water. Catal. Sci. Technol. 2020, 10, 4492–4502. [Google Scholar] [CrossRef]
- Santos, D.; Rufino, R.; Luna, J.; Santos, V.; Sarubbo, L. Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [Green Version]
- Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 2007, 9, 927. [Google Scholar] [CrossRef]
- Hazra, S.; Kaur, G.; Handa, S. Reactivity of Styrenes in Micelles: Safe, Selective, and Sustainable Functionalization with Azides and Carboxylic Acids. ACS Sustain. Chem. Eng. 2021, 9, 5513–5518. [Google Scholar] [CrossRef]
- Krehl, S.; Geißler, D.; Hauke, S.; Kunz, O.; Staude, L.; Schmidt, B. The catalytic performance of Ru–NHC alkylidene complexes: PCy 3 versus pyridine as the dissociating ligand. Beilstein J. Org. Chem. 2010, 6, 1188–1198. [Google Scholar] [CrossRef] [Green Version]
- Hastings, C.J.; Adams, N.P.; Bushi, J.; Kolb, S.J. One-pot chemoenzymatic reactions in water enabled by micellar encapsulation. Green Chem. 2020, 22, 6187–6193. [Google Scholar] [CrossRef]
- Kahlweit, M.; Strey, R.; Busse, G. Microemulsions: A qualitative thermodynamic approach. J. Phys. Chem. 1990, 94, 3881–3894. [Google Scholar] [CrossRef]
- Rosen, M.J.; Cohen, A.W.; Dahanayake, M.; Hua, X.Y. Relationship of structure to properties in surfactants. 10. Surface and thermodynamic properties of 2-dodecyloxypoly(ethenoxyethanol)s, C12H25(OC2H4)xOH, in aqueous solution. J. Phys. Chem. 1982, 86, 541–545. [Google Scholar] [CrossRef]
- Pogrzeba, T.; Schmidt, M.; Milojevic, N.; Urban, C.; Illner, M.; Repke, J.-U.; Schomäcker, R. Understanding the Role of Nonionic Surfactants during Catalysis in Microemulsion Systems on the Example of Rhodium-Catalyzed Hydroformylation. Ind. Eng. Chem. Res. 2017, 56, 9934–9941. [Google Scholar] [CrossRef]
- Schreuder Goedheijt, M.; Kamer, P.C.; van Leeuwen, P.W.N. A water-soluble diphosphine ligand with a large ‘natural’ bite angle for two-phase hydroformylation of alkenes. J. Mol. Catal. A Chem. 1998, 134, 243–249. [Google Scholar] [CrossRef]
- Illner, M.; Kozachynskyi, V.; Esche, E.; Repke, J.-U. Fast-track realization of reactive microemulsion systems—Systematic system analysis and tailored application of PSE methods. Chem. Eng. Sci. 2022, 252, 117290. [Google Scholar] [CrossRef]
- Weber, A.; Porthun, L.; Schomäcker, R. Rh-Catalyzed Reductive Amination of Undecanal in an Aqueous Microemulsion System Using a Non-Ionic Surfactant. Catalysts 2021, 11, 1223. [Google Scholar] [CrossRef]
- Weber, A.; Porthun, L.; Schomäcker, R. One-Pot Synthesis of Fatty Amines: Rh-Catalyzed Hydroaminomethylation of 1-Decene in an Aqueous Microemulsion System—Influence of Reaction Conditions on the Reaction Performance. Catalysts 2022, 12, 773. [Google Scholar] [CrossRef]
- Andersson, M.P. Entropy reduction from strong localization—an explanation for enhanced reaction rates of organic synthesis in aqueous micelles. J. Colloid Interface Sci. 2022, 628, 819–828. [Google Scholar] [CrossRef]
- Handa, S.; Jin, B.; Bora, P.P.; Wang, Y.; Zhang, X.; Gallou, F.; Reilly, J.; Lipshutz, B.H. Sonogashira Couplings Catalyzed by Fe Nanoparticles Containing ppm Levels of Reusable Pd, under Mild Aqueous Micellar Conditions. ACS Catal. 2019, 9, 2423–2431. [Google Scholar] [CrossRef]
