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Abstract: Graptophyllum pictum is a tropical plant noticeable for its variegated leaves and usually exploited 

for various medicinal purposes. In this study, seven compounds including three furanolabdane 

diterpenoids which were Hypopurin E, described for the first time, Hypopurin A and Hypopurin B 

together with Lupeol, β-sitosterol 3-O-β-D-glucopyranoside, stigmasterol 3-O-β-D-glucopyranoside and a 

mixture of β-sitosterol and stigmasterol were isolated from G. pictum and their structures deduced from 

ESI-TOF-MS, HR-ESI-TOF-MS, 1D and 2D NMR experiments. The compounds were evaluated for their 

anticholinesterase activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) as well 

as their antidiabetic potential through inhibition of α-glucosidase and α-amylase. For AChE inhibition, no 

sample had IC50 within tested concentrations but the most potent was Hypopurin A with percentage 

inhibition of 40.18±0.75% compared to galantamine (85.91±0.58%) at 100 µg/mL. BChE was more 

susceptible to the leaves extract (IC50 = 58.21±0.65 µg/mL), stem extract (IC50 = 67.05±0.82 µg/mL), 

Hypopurin A (IC50 = 58.00±0.90 µg/mL), Hypopurin B (IC50 = 67.05±0.92 µg/mL) and Hypopurin E (IC50 = 

86.90±0.76 µg/mL). In the antidiabetic assay, the furanolabdane diterpenoids, lupeol and the extracts had 

moderate to good activities. Against α-glucosidase, lupeol, Hypopurin E, Hypopurin A and Hypopurin B 

had appreciable activities but the leaves (IC50 = 48.90±0.17 µg/mL) and stem (IC50 = 45.61±0.56 µg/mL) 

extracts were more active than the pure compounds. In the α-amylase assay, stem extract (IC50 = 64.47±0.78 

µg/mL), Hypopurin A (IC50 = 60.68±0.55 µg/mL) and Hypopurin B (IC50 = 69.51±1.30 µg/mL) had moderate 

activities compared to the standard acarbose (IC50 = 32.25±0.36 µg/mL). Molecular docking was been 

performed to determine the binding modes and free binding energies of Hypopurin E, Hypopurin A and 

Hypopurin B to the enzymes and decipher structure-activity relationship. The results indicated that G. 

pictum and its compounds could more or less be used in the development of therapies for Alzheimer’s 

disease and diabetes.  
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Table S1: Equations used for IC50 calculation of the anticholinesterase activity of the samples 

(Concentration range 25 – 100 µg/mL)  

Test sample 

Anticholinesterase activity 

AChE 

Equation (R2) 

BChE 

Equation (R2) 

Leaves extract - 
y = 0.5394x + 18.6 

(R² = 0.9952) 

Stem extract - 
y = 0.504x + 16.2 

(R² = 0.9983) 

Hypopurin A - 
y = 0.4434x + 24.06 

(R² = 0.9906) 

Hypopurin B - 
y = 0.5049x + 16.15 

(R² = 0.9985) 

Hypopurin E - 
y = 0.369x + 17.965 

(R² = 0,9877) 

Lupeol - - 

β-Sitosterol glucoside - - 

Stigmasterol glucoside - - 

Stigmasterol & β-sitosterol - - 

 

Table S2: Equations used for IC50 calculation of the antidiabetic activity of the samples (Concentration 

range 25 – 100 µg/mL)  

 

Test sample 

Antidiabetic activity 

α-glucosidase 

Equation (R2) 

α-amylase 

Equation (R2) 

Leaves extract y = 0.2881x + 36.055 

(R² = 0.9918) 

y = 0.3931x + 22.34 

(R² = 0.9895) 

Stem extract y = 0.4349x + 30.18 

(R² = 0.9902) 

y = 0.4543x + 20.6 

(R² = 0.9878) 

Hypopurin A y = 0.4164x + 8.685 

(R² = 0.9997) 

y = 0.507x + 19.355 

(R² = 0.9987) 

Hypopurin B y = 0.308x + 28.075 

(R² = 0.9996) 

y = 0.2837x + 30.25 

(R² = 0.9996) 

Hypopurin E y = 0.2576x + 30.325 

(R² = 0.9987) 

y = 0.3143x + 26.8 

R² = 0.9912 

Lupeol y = 0.4024x + 21.895 

(R² = 0.9985) 

- 

β-Sitosterol glucoside - - 

Stigmasterol glucoside - - 

Stigmasterol & β-sitosterol - - 

Acarbose y = 0.3747x + 17.04 

(R² = 0.989) 

y = 0.4199x + 36.455 

(R² = 0.9903) 

 


