DPPH Radical Scavenging Activity of New Phenolics from the Fermentation Broth of Mushroom Morehella importuna
Abstract
:1. Introduction
2. Results
2.1. Structure Identification
2.2. DPPH Free Radical Scavenging Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungus Material
3.3. Fermentation and Preparation of Extracts
3.4. Isolation and Purification of Compounds 1–10 [55]
3.5. DPPH Free Radical Scavenging Activity
3.6. X-ray Single Crystal Diffraction for Compound 4 and 10
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sunil, C.; Xu, B. Mycochemical profile and health-promoting effects of morel mushroom Morchella esculenta (L.) A review. Food Res. Int. 2022, 159, 111571. [Google Scholar] [CrossRef] [PubMed]
- Sambyal, K.; Singh, R.V. A comprehensive review on Morchella importuna: Cultivation aspects, phytochemistry, and other significant applications. Folia Microbiol. 2021, 66, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, O.; Can, Z.; Laghari, A.Q.; Sahin, H.; Malkoc, M. Wild Edible Mushrooms as a Natural Source of Phenolics and Antioxidants. J. Food Biochem. 2015, 39, 148–154. [Google Scholar] [CrossRef]
- Kim, J.A.; Lau, E.; Tay, D.; De Blanco, E.J.C. Antioxidant and NF-κB inhibitory constituents isolated from Morchella esculenta. Nat. Prod. Res. 2011, 25, 1412–1417. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.W.; Xiao, B.Y.; Yang, F.C. Establishment of cultivating strategy for highly aggregated mycelia of Morchella esculenta in a stirred-tank bioreactor. Bioprocess Biosyst. Eng. 2012, 35, 1627–1635. [Google Scholar] [CrossRef]
- Kimura, Y.; Yoshinari, T.; Koshino, H.; Fujioka, S.; Okda, K.; Shimada, A. Rubralactone, Rubralides A, B and C, and Rubramin Produced by Penicillium rubrum. Biosci. Biotechnol. Biochem. 2007, 71, 1896–1901. [Google Scholar] [CrossRef]
- Katoh, T.; Ohmori, O.; Iwasaki, K.; Inoue, M. Synthetic studies on Sch 202596, an antagonist of the galanin receptor subtype GalR1: An efficient synthesis of (±)-geodin, the spirocoumaranone part of Sch 202596. Tetrahedron 2002, 58, 1289–1299. [Google Scholar] [CrossRef]
- León, A.; Del-Ángel, M.; Ávila, J.L.; Delgado, G. Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity. Prog. Chem. Org. Nat. Prod. 2017, 104, 127–246. [Google Scholar]
- Chen, Q.; Yu, J.J.; He, J.; Feng, T.; Liu, J.K. Isobenzofuranones and isocoumarins from kiwi endophytic fungus Paraphaeosphaeria sporulosa and their antibacterial activity against Pseudomonas syringae pv. actinidiae. Phytochemistry 2022, 195, 113050. [Google Scholar] [CrossRef]
- Sánchez-Fernández, R.E.; Sánchez-Fuentes, R.; Rangel-Sánchez, H.; Hernández-Ortega, S.; López-Cortés, J.G.; Macías-Rubalcava, M.L. Antifungal and antioomycete activities and modes of action of isobenzofuranones isolated from the endophytic fungus Hypoxylon anthochroum strain Gseg1. Pestic. Biochem. Physiol. 2020, 169, 104670. [Google Scholar] [CrossRef]
- Farias, E.S.; Silva, E.M.P.; Teixeira, M.G.; Ferreira, J.S.; Alvarenga, E.S.; Picanço, M.C. Phthalides as promising insecticides against Tuta absoluta (Lepidoptera: Gelechiidae). J. Environ. Sci. Health Part B 2018, 53, 49–56. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Ruan, J.; Chen, Q.; Li, J.; Guo, Y.; Han, L.; Wang, T. Isobenzofuranones from the aerial parts of Leontopodium leontopodioides (Wild.) Beauv. Fitoterapia 2018, 124, 66–72. [Google Scholar] [CrossRef]