- Azar, E.; Blanc, C.; Mehdi, A.; Nobili, M.; Stocco, A. Mesoporous Silica Colloids: Wetting, Surface Diffusion, and Cationic Surfactant Adsorption. J. Phys. Chem. C 2019, 123, 26226–26235. [Google Scholar] [CrossRef] [Green Version]
- Shinde, M.M.; Bhagwat, S.S. Surfactant assisted Pd/C catalyzed Sonogashira reaction in aqueous media. Colloids Surfaces A Physicochem. Eng. Asp. 2011, 380, 201–206. [Google Scholar] [CrossRef]
- Schwarze, M.; Schmidt, M.; Nguyen, L.A.T.; Drews, A.; Kraume, M.; Schomäcker, R. Micellar enhanced ultrafiltration of a rhodium catalyst. J. Memb. Sci. 2012, 421–422, 165–171. [Google Scholar] [CrossRef]
- Petkova, D.; Borlinghaus, N.; Sharma, S.; Kaschel, J.; Lindner, T.; Klee, J.; Jolit, A.; Haller, V.; Heitz, S.; Britze, K.; et al. Hydrophobic Pockets of HPMC Enable Extremely Short Reaction Times in Water. ACS Sustain. Chem. Eng. 2020, 8, 12612–12617. [Google Scholar] [CrossRef]
- Sharma, S.; Ansari, T.N.; Handa, S. HPMC: A Biomass-Based Semisynthetic Sustainable Additive Enabling Clean and Fast Chemistry in Water. ACS Sustain. Chem. Eng. 2021, 9, 12719–12728. [Google Scholar] [CrossRef]
- Hazra, S.; Gallou, F.; Handa, S. Water: An Underestimated Solvent for Amide Bond-Forming Reactions. ACS Sustain. Chem. Eng. 2022, 10, 5299–5306. [Google Scholar] [CrossRef]
- Adamik, R.; Herczegh, A.R.; Varga, I.; May, Z.; Novák, Z. Gate to a parallel universe: Utilization of biosurfactants in micellar catalysis. Green Chem. 2023, 25, 3462–3468. [Google Scholar] [CrossRef]
- Thakore, R.R.; Takale, B.S.; Singhania, V.; Gallou, F.; Lipshutz, B.H. Late-stage Pd-catalyzed Cyanations of Aryl/Heteroaryl Halides in Aqueous Micellar Media. ChemCatChem 2021, 13, 212–216. [Google Scholar] [CrossRef]
- Dhawa, U.; Kaplaneris, N.; Ackermann, L. Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Org. Chem. Front. 2021, 8, 4886–4913. [Google Scholar] [CrossRef]
- Yetra, S.R.; Rogge, T.; Warratz, S.; Struwe, J.; Peng, W.; Vana, P.; Ackermann, L. Micellar Catalysis for Ruthenium(II)-Catalyzed C−H Arylation: Weak-Coordination-Enabled C−H Activation in H2O. Angew. Chemie Int. Ed. 2019, 58, 7490–7494. [Google Scholar] [CrossRef]
- Cybularczyk-Cecotka, M.; Predygier, J.; Crespi, S.; Szczepanik, J.; Giedyk, M. Photocatalysis in Aqueous Micellar Media Enables Divergent C–H Arylation and N -Dealkylation of Benzamides. ACS Catal. 2022, 12, 3543–3549. [Google Scholar] [CrossRef]
- Roshchyna, K.V.; Eltsov, S.V.; Laguta, A.N.; Mchedlov-Petrossyan, N.O. Micellar rate effects in the alkaline fading of crystal violet in the presence of various surfactants. J. Mol. Liq. 2015, 201, 77–82. [Google Scholar] [CrossRef]
- Răducan, A.; Puiu, M.; Oancea, P.; Colbea, C.; Velea, A.; Dinu, B.; Mihăilescu, A.M.; Galaon, T. Fast decolourization of Indigo Carmine and Crystal Violet in aqueous environments through micellar catalysis. Sep. Purif. Technol. 2019, 210, 698–709. [Google Scholar] [CrossRef]
