In Vitro and In Silico Evaluation of Anticholinesterase and Antidiabetic Effects of Furanolabdanes and Other Constituents from Graptophyllum pictum (Linn.) Griffith
Abstract
:1. Introduction
2. Results
2.1. Characterization of Isolated Compounds
2.2. Anticholinesterase and Antidiabetic Activities
2.3. Molecular Docking Studies
3. Discussion
4. Materials and Methods
4.1. Instrumentation
4.2. Chemicals
4.3. Plant Material, Extraction and Isolation
4.4. Physical, Spectrometric and Spectroscopic Data of the Isolated Compounds
4.5. Anticholinesterase Activity Assay
4.6. Antidiabetic Activity Assay
4.7. Molecular Docking Details
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Talla, E.; Tamfu, A.N.; Biyanzi, P.; Sakava, P.; Asoboe, F.P.; Mbafor, J.T.; Tchuenguem, N.F.F.; Ndjouenkeu, R. Phytochemical screening, antioxidant activity, total polyphenols and flavonoids content of different extracts of propolis from Tekel (Ngaoundal, Adamawa region, Cameroon). J. Phytopharmacol. 2014, 3, 321–329. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Talla, E.; Tamfu, A.N.; Gade, I.S.; Yanda, L.; Mbafor, J.T.; Laurent, S.; Elst, L.V.; Popova, M.; Bankova, V. New mono-ether of glycerol and triterpenes with DPPH radical scavenging activity from Cameroonian propolis. Nat. Prod. Res. 2017, 31, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Hassan, W.; Noreen, H.; Rehman, S.; Gul, S.; Kamal, M.A.; Kamdem, J.P.; Zaman, B.; da Rocha, J.B.T. Oxidative stress and antioxidant potential of one hundred medicinal plants. Curr. Top. Med. Chem. 2017, 17, 1336–1370. [Google Scholar] [CrossRef] [PubMed]
- Tamfu, A.N.; Roland, N.; Mfifen, A.M.; Kucukaydin, S.; Gaye, M.; Botezatu, A.V.; Duru, M.E.; Dinica, R.M. Phenolic composition, antioxidant and enzyme inhibitory activities of Parkia biglobosa (Jacq.) Benth., Tithonia diversifolia (Hemsl) A. Gray, and Crossopteryx febrifuga (Afzel.) Benth. Arabian J. Chem. 2022, 15, 103675. [Google Scholar] [CrossRef]
- Munvera, A.M.; Tamfu, A.N.; Blandine, M.W.O.; Selcuk, K.; Nyemb, J.N.; Mafo, M.A.F.; Tchapo, E.C.D.; Mkounga, P.; Nkengfack, A.E. Cholinesterase, α-glucosidase, tyrosinase and urease inhibitory activities of compounds from fruits of Rinorea oblongifolia CH Wright (Violaceae). Nat. Prod. Res. 2023, 1–12. [Google Scholar] [CrossRef]
- Pugazhenthi, S.; Qin, L.; Reddy, P.H. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1037–1045. [Google Scholar] [CrossRef]
- Burillo, J.; Marqués, P.; Jiménez, B.; González-Blanco, C.; Benito, M.; Guillén, C. Insulin Resistance and Diabetes Mellitus in Alzheimer’s Disease. Cells 2021, 10, 1236. [Google Scholar] [CrossRef]
- Tamfu, A.N.; Tagatsing, F.M.; Talla, E.; Ozturk, M.; Mbafor, J.T.; Duru, M.E.; Farzana, S. Chemical composition and evaluation of anticholinesterase activity of essential oil from Cameroonian propolis. Issues Biol. Sci. Pharm. Res. 2019, 7, 58–63. [Google Scholar]
- Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021, 190, 108352. [Google Scholar] [CrossRef]
- Patterson, C. World Alzheimer Report 2018; Alzheimer’s Disease International: London, UK, 2018; Available online: https://www.alzint.org/resource/world-alzheimer-report-2018/ (accessed on 10 April 2023).