- Lv, J.L.; Zhang, L.B.; Guo, L.M. Phthalide dimers from Angelica sinensis and their COX-2 inhibition activity. Fitoterapia 2018, 129, 102–107. [Google Scholar] [CrossRef]
- Dai, Y.; Li, K.; She, J.; Zeng, Y.; Wang, H.; Liao, S.; Lin, X.; Yang, B.; Wang, J.; Tao, H.; et al. Lipopeptide Epimers and a Phthalide Glycerol Ether with AChE Inhibitory Activities from the Marine-Derived Fungus Cochliobolus Lunatus SCSIO41401. Mar. Drugs 2020, 18, 110547. [Google Scholar] [CrossRef]
- Yan, Z.; Huang, C.; Guo, H.; Zheng, S.; He, J.; Lin, J.; Long, Y. Isobenzofuranone monomer and dimer derivatives from the mangrove endophytic fungus Epicoccum nigrum SCNU-F0002 possess α-glucosidase inhibitory and antioxidant activity. Bioorg. Chem. 2020, 94, 103407. [Google Scholar] [CrossRef]
- Zhang, L.B.; Lv, J.L.; Liu, J.W. Phthalide Derivatives with Anticoagulation Activities from Angelica sinensis. J. Nat. Prod. 2016, 79, 1857–1861. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, H.W.; Feng, Z.M.; Yang, Y.N.; Jiang, J.S.; Zhang, P.C. Neophathalides A and B, two pairs of unusual phthalide analog enantiomers from Ligusticum chuanxiong. Org. Biomol. Chem. 2020, 18, 5453–5457. [Google Scholar] [CrossRef]
- Dos Reis Teixeira, A.; Teixeira, R.R.; Ribeiro, I.M.L.; Pereira, W.L.; Manhabosco, T.M.; de Brito, A.C.F.; Oliveira, L.A.M.; Coelho Nogueira, K.O.P. Association of electroanalytical and spectrophotometric methods to evaluate the antioxidant activity of isobenzofuranone in primary cultures of hippocampal neurons. Toxicol. In Vitro 2020, 68, 104970. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.L.; Li, G.; Xu, P.S.; Xu, K.P.; Tan, G.S. Two new isobenzofuranone derivatives from the fruiting bodies of Hericium erinaceus. J. Asian Nat. Prod. Res. 2017, 19, 1108–1113. [Google Scholar] [CrossRef]
- Wang, X.L.; Gao, J.; Li, J.; Long, H.P.; Xu, P.S.; Xu, K.P.; Tan, G.S. Three new isobenzofuranone derivatives from the fruiting bodies of Hericium erinaceus. J. Asian Nat. Prod. Res. 2017, 19, 134–139. [Google Scholar] [CrossRef]
- Colmenares-Cruz, S.; González-Cortazar, M.; Castañeda-Ramírez, G.S.; Andrade-Gallegos, R.H.; Sánchez, J.E.; Aguilar-Marcelino, L. Nematocidal activity of hydroalcoholic extracts of spent substrate of Pleurotus djamor on L(3) larvae of Haemonchus contortus. Vet. Parasitol. 2021, 300, 109608. [Google Scholar] [CrossRef] [PubMed]
- Tomas-Hernandez, S.; Garcia-Vallvé, S.; Pujadas, G.; Valls, C.; Ojeda-Montes, M.J.; Gimeno, A.; Cereto-Massagué, A.; Roca-Martinez, J.; Suárez, M.; Arola, L.; et al. Anti-inflammatory and Proapoptotic Properties of the Natural Compound o-Orsellinaldehyde. J. Agric. Food Chem. 2018, 66, 10952–10963. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.T.; Liu, W.H. ο-Orsellinaldehyde from the Submerged Culture of the Edible Mushroom Grifola frondosa Exhibits Selective Cytotoxic Effect Against Hep 3B Cells Through Apoptosis. J. Agric. Food Chem. 2006, 54, 7564–7569. [Google Scholar] [CrossRef] [PubMed]
- Kälvö, D.; Menkis, A.; Broberg, A. Secondary Metabolites from the Root Rot Biocontrol Fungus Phlebiopsis gigantea. Molecules 2018, 23, 1417. [Google Scholar] [CrossRef] [Green Version]
