Preparation of Original and Calcined Layered Double Hydroxide as Low-Cost Adsorbents: The Role of the Trivalent Cation on Methylene Blue Adsorption
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Adsorption of Methylene Blue (MB)
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Rives, V.; Labajos, F.M.; Herrero, M. Effect of preparation procedures on the properties of LDH/organo nancomposites. In Nanocomposites: Synthesis, Characterization and Applications; Wang, X.Y., Ed.; Nova Science Publishers: New York, NY, USA, 2013; Chapter 8; pp. 169–202. ISBN 978-1-62948-226-2. [Google Scholar]
- Trujillano, R.; Labajos, F.M.; Rives, V. Hydrotalcites, a rapid survey on the very recent synthesis and applications procedures. Appl. Clay Sci. 2023, 238, 106927. [Google Scholar] [CrossRef]
- Ross, G.J.; Kodama, H. Properties of a Synthetic Magnesium-Aluminum Carbonate Hydroxide and its Relationship to Magnesium-Aluminum Double Hydroxide, Manasseite and Hydrotalcite. Am. Miner. 1967, 752, 1036–1047. [Google Scholar]
- Bookin, A.S.; Drits, V.A. Polytype Diversity of the Hydrotalcite-Like Minerals I., Possible Polytypes and their Diffraction Features. Clays Clay Miner. 1993, 41, 551–557. [Google Scholar] [CrossRef]
- Trujillano, R.; González-García, I.; Morato, A.; Rives, V. Controlling the Synthesis Conditions for Tuning the Properties of Hydrotalcite-Like Materials at the Nano Scale. ChemEngineering 2018, 2, 31. [Google Scholar] [CrossRef] [Green Version]
- Mishra, G.; Dah, B.; Pandey, S. Layered double Hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 2017, 153, 172–186. [Google Scholar] [CrossRef]
- Yan, H.; Zhao, X.J.; Zhu, Y.Q.; Wei, M.; Evans, D.G.; Duan, X. The Periodic Table as a Guide to the Construction and Properties of Layered Double Hydroxides. In The Periodic Table II, Structure Bonding; Mingos, D., Ed.; Springer: Cham, Switzerland, 2019; Volume 182, pp. 89–120. [Google Scholar]
- De Roy, A.; Forano, C.; Besse, J.P. Layered Double Hydroxides: Synthesis and Post-Synthesis Modification. In Layered Double Hydroxides. Present and Future; Rives, V., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2001; Chapter 1; pp. 1–31. [Google Scholar]
- Kwon, T.; Pinnavaia, T.J. Pillaring of a layered double hydroxide by polyoxometalate with Keggin-ion structures. Chem. Mater. 1989, 14, 381–383. [Google Scholar] [CrossRef]
- Chibwe, K.; Jones, W. Intercalation of organic and inorganic anions into layered hydroxides. J. Chem. Soc. Chem. Comm. 1989, 14, 926–927. [Google Scholar] [CrossRef]
- Jing, L.; Zeng, H.-T.; Du, J.-Z.; Xu, S. Intercalation of organic and inorganic anions into layered double hydroxides for polymer flame retardancy. Appl. Clay Sci. 2020, 187, 105481. [Google Scholar]
- Trujillano, R. 30 Years of Vicente Rives’ Contribution to Hydrotalcites, Synthesis, Characterization, Applications, and Innovation. ChemEngineering 2022, 6, 60. [Google Scholar] [CrossRef]
- Sato, T.; Kato, K.; Endo, T.; Shimada, M. Preparation and chemical properties of magnesium aluminium oxide solid solutions. React. Solids 1986, 2, 253–260. [Google Scholar] [CrossRef]
- Conterosito, E.; Gianotti, V.; Palin, L.; Boccaleri, E.; Viterbo, D.; Milanesio, M. Facile preparation methods of hydrotalcite layered materials and their structural characterization by combined techniques. Inorg. Chim. Acta 2018, 470, 36–50. [Google Scholar] [CrossRef]
- Benito, P.; Guinea, I.; Labajos, F.M.; Rocha, J.; Rives, V. Microwave-hydrothermally aged Zn, Al hydrotalcite-like compounds: Influence of the composition and the irradiation conditions. Micropor. Mesopor. Mater. 2008, 110, 292–302. [Google Scholar] [CrossRef]