- Zhang, X.-X.; Tian, Y.; Wang, Z.-T.; Ma, Y.-H.; Tan, L.; Yu, J.-T. The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J. Prev. Alzheimers Dis. 2021, 8, 313–321. [Google Scholar] [CrossRef]
- Li, X.; Feng, X.; Sun, X.; Hou, N.; Han, F.; Liu, Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2019. Front. Aging Neurosci. 2022, 14, 937486. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, A.; Ekavali. A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep. 2015, 67, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Tamfu, A.N.; Kucukaydin, S.; Yeskaliyeva, B.; Ozturk, M.; Dinica, R.M. Non-Alkaloid Cholinesterase Inhibitory Compounds from Natural Sources. Molecules 2021, 26, 5582. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol. Med. Rep. 2019, 20, 1479–1487. [Google Scholar] [CrossRef] [Green Version]
- Ngenge, T.A.; Kucukaydin, S.; Ceylan, O.; Duru, M.E. Evaluation of enzyme inhibition and anti-quorum sensing potentials of Melaleuca alternifolia and Citrus sinensis essential oils. Nat. Prod. Com. 2021, 16, 1934578X211044565. [Google Scholar]
- Artasensi, A.; Pedretti, A.; Vistoli, G.; Fumagalli, L. Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs. Molecules 2020, 25, 1987. [Google Scholar] [CrossRef]
- Tran, N.; Pham, B.; Le, L. Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. Biology 2020, 9, 252. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Derosa, G.; Maffioli, P. Management of diabetic patients with hypoglycemic agents α-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci. 2012, 8, 899–906. [Google Scholar] [CrossRef]
- Kumar, S.; Mittal, A.; Babu, D.; Mittal, A. Herbal medicines for diabetes management and its secondary complications. Curr. Diabetes Rev. 2021, 17, 437–456. [Google Scholar] [CrossRef]
- Feunaing, R.T.; Tamfu, A.N.; Ntchapda, F.; Gade, I.S.; Mbane, M.N.; Tagatsing, M.F.; Talla, E.; Henoumont, C.; Laurent, S.; Dinica, R.M. A new abietane-type diterpenoid from roots of Burkea africana Hook (Fabaceae) with α-amylase inhibitory potential. Nat. Prod. Res. 2022, 36, 4132–4139. [Google Scholar] [CrossRef]
- Tchuente Djoko, C.; Gade, I.S.; Atchade, A.D.T.; Tamfu, A.N.; Mihaela Dinica, R.; Sangu, E.; Tchoffo Djankou, M.; Henoumont, C.; Laurent, S.; Talla, E. An α-Sophoradiol glycoside from the root wood of Erythrina senegalensis DC. (Fabaceae) with α-amylase and α-glucosidase inhibitory potential. Nat. Prod. Com. 2021, 16, 1934578X211044564. [Google Scholar] [CrossRef]
- Khan, S.N.; Shaheen, F.; Aleem, U.; Sheikh, S.; Tamfu, A.N.; Ashraf, S.; Ul-Haq, Z.; Ullah, S.; Wahab, A.-T.; Choudhary, M.I.; et al. Peptide conjugates of 18β-glycyrrhetinic acid as potent inhibitors of α-glucosidase and AGEs-induced oxidation. Eur. J. Pharm. Sci. 2022, 168, 106045. [Google Scholar] [CrossRef]
- Feunaing, R.T.; Tamfu, A.N.; Gbaweng, A.J.; Mekontso Magnibou, L.; Ntchapda, F.; Henoumont, C.; Laurent, S.; Talla, E.; Dinica, R.M. In Vitro Evaluation of α-amylase and α-glucosidase Inhibition of 2, 3-Epoxyprocyanidin C1 and Other Constituents from Pterocarpus erinaceus Poir. Molecules 2023, 28, 126. [Google Scholar] [CrossRef]
- Tseng, P.S.; Ande, C.; Moremen, K.W.; Crich, D. Influence of Side Chain Conformation on the Activity of Glycosidase Inhibitors. Angew. Chem. Int. Ed. Engl. 2023, 62, e202217809. [Google Scholar] [CrossRef]