- Ryang, J.; Liu, F.; Ng, T.B. Purified antioxidant from the medicinal mushroom Phellinus pini protects rat H9c2 cell against H(2) O(2) -induced oxidative stress. J. Food Biochem. 2021, 45, e13818. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, H.; Xu, J. Characterization, Antioxidant and Anti-Inflammation Capacities of Fermented Flammulina velutipes Polyphenols. Molecules 2021, 26, 6205. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, P.; Zhu, Z.; Chen, C.; Xu, X. Production of phenolic compounds and antioxidant activity via bioconversion of wheat straw by Inonotus obliquus under submerged fermentation with the aid of a surfactant. J. Sci. Food Agric. 2021, 101, 1021–1029. [Google Scholar] [CrossRef]
- Kebaili, F.F.; Tahar, N.; Esseddik, T.M.; Redouane, R.; Chawki, B.; Pablo, A.; Massimiliano, P. Antioxidant Activity and Phenolic Content of Extracts of Wild Algerian Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes). Int. J. Med. Mushrooms 2021, 23, 79–88. [Google Scholar] [CrossRef]
- Yin, C.; Fan, X.; Liu, C.; Fan, Z.; Shi, D.; Yao, F.; Cheng, W.; Gao, H. The Antioxidant Properties, Tyrosinase and α-Glucosidase Inhibitory Activities of Phenolic Compounds in Different Extracts from the Golden Oyster Mushroom, Pleurotus citrinopileatus (Agaricomycetes). Int. J. Med. Mushrooms 2019, 21, 865–874. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, H.; Li, T.; Chen, L.; Zheng, B.; Liu, R.H. Comparison of phenolics, antioxidant, and antiproliferative activities of two Hypsizygus marmoreus varieties. J. Food Sci. 2020, 85, 2227–2235. [Google Scholar] [CrossRef]
- Sárközy, A.; Kúsz, N.; Zomborszki, Z.P.; Csorba, A.; Papp, V.; Hohmann, J.; Vanyolos, A. Isolation and Characterization of Chemical Constituents from the Poroid Medicinal Mushroom Porodaedalea chrysoloma (Agaricomycetes) and Their Antioxidant Activity. Int. J. Med. Mushrooms 2020, 22, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Ming, Y.; Cui, Q.; Zheng, N.; Yang, S.; Li, W.; Gao, H.; Zhang, R.; Cheng, X. Efficient extraction and antioxidant activity of polyphenols from Antrodia cinnamomea. BMC Biotechnol. 2022, 22, 9. [Google Scholar] [CrossRef]
- Li, Y.; Liang, H.; Zhou, D.; Xing, Y.; Chen, J. Phenolics, Flavonoids Content and Antioxidant Activities of Tuber indicum at Different Maturity Stages. Chem. Biodivers. 2022, 19, e202100830. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.M.; Dong, X.P.; Li, Y.; Cheng, Y.X. Chemical constituents in Yi Medicine Blaps japonensis and their cytotoxic activities. Zhongcaoyao 2013, 44, 269–271. [Google Scholar]
- Reuben, R.C.; Khanna, P.L.; Gazitt, Y.; Breslow, R.; Rifkind, R.A.; Marks, P.A. Inducers of erythroleukemic differentiation. Relationship of structure to activity among planar-polar compounds. J. Biol. Chem. 1978, 253, 4214–4218. [Google Scholar] [CrossRef]
- Ouchida, R.; Kusuhara, M.; Shimizu, N.; Hisada, T.; Makino, Y.; Morimoto, C.; Handa, H.; Ohsuzu, F.; Tanaka, H. Suppression of NF-κB-dependent gene expression by a hexamethylene bisacetamide-inducible protein HEXIM1 in human vascular smooth muscle cells. Genes Cells 2003, 8, 95–107. [Google Scholar] [CrossRef]
- Yue, Y.; Chen, C.; Zhong, K.; Wu, Y.; Gao, H. Purification, Fermentation Optimization, and Antibacterial Activity of Pyrrole-2-carboxylic Acid Produced by an Endophytic Bacterium, Bacillus cereus ZBE, Isolated from Zanthoxylum bungeanum. Ind. Eng. Chem. Res 2022, 61, 1267–1276. [Google Scholar] [CrossRef]