- Al-Shamary, M.N.; Al-Lohedan, H.A.; Rafiquee, M.Z.A.; El-Ablack, F.; Issa, Z.A. Micellar effect upon the rate of alkaline hydrolysis of carboxylic and carbonate esters. J. Saudi Chem. Soc. 2017, 21, S193–S201. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, A.; Ghosh, K.K. Micellar Effects on Hydrolysis of Parathion. J. Dispers. Sci. Technol. 2008, 29, 1381–1384. [Google Scholar] [CrossRef]
- Gangwar, S.K.; Rafiquee, M.Z.A. Kinetics of the alkaline hydrolysis of fenuron in aqueous and micellar media. Int. J. Chem. Kinet. 2007, 39, 638–644. [Google Scholar] [CrossRef]
- Schwarze, M. Recycling of Catalysts from Surfactant Systems. Chemie Ing. Tech. 2021, 93, 31–41. [Google Scholar] [CrossRef]
- Schwarze, M. Micellar-enhanced ultrafiltration (MEUF)—state of the art. Environ. Sci. Water Res. Technol. 2017, 3, 598–624. [Google Scholar] [CrossRef]
- Schomäcker, R.; Schwarze, M.; Nowothnick, H.; Rost, A.; Hamerla, T. Mizellare Lösungen und Mikroemulsionen als Reaktionsmedien für katalytische Reaktionen. Chemie Ing. Tech. 2011, 83, 1343–1355. [Google Scholar] [CrossRef]
- Dwars, T.; Haberland, J.; Grassert, I.; Oehme, G.; Kragl, U. Asymmetric hydrogenation in a membrane reactor: Recycling of the chiral catalyst by using a retainable micellar system. J. Mol. Catal. A Chem. 2001, 168, 81–86. [Google Scholar] [CrossRef]
- Schmidt, M.; Schreiber, S.; Franz, L.; Langhoff, H.; Farhang, A.; Horstmann, M.; Drexler, H.J.; Heller, D.; Schwarze, M. Hydrogenation of Itaconic Acid in Micellar Solutions: Catalyst Recycling with Cloud Point Extraction? Ind. Eng. Chem. Res. 2019, 58, 2445–2453. [Google Scholar] [CrossRef]
- Kohlpaintner, C.W.; Fischer, R.W.; Cornils, B. Aqueous biphasic catalysis: Ruhrchemie/Rhône-Poulenc oxo process. Appl. Catal. A Gen. 2001, 221, 219–225. [Google Scholar] [CrossRef]
- Ge, X.; Song, W.; Chen, X.; Qian, C.; Zhou, S.; Liu, X. Tandem micellar catalysis and cloud point extraction process for C-S coupling reaction in water. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 616, 126263. [Google Scholar] [CrossRef]
- Ritter, E.; Smirnova, I. Continuous Countercurrent Extractive Biocatalysis in Aqueous Surfactant Two-Phase Systems. Chemie Ing. Tech. 2018, 90, 348–357. [Google Scholar] [CrossRef]
- Fellechner, O.; Smirnova, I. Process design of a continuous biotransformation with in situ product removal by cloud point extraction. Can. J. Chem. Eng. 2021, 99, 1035–1049. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Bode, M.L.; Mathebula, N. Green and sustainable solvents for biocatalytic oxidations. Curr. Opin. Green Sustain. Chem. 2023, 39, 100741. [Google Scholar] [CrossRef]
- Gröger, H.; Gallou, F.; Lipshutz, B.H. Where Chemocatalysis Meets Biocatalysis: In Water. Chem. Rev. 2022, 123, 5262–5296. [Google Scholar] [CrossRef]
- Deliyanni, E.A.; Kyzas, G.Z.; Matis, K.A. Various flotation techniques for metal ions removal. J. Mol. Liq. 2017, 225, 260–264. [Google Scholar] [CrossRef]
- Peng, W.; Chang, L.; Li, P.; Han, G.; Huang, Y.; Cao, Y. An overview on the surfactants used in ion flotation. J. Mol. Liq. 2019, 286, 110955. [Google Scholar] [CrossRef]
- Zhang, N.; Nguyen, A.V.; Zhou, C. A review of the surface features and properties, surfactant adsorption and floatability of four key minerals of diasporic bauxite resources. Adv. Colloid Interface Sci. 2018, 254, 56–75. [Google Scholar] [CrossRef]