- Rajasekaran, P.; Ande, C.; Vankar, Y.D. Synthesis of (5,6 & 6,6)-oxa-oxa annulated sugars as glycosidase inhibitors from 2-formyl galactal using iodocyclization as a key step. Arkivoc 2022, 2022, 5–23. [Google Scholar]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; et al. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol. 2017, 8, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, K.K.; Mathew, J.E.; D’Silva, K.J.A.; Lobo, R.; Kumar, N. Nephroprotective potential of Graptophyllum pictum against renal injury induced by gentamicin. Iran. J. Basic Med. Sci. 2015, 18, 412–416. [Google Scholar]
- Makkiyah, F.; Rahmi, E.P.; Revina, R.; Susantinigsih, T.; Setyaningsih, Y. Graptophyllum pictum (L.) Griff. (Syn: Justicia picta Linn.) and its Effectiveness: A Well-Known Indonesian Plant. Pharmacogn. J. 2021, 13, 835–838. [Google Scholar] [CrossRef]
- Quiros-Moran, D. Guide to Afro-Cuban Herbalism; Authorhouse: Bloomington, IN, USA, 2009. [Google Scholar]
- Khare, C.P. Indian Medicinal Plants: An Illustrated Dictionary; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Goswami, M.; Ojha, A.; Mehra, M. A Narrative literature review on Phytopharmacology of a Caricature Plant: Graptophyllum pictum (L.) Griff. (Syn: Justicia picta Linn.). Asian Pac. J. Health Sci. 2021, 8, 44–47. [Google Scholar] [CrossRef]
- Olagbende-Dada, S.O.; Ukpo, G.E.; Coker, H.A.; Adesina, S.A. Oxytocic and anti-implantation activities of the leaf extract of Justicia picta (Linn) Griff. (Acanthaceae). Afr. J. Biotechnol. 2009, 8, 5979–5984. [Google Scholar]
- Kusumawati, I.; Rullyansyah, S.; Rohmania; Rizka, A.F.; Hestianah, E.P.; Matsunami, K. Histomorphometric study of ethanolic extract of Graptophyllum pictum (L.) Griff. leaves on croton oil-induced hemorrhoid mice: A Javanese traditional anti-hemorrhoid herb. J. Ethnopharmacol. 2022, 284, 114765. [Google Scholar] [CrossRef]
- Shen, C.C.; Ni, C.L.; Huang, Y.L.; Huang, R.L.; Chen, C.C. Furanolabdane diterpenes from Hypoestes purpurea. J. Nat. Prod. 2004, 67, 1947–1949. [Google Scholar] [CrossRef]
- Delazar, A.; Modarresi, M.; Shoeb, M.; Nahar, L.; Reid, R.G.; Kumarasamy, Y.; Majinda, R.R.; Sarker, S.D. Eremostachiin: A new furanolabdane diterpene glycoside from Eremostachys glabra. Nat. Prod. Res. 2006, 20, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Tamfu, A.N.; Sawalda, M.; Fotsing, M.T.; Kouipou, R.M.T.; Talla, E.; Chi, G.F.; Epanda, J.J.E.; Mbafor, J.T.; Baig, T.A.; Jabeen, A.; et al. A new isoflavonol and other constituents from Cameroonian propolis and evaluation of their anti-inflammatory, antifungal and antioxidant potential. Saudi J. Biol. Sci. 2020, 27, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Mahamat, A.; Nyemb, J.N.; Gade, S.I.; Talla, E.; Sophie, L.; Mbafor, T.J. Leptadeniamide, a new ceramide from Leptadenia hastata Pers. (Decne) (Asclepiadeceae) and antimicrobial activity. Int. J. Chem. Sci. 2021, 5, 1–5. [Google Scholar]
- Ikome, H.N.; Tamfu, A.N.; Abdou, J.P.; Fouotsa, H.; Nangmo, P.K.; Lah, F.C.W.; Tchinda, A.T.; Ceylan, O.; Frederich, M.; Nkengfack, A.E. Disruption of Biofilm Formation and Quorum Sensing in Pathogenic Bacteria by Compounds from Zanthoxylum Gilletti (De Wild) PG Waterman. Appl. Biochem. Biotechnol. 2023, 1–19. [Google Scholar] [CrossRef]
- Ngenge, T.A.; Jabeen, A.; Maurice, T.F.; Baig, T.A.; Shaheen, F. Organic and mineral, composition of seeds of Afrostyrax lepidophyllus Mildbr. and evaluation of ROS inhibition and cytotoxicity of isolated compounds. Chem. Africa 2019, 2, 615–624. [Google Scholar] [CrossRef] [Green Version]