- Chen, H.; Yang, C.; Ke, T.; Zhou, M.; Li, Z.; Zhang, M.; Gong, G.; Hou, T. Antimicrobial activity of secondary metabolites from Streptomyces sp. K15, an endophyte in Houttuynia cordata Thunb. Nat. Prod. Res. 2015, 29, 2223–2225. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Di Meo, S.; Venditti, P. Evolution of the Knowledge of Free Radicals and Other Oxidants. Oxid. Med. Cell. Longev. 2020, 2020, 9829176. [Google Scholar] [CrossRef] [Green Version]
- Zarkovic, N. Antioxidants and Second Messengers of Free Radicals. Antioxidants 2018, 7, 158. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Fu, L.; Feng, S.; Yuan, M.; Huang, Y.; Liao, J.; Zhou, L.; Yang, H.; Ding, C. Chemical Composition, Antioxidant and Antihyperglycemic Activities of the Wild Lactarius deliciosus from China. Molecules 2019, 24, 1357. [Google Scholar] [CrossRef] [Green Version]
- El Sayed, N.S.; Ghoneum, M.H. Antia, a Natural Antioxidant Product, Attenuates Cognitive Dysfunction in Streptozotocin-Induced Mouse Model of Sporadic Alzheimer’s Disease by Targeting the Amyloidogenic, Inflammatory, Autophagy, and Oxidative Stress Pathways. Oxid. Med. Cell. Longev. 2020, 2020, 4386562. [Google Scholar] [CrossRef]
- Song, X.; Shen, Q.; Liu, M.; Zhang, C.; Zhang, L.; Ren, Z.; Wang, W.; Dong, Y.; Wang, X.; Zhang, J.; et al. Antioxidant and hepatoprotective effects of intracellular mycelium polysaccharides from Pleurotus geesteranus against alcoholic liver diseases. Int. J. Biol. Macromol. 2018, 114, 979–988. [Google Scholar] [CrossRef]
- Stastny, J.; Marsik, P.; Tauchen, J.; Bozik, M.; Mascellani, A.; Havlik, J.; Landa, P.; Jablonsky, I.; Treml, J.; Herczogova, P.; et al. Antioxidant and Anti-Inflammatory Activity of Five Medicinal Mushrooms of the Genus Pleurotus. Antioxidants 2022, 11, 1569. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Liu, M.; Wang, Q.; Li, Y. Extraction optimization, characterization, antioxidant and immunomodulatory activities of a novel polysaccharide from the wild mushroom Paxillus involutus. Int. J. Biol. Macromol. 2018, 112, 326–332. [Google Scholar] [CrossRef]
- Yuan, F.; Gao, Z.; Liu, W.; Li, H.; Zhang, Y.; Feng, Y.; Song, X.; Wang, W.; Zhang, J.; Huang, C.; et al. Characterization, Antioxidant, Anti-Aging and Organ Protective Effects of Sulfated Polysaccharides from Flammulina velutipes. Molecules 2019, 24, 3517. [Google Scholar] [CrossRef] [Green Version]
- Altannavch, N.; Zhou, X.; Khan, M.A.; Ahmed, A.; Naranmandakh, S.; Fu, J.J.; Chen, H.C. Anti-oxidant and Anticancerous Effect of Fomitopsis officinalis (Vill. ex Fr. Bond. et Sing) Mushroom on Hepatocellular Carcinoma Cells In Vitro through NF-kB Pathway. Anticancer Agents Med. Chem. 2022, 22, 1561–1570. [Google Scholar]
- Garcia, J.; Rodrigues, F.; Castro, F.; Aires, A.; Marques, G.; Saavedra, M.J. Antimicrobial, Antibiofilm, and Antioxidant Properties of Boletus edulis and Neoboletus luridiformis Against Multidrug-Resistant ESKAPE Pathogens. Front. Nutr. 2021, 8, 773346. [Google Scholar] [CrossRef]
- Smeriglio, A.; D’Angelo, V.; Denaro, M.; Trombetta, D.; Raimondo, F.M.; Germanò, M.P. Polyphenol Characterization, Antioxidant and Skin Whitening Properties of Alnus cordata Stem Bark. Chem. Biodivers. 2019, 16, e1900314. [Google Scholar] [CrossRef]