- Shojaeimehr, T.; Schwarze, M.; Lima, M.T.; Schomäcker, R. Correlation of performance data of silica particle flotations and foaming properties of cationic and nonionic surfactants for the development of selection criteria for flotation auxiliaries. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 649, 129159. [Google Scholar] [CrossRef]
- Wernik, M.; Sipos, G.; Buchholcz, B.; Darvas, F.; Novák, Z.; Ötvös, S.B.; Kappe, C.O. Continuous flow heterogeneous catalytic reductive aminations under aqueous micellar conditions enabled by an oscillatory plug flow reactor. Green Chem. 2021, 23, 5625–5632. [Google Scholar] [CrossRef]
- Niu, T.; Chen, S.; Hong, M.; Zhang, T.; Chen, J.; Dong, X.; Ni, B. Heterogeneous carbon nitride photocatalyst for C–C bond oxidative cleavage of vicinal diols in aerobic micellar medium. Green Chem. 2020, 22, 5042–5049. [Google Scholar] [CrossRef]
- Li, X.; Thakore, R.R.; Takale, B.S.; Gallou, F.; Lipshutz, B.H. High Turnover Pd/C Catalyst for Nitro Group Reductions in Water. One-Pot Sequences and Syntheses of Pharmaceutical Intermediates. Org. Lett. 2021, 23, 8114–8118. [Google Scholar] [CrossRef]
- Chowdhury, S.; Rakshit, A.; Acharjee, A.; Saha, B. Biodegradability and biocompatibility: Advancements in synthetic surfactants. J. Mol. Liq. 2021, 324, 115105. [Google Scholar] [CrossRef]
- Krell, C.; Schreiber, R.; Hueber, L.; Sciascera, L.; Zheng, X.; Clarke, A.; Haenggi, R.; Parmentier, M.; Baguia, H.; Rodde, S.; et al. Strategies to Tackle the Waste Water from α-Tocopherol-Derived Surfactant Chemistry. Org. Process Res. Dev. 2021, 25, 900–915. [Google Scholar] [CrossRef]
- Fleck, N.; Roschangar, F.; Haydl, A.M. API Syntheses in Aqueous Media: Assessing the Environmental Footprint en route from Academic Discovery to Industrial Applications as “Green Opportunity” for Process Chemistry. Org. Process Res. Dev. 2023, 27, 822–830. [Google Scholar] [CrossRef]
- Kincaid, J.R.A.; Wong, M.J.; Akporji, N.; Gallou, F.; Fialho, D.M.; Lipshutz, B.H. Introducing Savie: A Biodegradable Surfactant Enabling Chemo- and Biocatalysis and Related Reactions in Recyclable Water. J. Am. Chem. Soc. 2023, 145, 4266–4278. [Google Scholar] [CrossRef]
- Goswami, D. Lipase Catalysis in Presence of Nonionic Surfactants. Appl. Biochem. Biotechnol. 2020, 191, 744–762. [Google Scholar] [CrossRef]
- Pogrzeba, T.; Müller, D.; Illner, M.; Schmidt, M.; Kasaka, Y.; Weber, A.; Wozny, G.; Schomäcker, R.; Schwarze, M. Superior catalyst recycling in surfactant based multiphase systems—Quo vadis catalyst complex? Chem. Eng. Process. Process Intensif. 2016, 99, 155–166. [Google Scholar] [CrossRef]
- Keith, L.H.; Gron, L.U.; Young, J.L. Green Analytical Methodologies. Chem. Rev. 2007, 107, 2695–2708. [Google Scholar] [CrossRef]
- Rocha, F.R.P.; Nóbrega, J.A.; Filho, O.F. Flow analysis strategies to greener analytical chemistry. An overview. Green Chem. 2001, 3, 216. [Google Scholar] [CrossRef]
- Paul, A.; Meyer, K.; Ruiken, J.-P.; Illner, M.; Müller, D.-N.; Esche, E.; Wozny, G.; Westad, F.; Maiwald, M. Process spectroscopy in microemulsions—Raman spectroscopy for online monitoring of a homogeneous hydroformylation process. Meas. Sci. Technol. 2017, 28, 035502. [Google Scholar] [CrossRef]