- Moreta, M.P.; Burgos-Alonso, N.; Torrecilla, M.; Marco-Contelles, J.; Bruzos-Cidón, C. Efficacy of Acetylcholinesterase Inhibitors on Cognitive Function in Alzheimer’s Disease. Review of Reviews. Biomedicines 2021, 9, 1689. [Google Scholar] [CrossRef]
- Ahmed, F.; Ghalib, R.; Sasikala, P.; Ahmed, K.M. Cholinesterase inhibitors from botanicals. Pharmacogn. Rev. 2013, 7, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Maleu, T.C.; Talla, R.M.; Kamdem, M.H.K.; Ngenge, T.A.; Kucukaydin, S.; Mmutlane, E.M.; Ndinteh, D.T.; Mbazoa, C.D.; Wandji, J. Chemical constituents from fruits of Cnestis ferruginea Vahl ex. DC (Connaraceae) and evaluation of their anticholinesterase and antiradical activities. Nat. Prod. Res. 2022, 36, 5950–5958. [Google Scholar] [CrossRef]
- Kabir, M.T.; Uddin, M.S.; Begum, M.M.; Thangapandiyan, S.; Rahman, M.S.; Aleya, L.; Mathew, B.; Ahmed, M.; Barreto, G.E.; Ashraf, G.M. Cholinesterase Inhibitors for Alzheimer’s Disease: Multitargeting Strategy Based on Anti-Alzheimer’s Drugs Repositioning. Curr. Pharm. Des. 2019, 25, 3519–3535. [Google Scholar] [CrossRef]
- Ghai, R.; Nagarajan, K.; Arora, M.; Grover, P.; Ali, N.; Kapoor, G. Current Strategies and Novel Drug Approaches for Alzheimer Disease. CNS Neurol. Disord. Drug Targets 2020, 19, 676–690. [Google Scholar] [CrossRef]
- Tamfu, A.N.; Ceylan, O.; Kucukaydin, S.; Ozturk, M.; Duru, M.E.; Dinica, R.M. Antibiofilm and Enzyme Inhibitory Potentials of Two Annonaceous Food Spices, African Pepper (Xylopia aethiopica) and African Nutmeg (Monodora myristica). Foods 2020, 9, 1768. [Google Scholar] [CrossRef]
- Hassan, N.A.; Alshamari, A.K.; Hassan, A.A.; Elharrif, M.G.; Alhajri, A.M.; Sattam, M.; Khattab, R.R. Advances on Therapeutic Strategies for Alzheimer’s Disease: From Medicinal Plant to Nanotechnology. Molecules 2022, 27, 4839. [Google Scholar] [CrossRef]
- Poovitha, S.; Parani, M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement. Altern. Med. 2016, 16, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djoko, C.T.; Tamfu, A.N.; Nyemb, J.N.; Feunaing, R.T.; Laurent, S.; Henoumont, C.; Talla, E.; Venditti, A. In vitro α-glucosidase inhibitory activity of isolated compounds and semisynthetic derivative from aerial parts of Erythrina senegalensis DC. Nat. Prod. Res. 2023, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Loizzo, M.; Menichini, F. Natural Products as α-Amylase and α-Glucosidase Inhibitors and their Hypoglycaemic Potential in the Treatment of Diabetes: An Update. Mini-Rev. Med. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Riyaphan, J.; Jhong, C.H.; Lin, S.R.; Chang, C.H.; Tsai, M.J.; Lee, D.N.; Sung, P.J.; Leong, M.K.; Weng, C.F. Hypoglycemic Efficacy of Docking Selected Natural Compounds against α-Glucosidase and α-Amylase. Molecules 2018, 23, 2260. [Google Scholar] [CrossRef] [Green Version]
- Olagbende-Dada, S.O.; Ogbonnia, S.O.; Coker, H.A.B.; Ukpo, G.E. Blood glucose lowering effect of aqueous extract of Graptophyllum pictum (Linn) Griff. on alloxan-induced diabetic rats and its acute toxicity in mice. Afr. J. Biotechnol. 2011, 10, 1039–1043. [Google Scholar]
- Rahmi, H.; Artika, M.; Azwar, N.R.; Seno, D.S.H.; Nurcholis, W. The Activity of Wungu Leaf (Graptophyllum pictum (L) Griff) Extract in Reducing Blood Glucose Level of Hyperglycemic Mice. Curr. Biochem. 2014, 1, 83–88. [Google Scholar] [CrossRef]
- Geronikaki, A. Recent Trends in Enzyme Inhibition and Activation in Drug Design. Molecules 2020, 26, 17. [Google Scholar] [CrossRef] [PubMed]