- Rives, V. Layered Double Hydroxides: Present and Future; Rives, V., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Trujillano, R.; Nájera, C.; Rives, V. Activity in the photodegradation of 4-nitrophenol of a Zn, Al hydrotalcite-like solid and the derived alumina-supported ZnO. Catalysts 2020, 10, 702. [Google Scholar] [CrossRef]
- Sánchez-Cantú, M.; Hernández-Torres, M.E.; Castillo-Navarro, A.; Cadena-Torres, E.; Rubio-Rosas, E.; Gracia-Jiménez, J.M.; Tzompantzi, F. Evaluation of hydrotalcite-like compounds with distinct interlaminar anions as catalyst precursors in methylene blue photodegradation. Appl. Clay Sci. 2017, 135, 1–8. [Google Scholar] [CrossRef]
- Faria, A.C.; Trujillano, R.; Rives, V.; Miguel, C.V.; Rodrigues, A.E.; Madeira, L.M. Alkali metal (Na, Cs and K) promoted hydrotalcites for high temperature CO2 capture from flue gas in cyclic adsorption processes. Chem. Eng. J. 2022, 427, 131502. [Google Scholar] [CrossRef]
- Dietmann, K.M.; Linke, T.; Trujillano, R.; Rives, V. Effect of Chain Length and Functional Group of Organic Anions on the Retention Ability of MgAl-Layered Double Hydroxides for Chlorinated Organic Solvents. ChemEngineering 2019, 3, 89. [Google Scholar] [CrossRef] [Green Version]
- Dietmann, K.M.; Linke, T.; Nogal Sánchez, M.d.; Pérez Pavón, J.L.; Rives, V. Layered Double Hydroxides with Intercalated Permanganate and Peroxydisulphate Anions for Oxidative Removal of Chlorinated Organic Solvents Contaminated Water. Minerals 2020, 10, 462. [Google Scholar] [CrossRef]
- Fito, J.; Abewaa, M.; Mengistu, A.; Angassa, K.; Ambaye, A.D.; Moyo, W.; Nkambule, T. Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant. Sci. Rep. 2023, 13, 5427. [Google Scholar] [CrossRef]
- Fungaro, D.; Grosche, L.; Pinheiro, P.; Izidoro, J.; Borrely, S. Adsorption of methylene blue from aqueous solution on zeolitic material and the improvement as toxicity removal to living organisms. Orbital 2010, 2, 235–247. [Google Scholar]
- Elmoubarki, R.; Mahjoubi, F.Z.; Elhalil, A.; Tounsadi, H.; Abdennouri, M.; Sadiq, M.; Qourzal, S.; Zouhri, A.; Barka, N. Ni/Fe and Mg/Fe layered double hydroxides and their calcined derivatives: Preparation, characterization and application on textile dyes removal. J. Mater. Res. Technol. 2017, 6, 271–283. [Google Scholar] [CrossRef]
- Starukh, G.; Rozovik, O.; Oranska, O. Organo/Zn-Al LDH Nanocomposites for Cationic Dye Removal from Aqueous Media. Nanoscale Res. Lett. 2016, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Rives, V.; Ulibarri, M.A. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coord. Chem. Rev. 1999, 181, 61–120. [Google Scholar] [CrossRef]
- Evans, D.G.; Slade, R.C.T. Structural Aspects of Layered Double Hydroxides. In Layered Double Hydroxides; Structure and Bonding; Duan, X., Evans, D.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 119. [Google Scholar]
- Belloto, M.; Rebours, B.; Clause, O.; Lynch, J.; Bazin, D.; Elkaim, E. A reexamination of hydrotalcite crystal chemistry. J. Phys. Chem. 1996, 100, 8527–8534. [Google Scholar] [CrossRef]
- Card No. 22-700; ICDD Database, JCPDS. International Centre for Diffraction Data (ICDD®): Newtown Square, PA, USA, 2020.
- Drits, V.; Bookin, A. Crystal Structure and X-ray identification of Layered Double Hydroxides. In Layered Double Hydroxides: Present and Future; Rives, V., Ed.; Nova Science Publishers: New York, NY, USA, 2001; pp. 39–92. [Google Scholar]
- Card No. 45-984; ICDD Database, JCPDS. International Centre for Diffraction Data (ICDD®): Newtown Square, PA, USA, 2020.
- Callister, W.D.; Rethwisch, D.G. Materials Science and Engineering, 9th ed.; Reverté: Barcelona, Spain, 2016; Volume 4, pp. 105–116. [Google Scholar]
- Card No. 4-829; ICDD Database, JCPDS. International Centre for Diffraction Data (ICDD®): Newtown Square, PA, USA, 2020.