- Kong, S.; Choi, H.R.; Kim, Y.J.; Lee, Y.S.; Park, K.C.; Kwak, S.Y. Milk Protein-Derived Antioxidant Tetrapeptides as Potential Hypopigmenting Agents. Antioxidants 2020, 9, 1106. [Google Scholar] [CrossRef] [PubMed]
- Nataraj, A.; Govindan, S.; Ramani, P.; Subbaiah, K.A.; Sathianarayanan, S.; Venkidasamy, B.; Thiruvengadam, M.; Rebezov, M.; Shariati, M.A.; Lorenzo, J.M.; et al. Antioxidant, Anti-Tumour, and Anticoagulant Activities of Polysaccharide from Calocybe indica (APK2). Antioxidants 2022, 11, 091694. [Google Scholar] [CrossRef]
- Okolo, K.O.; Orisakwe, O.E.; Siminialayi, I.M. Nephroprotective and Antioxidant Effects of King Tuber Oyster Medicinal Mushroom, Pleurotus tuber-regium (Agaricomycetes), on Carbon Tetrachloride-Induced Nephrotoxicity in Male Sprague Dawley Rats. Int. J. Med. Mushrooms 2018, 20, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Quy, T.N.; Xuan, T.D. Xanthine Oxidase Inhibitory Potential, Antioxidant and Antibacterial Activities of Cordyceps militaris (L.) Link Fruiting Body. Medicines 2019, 6, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Liu, Q.; Li, S.; Zheng, Y. New Sesquiterpenoids from the Fermented Broth of Termitomyces albuminosus and their Anti-Acetylcholinesterase Activity. Molecules 2019, 24, 2980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassim, N.K.; Lim, P.C.; Ismail, A.; Awang, K. Isolation of antioxidative compounds from Micromelum minutum guided by preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography method. Food Chem. 2019, 272, 185–191. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Position | 1 | 2 | ||
---|---|---|---|---|
δH (Mult, J in Hz) * | δC ** | δH (Mult, J in Hz) * | δC ** | |
1 | 169.2 | 167.2 | ||
3 | 6.36 (s, 1H) | 103.2 | 10.33 (s, 1H) | 196.6 |
3a | 123.4 | 113.3 | ||
4 | 155.5 | 165.4 | ||
5 | 6.68 (d, J = 2.0 Hz, 1H) | 109.6 | 6.96 (d, J = 2.4 Hz, 1H) | 112.1 |
6 | 162.5 | 167.0 | ||
7 | 6.74 (d, J = 2.0 Hz, 1H) | 103.1 | 6.52 (d, J = 2.4 Hz, 1H) | 106.7 |
7a | 131.3 | 137.8 | ||
8 | 3.49 (s, 3H) | 56.2 | 3.93 (s, 3H) | 53.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Tan, J.; Jiang, R.; Li, F.; Zheng, R.; Yu, L.; Luo, L.; Zheng, Y. DPPH Radical Scavenging Activity of New Phenolics from the Fermentation Broth of Mushroom Morehella importuna. Molecules 2023, 28, 4760. https://doi.org/10.3390/molecules28124760
Wang F, Tan J, Jiang R, Li F, Zheng R, Yu L, Luo L, Zheng Y. DPPH Radical Scavenging Activity of New Phenolics from the Fermentation Broth of Mushroom Morehella importuna. Molecules. 2023; 28(12):4760. https://doi.org/10.3390/molecules28124760
Chicago/Turabian StyleWang, Feifei, Jie Tan, Ruixiang Jiang, Feifei Li, Renqing Zheng, Linjun Yu, Lianzhong Luo, and Yongbiao Zheng. 2023. "DPPH Radical Scavenging Activity of New Phenolics from the Fermentation Broth of Mushroom Morehella importuna" Molecules 28, no. 12: 4760. https://doi.org/10.3390/molecules28124760
APA StyleWang, F., Tan, J., Jiang, R., Li, F., Zheng, R., Yu, L., Luo, L., & Zheng, Y. (2023). DPPH Radical Scavenging Activity of New Phenolics from the Fermentation Broth of Mushroom Morehella importuna. Molecules, 28(12), 4760. https://doi.org/10.3390/molecules28124760