- Boudiba, S.; Kucukaydin, S.; Tamfu, A.N.; Blaise, K.; Munvera, A.M.; Arab, Y.; Ceylan, O.; Dinica, R.M. HPLC-DAD Phenolic Composition, Antioxidant, Anticholinesterase, Antidiabetic and Anti-quorum Sensing Properties of Bitter Kola (Garcinia kola) and Kolanut (Cola acuminata). Pharmacogn. Res. 2023, 15, 373–383. [Google Scholar] [CrossRef]
- Jadalla, B.M.I.S.; Moser, J.J.; Sharma, R.; Etsassala, N.G.E.R.; Egieyeh, S.A.; Badmus, J.A.; Marnewick, J.L.; Beukes, D.; Cupido, C.N.; Hussein, A.A. In Vitro Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities and Antioxidant Capacity of Helichrysum cymosum and Helichrysum pandurifolium Schrank Constituents. Separations 2022, 9, 190. [Google Scholar] [CrossRef]
- Deng, Z.-T.; Chen, J.-J.; Geng, C.-A. ent-Labdane and ent-kaurane diterpenoids from Chelonopsis odontochila with α-glucosidase inhibitory activity. Bioorg. Chem. 2020, 95, 103571. [Google Scholar] [CrossRef]
- Yin, H.; Dan, W.-J.; Fan, B.-Y.; Guo, C.; Wu, K.; Li, D.; Xian, K.-F.; Pescitelli, G.; Gao, J.-M. Anti-inflammatory and α-glucosidase inhibitory activities of labdane and norlabdane diterpenoids from the rhizomes of Amomum villosum. J. Nat. Prod. 2019, 82, 2963–2971. [Google Scholar] [CrossRef]
- Doorandishan, M.; Pirhadi, S.; Swilam, M.M.; Gholami, M.; Ebrahimi, P.; El-Seedi, H.R.; Jassbi, A.R. Molecular docking and simulation studies of a novel labdane type-diterpene from Moluccella aucheri Scheen (Syn. Otostegia aucheri) as human- AChE inhibitor. J. Mol. Struct. 2021, 1245, 131034. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Alain, K.Y.; Tamfu, A.N.; Kucukaydin, S.; Ceylan, O.; Pascal, A.D.C.; Félicien, A.; Dominique, S.C.K.; Duru, M.E.; Dinica, R.M. Phenolic profiles, antioxidant, antiquorum sensing, antibiofilm and enzyme inhibitory activities of selected Acacia species collected from Benin. LWT 2022, 171, 114162. [Google Scholar] [CrossRef]
- Yang, X.-W.; Huang, M.-Z.; Jin, Y.-S.; Sun, L.-N.; Song, Y.; Chen, H.-S. Phenolics from Bidens bipinnata and their amylase inhibitory properties. Fitoterapia 2012, 83, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Tamfu, A.N.; Munvera, A.M.; Botezatu, A.V.D.; Talla, E.; Ceylan, O.; Fotsing, M.T.; Mbafor, J.T.; Shaheen, F.; Dinica, R.M. Synthesis of benzoyl esters of β-amyrin and lupeol and evaluation of their antibiofilm and antidiabetic activities. Results Chem. 2022, 4, 100322. [Google Scholar] [CrossRef]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Abuelizz, H.A.; Dib, R.E.; Marzouk, M.; Anouar, E.H.; Maklad, Y.A.; Attia, H.; Al-Salahi, R. Molecular Docking and Anticonvulsant Activity of Newly Synthesized Quinazoline Derivatives. Molecules 2017, 22, 1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salahuddin, M.; Jalalpure, S.S.; Gadge, N.B. Antidiabetic activity of aqueous bark extract of Cassia glauca in streptozotocin-induced diabetic rats. Can. J. Physiol. Pharmacol. 2010, 88, 153–160. [Google Scholar] [CrossRef]
- Nahoum, V.; Roux, G.; Anton, V.; Rougé, P.; Puigserver, A.; Bischoff, H.; Henrissat, B.; Payan, F. Crystal structures of human pancreatic alpha-amylase in complex with carbohydrate and proteinaceous inhibitors. Biochem. J. 2000, 346, 201–208. [Google Scholar] [CrossRef]
- Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012, 55, 10282–10286. [Google Scholar] [CrossRef]
- Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J.C.; Nachon, F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem. 2003, 278, 41141–41147. [Google Scholar] [CrossRef] [Green Version]
Test Sample | Anticholinesterase Activity | Antidiabetic Activity | ||
---|---|---|---|---|
AChE | BChE | α-Glucosidase | α-Amylase | |
Leaf extract | >100 | 58.21 ± 0.65 | 48.90 ± 0.17 | 70.21 ± 0.53 |
Stem extract | >100 | 67.05 ± 0.82 | 45.61 ± 0.56 | 64.47 ± 0.78 |
Hypopurin A | >100 | 58.00 ± 0.90 | 99.25 ± 0.96 | 60.68 ± 0.55 |
Hypopurin B | >100 | 67.05 ± 0.92 | 71.41 ± 0.98 | 69.51 ± 1.30 |
Hypopurin E | >100 | 86.90 ± 0.76 | 76.33 ± 1.10 | 73.80 ± 0.75 |
Lupeol | >100 | >100 | 69.75 ± 0.42 | >100 |
β-Sitosterol glucoside | >100 | >100 | >100 | >100 |
Stigmasterol glucoside | >100 | >100 | >100 | >100 |
Stigmasterol and β-sitosterol | >100 | >100 | >100 | >100 |
Galantamine | 5.50 ± 0.25 | 42.27 ± 0.22 | NT | NT |
Acarbose | NT | NT | 87.70 ± 0.68 | 32.25 ± 0.36 |
Compound | Free Binding Energy (kcal/mol) | H-Bonds (HBs) | Number of Closest Residues to the Docked Ligand in the Active Site | IC50 ± SEM |
---|---|---|---|---|
α-glucosidase | ||||
Hypopurin A | −7.61 | 1 | 6 | 99.25 ± 0.96 |
Hypopurin B | −7.21 | 2 | 6 | 71.41 ± 0.98 |
Hypopurin E | −7.25 | 0 | 5 | 76.33 ± 1.10 |
α-amylase | ||||
Hypopurin A | −8.03 | 1 | 5 | 60.68 ± 0.55 |
Hypopurin B | −8.33 | 2 | 10 | 69.51 ± 1.30 |
Hypopurin E | −7.81 | 1 | 9 | 73.80 ± 0.75 |
Acetylcholinesterase | ||||
Hypopurin A | −10.17 | 2 | 5 | >100 |
Hypopurin B | −10.29 | 3 | 7 | >100 |
Hypopurin E | −10.39 | 2 | 11 | >100 |
Butyrylcholinesterase | ||||
Hypopurin A | −8.77 | 2 | 4 | 58.00 ± 0.90 |
Hypopurin B | −8.43 | 1 | 5 | 67.05 ± 0.92 |
Hypopurin E | −8.80 | 2 | 10 | 86.90 ± 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metiefeng, N.T.; Tamfu, A.N.; Fotsing Tagatsing, M.; Tabopda, T.K.; Kucukaydin, S.; Noah Mbane, M.; de Theodore Atchade, A.; Talla, E.; Henoumont, C.; Laurent, S.; et al. In Vitro and In Silico Evaluation of Anticholinesterase and Antidiabetic Effects of Furanolabdanes and Other Constituents from Graptophyllum pictum (Linn.) Griffith. Molecules 2023, 28, 4802. https://doi.org/10.3390/molecules28124802
Metiefeng NT, Tamfu AN, Fotsing Tagatsing M, Tabopda TK, Kucukaydin S, Noah Mbane M, de Theodore Atchade A, Talla E, Henoumont C, Laurent S, et al. In Vitro and In Silico Evaluation of Anticholinesterase and Antidiabetic Effects of Furanolabdanes and Other Constituents from Graptophyllum pictum (Linn.) Griffith. Molecules. 2023; 28(12):4802. https://doi.org/10.3390/molecules28124802
Chicago/Turabian StyleMetiefeng, Nathalie Tanko, Alfred Ngenge Tamfu, Maurice Fotsing Tagatsing, Turibio Kuiate Tabopda, Selcuk Kucukaydin, Martin Noah Mbane, Alex de Theodore Atchade, Emmanuel Talla, Celine Henoumont, Sophie Laurent, and et al. 2023. "In Vitro and In Silico Evaluation of Anticholinesterase and Antidiabetic Effects of Furanolabdanes and Other Constituents from Graptophyllum pictum (Linn.) Griffith" Molecules 28, no. 12: 4802. https://doi.org/10.3390/molecules28124802
APA StyleMetiefeng, N. T., Tamfu, A. N., Fotsing Tagatsing, M., Tabopda, T. K., Kucukaydin, S., Noah Mbane, M., de Theodore Atchade, A., Talla, E., Henoumont, C., Laurent, S., Anouar, E. H., & Dinica, R. M. (2023). In Vitro and In Silico Evaluation of Anticholinesterase and Antidiabetic Effects of Furanolabdanes and Other Constituents from Graptophyllum pictum (Linn.) Griffith. Molecules, 28(12), 4802. https://doi.org/10.3390/molecules28124802