- Meyer, K.; Ruiken, J.-P.; Illner, M.; Paul, A.; Müller, D.; Esche, E.; Wozny, G.; Maiwald, M. Process spectroscopy in microemulsions—Setup and multi-spectral approach for reaction monitoring of a homogeneous hydroformylation process. Meas. Sci. Technol. 2017, 28, 035501. [Google Scholar] [CrossRef]
- Amin, S.; Blake, S.; Kennel, R.; Lewis, E. Revealing New Structural Insights from Surfactant Micelles through DLS, Microrheology and Raman Spectroscopy. Materials 2015, 8, 3754–3766. [Google Scholar] [CrossRef] [Green Version]
- Burns, R.A.; Roberts, M.F.; Dluhy, R.; Mendelsohn, R. Monomer-to-micelle transition of dihexanoylphosphatidylcholine: Carbon-13 NMR and Raman studies. J. Am. Chem. Soc. 1982, 104, 430–438. [Google Scholar] [CrossRef]
- Kamogawa, K.; Tajima, K.; Hayakawa, K.; Kitagawa, T. Raman spectroscopic studies of submillimolar surfactant solutions. Concentration dependence of the carbon-hydrogen stretching Raman lines. J. Phys. Chem. 1984, 88, 2494–2497. [Google Scholar] [CrossRef]
- Wong, P.T.T.; Mantsch, H.H. Pressure effects on the Raman spectra of micelles: Pressure induced phase transition and structural changes in aqueous sodium oleate a). J. Chem. Phys. 1983, 78, 7362–7367. [Google Scholar] [CrossRef]
- Kletz, T.A.; Amyotte, P. Process Plants; CRC Press: Boca Raton, FI, USA, 2010; ISBN 9781439804568. [Google Scholar]
- Parmentier, M.; Wagner, M.K.; Magra, K.; Gallou, F. Selective Amidation of Unprotected Amino Alcohols Using Surfactant-in-Water Technology: A Highly Desirable Alternative to Reprotoxic Polar Aprotic Solvents. Org. Process Res. Dev. 2016, 20, 1104–1107. [Google Scholar] [CrossRef]
- Patonay, T.; Kónya, K.; Juhász-Tóth, É. Syntheses and transformations of α-azido ketones and related derivatives. Chem. Soc. Rev. 2011, 40, 2797. [Google Scholar] [CrossRef]
- Prasad, P.K.; Reddi, R.N.; Arumugam, S. Recent methods for the synthesis of α-acyloxy ketones. Org. Biomol. Chem. 2018, 16, 9334–9348. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Guinness, S.M.; Hoagland, S.; Fichtner, M.; Kim, H.; Li, S.; Maguire, R.J.; McWilliams, J.C.; Mustakis, J.; Raggon, J.; et al. Continuous Production of Anhydrous tert -Butyl Hydroperoxide in Nonane Using Membrane Pervaporation and Its Application in Flow Oxidation of a γ-Butyrolactam. Org. Process Res. Dev. 2018, 22, 707–720. [Google Scholar] [CrossRef]
- Reddi, R.N.; Prasad, P.K.; Sudalai, A. I 2 -Catalyzed Regioselective Oxo- and Hydroxy-acyloxylation of Alkenes and Enol Ethers: A Facile Access to α-Acyloxyketones, Esters, and Diol Derivatives. Org. Lett. 2014, 16, 5674–5677. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C.M.; Parmentier, M.; Riegert, C.; Lanz, M.; Handa, S.; Lipshutz, B.H.; Gallou, F. Sustainable and Scalable Fe/ppm Pd Nanoparticle Nitro Group Reductions in Water at Room Temperature. Org. Process Res. Dev. 2017, 21, 247–252. [Google Scholar] [CrossRef]
- Sottmann, T.; Stubenrauch, C. Phase Behaviour, Interfacial Tension and Microstructure of Microemulsions. In Microemulsions; John Wiley & Sons, Ltd: Chichester, UK, 2009; pp. 1–47. [Google Scholar]
- Kahlweit, M.; Strey, R. Phasenverhalten ternärer Systeme des Typs H2O—Öl—nichtionisches Amphiphil (Mikroemulsionen). Angew. Chemie 1985, 97, 655–669. [Google Scholar] [CrossRef]
- Langevin, D. Microemulsions and Liquid Crystals. Mol. Cryst. Liq. Cryst. 1986, 138, 259–305. [Google Scholar] [CrossRef]
- Börner, A.; Franke, R. (Eds.) Hydroformylation; Wiley: New York, NY, USA, 2016; ISBN 9783527335527. [Google Scholar]
- Center for Chemical Process Safety. Guidelines for Safe Automation of Chemical Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; Volume 72, ISBN 9781119352044. [Google Scholar]
- Illner, M.; Kozachynskyi, V.; Esche, E.; Repke, J.-U. D-RTO as Enabler for Green Chemical Processes—Systematic Application and Challenges in Reactive Liquid Multiphase Systems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 433–438. [Google Scholar]
- Compagno, N.; Profeta, R.; Scarso, A. Recent advances in the synthesis of active pharmaceutical and agrochemical ingredients in micellar media. Curr. Opin. Green Sustain. Chem. 2023, 39, 100729. [Google Scholar] [CrossRef]
- Lorenzetto, T.; Fabris, F.; Scarso, A. Recent metallosurfactants for sustainable catalysis in water. Curr. Opin. Colloid Interface Sci. 2023, 64, 101689. [Google Scholar] [CrossRef]
- Wu, B.; Miraghaee, S.; Handa, S.; Gallou, F. Nanoparticles for catalysis in aqueous media. Curr. Opin. Green Sustain. Chem. 2022, 38, 100691. [Google Scholar] [CrossRef]
- Lipshutz, B.H. Nanomicelle-enabled chemoenzymatic catalysis: Clean chemistry in “dirty” water. Chem Catal. 2023, 3, 100458. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, S.; Liu, X.; Ge, X. Recent advances in water-mediated multiphase catalysis. Curr. Opin. Colloid Interface Sci. 2023, 65, 101691. [Google Scholar] [CrossRef]
- Mattiello, S.; Ghiglietti, E.; Zucchi, A.; Beverina, L. Selectivity in micellar catalysed reactions: The role of interfacial dipole, compartmentalisation, and specific interactions with the surfactants. Curr. Opin. Colloid Interface Sci. 2023, 64, 101681. [Google Scholar] [CrossRef]
- Ansari, T.N.; Gallou, F.; Handa, S. Palladium-catalyzed micellar cross-couplings: An outlook. Coord. Chem. Rev. 2023, 488, 215158. [Google Scholar] [CrossRef]
Solvent | EHS | Solvent | EHS | Solvent | EHS |
---|---|---|---|---|---|
Acetone | 3.1 | Acetonitrile | 4.5 | Cyclohexane | 4.0 |
Dimethylether | 3.9 | Ethanol | 2.6 | Heptane | 3.8 |
Methanol | 2.7 | Tetrahydrofurane | 3.9 | Water | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabris, F.; Illner, M.; Repke, J.-U.; Scarso, A.; Schwarze, M. Is Micellar Catalysis Green Chemistry? Molecules 2023, 28, 4809. https://doi.org/10.3390/molecules28124809
Fabris F, Illner M, Repke J-U, Scarso A, Schwarze M. Is Micellar Catalysis Green Chemistry? Molecules. 2023; 28(12):4809. https://doi.org/10.3390/molecules28124809
Chicago/Turabian StyleFabris, Fabrizio, Markus Illner, Jens-Uwe Repke, Alessandro Scarso, and Michael Schwarze. 2023. "Is Micellar Catalysis Green Chemistry?" Molecules 28, no. 12: 4809. https://doi.org/10.3390/molecules28124809