- Kloprogge, J.T. Infrared and Raman Spectroscopy of Naturally Occurring Hydrotalcites and Their Synthetic Equivalents. In The Application of Vibrational Spectroscopy to Clay Mineral and Layered Double Hydroxides; The Clay Minerals Society, CKS Workshops Lectures: Aurora, CO, USA, 2005; Chapter 8; pp. 204–238. ISBN 978-1-881208-14-1. [Google Scholar]
- Kloproge, J.T.; Frost, R.L. Infrared and Raman Spectroscopic Studiues of Layered Double Hydroxides (LDHs). In Layered Double Hydroxides: Present and Future; Rives, V., Ed.; Nova Science Publishers: New York, NY, USA, 2001; Volume 5, pp. 153–175. [Google Scholar]
- Rives, V. Study of Layered Double Hydroxides by Thermal Methods. In Layered Double Hydroxides: Present and Future; Rives, V., Ed.; Nova Science Publishers: New York, NY, USA, 2001; Volume 4, pp. 115–137. [Google Scholar]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Kluwer Academic Publishers: Alfen, The Netherlands, 2004. [Google Scholar]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouqerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so-called adsorption of soluble substances. K. Sven. Vetensk. Akad. Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451. [Google Scholar] [CrossRef]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Rafael Hernandez, R.; Zappi, M.E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Balu, S.; Uma, K.; Pan, G.-T.; Yang, T.C.K.; Sayee Kannan, R. Degradation of Methylene Blue Dye in the Presence of Visible Light Using SiO2@-Fe2O3 Nanocomposites Deposited on SnS2 Flowers. Materials 2018, 11, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waghchaure, R.H.; Adole, V.A.; Jagdale, B.S.; Koli, B.P. Fe3+ modified zinc oxide nanomaterial as an efficient, multifaceted material for photocatalytic degradation of MB dye and ethanol gas sensor as part of environmental rectification. Inorg. Chem. Commun. 2022, 140, 109450. [Google Scholar] [CrossRef]
- Nguyen Thi Thao, N.; Anh Quoc Khuong, N.; Min Sik Kim, C.L.; Jungwon, K. Effect of Fe3+ as an electron-transfer mediator on WO3-induced activation of peroxymonosulfate under visible light. Chem. Eng. J. 2021, 411, 128529. [Google Scholar] [CrossRef]
- Kooli, F.; Rives, V.; Ulibarri, M.A. Preparation and Study of Decavanadate-Pillared Hydrotalcite-like Anionic Clays Containing Transition Metal Cations in the Layers. 1. Samples Containing Nickel-Aluminum Prepared by Anionic Exchange and Reconstruction. Inorg. Chem. 1995, 34, 5114–5121. [Google Scholar] [CrossRef]
- Kooli, F.; Rives, V.; Ulibarri, M.A. Preparation and Study of Decavanadate-Pillared Hydrotalcite-like Anionic Clays Containing Transition Metal Cations in the Layers. 2. Samples Containing Magnesium-Chromium and Nickel-Chromium. Inorg. Chem. 1995, 34, 5122–5128. [Google Scholar] [CrossRef]
- Walton, H.F. A working manual: Comprehensive analytical chemistry. In Classical Analysis Gravimetric and Titrimetric Determination of the Elements; Wilson, C.L., Wilson, D.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1962. [Google Scholar]
Sample | %Mg * | %Al * | %Fe * | Mg/M3+ ** | Al/Fe ** | Formula |
---|---|---|---|---|---|---|
Mg/Al | 18.97 | 10.36 | 2.03 | [Mg0.67Al0.33(OH)2](CO3)0.16·0.84H2O | ||
Mg/Al/Fe | 19.24 | 5.75 | 10.31 | 1.99 | 1.15 | [Mg0.67Al0.18Fe0.16(OH)2](CO3)0.17·0.78H2O |
Mg/Fe | 16.23 | 25.91 | 1.44 | [Mg0.59Fe0.41(OH)2](CO3)0.20·0.89H2O | ||
Mg/Al500 | (MgO)0.67 + (Al2O3)0.16 | |||||
Mg/Al/Fe500 | (MgO)0.67 + (Al2O3)0.09 + (Fe2O3)0.08 | |||||
Mg/Fe500 | (MgO)0.59 + (Fe2O3)0.20 |
JCPDS 22-700 * | Mg/Al | Mg/Al/Fe | Mg/Fe | h k l | |||
---|---|---|---|---|---|---|---|
d/Å | 2θ/° | d/Å | 2θ/° | d/Å | 2θ/° | d/Å | |
7.841 | 11.49 | 7.68 | 11.57 | 7.63 | 11.63 | 7.63 | 0 0 3 |
3.898 | 23.19 | 3.83 | 22.3 | 3.82 | 23.2 | 3.81 | 0 0 6 |
2.599 | 34.94 | 2.58 | 34.41 | 2.59 | 34.57 | 2.60 | 0 0 9 |
2.329 | 38.88 | 2.31 | 39.12 | 2.29 | 38.82 | 2.30 | 0 1 5 |
1.959 | 46.57 | 1.95 | 46.18 | 1.93 | 46.18 | 1.95 | 0 1 8 |
1.540 | 59.9 | 1.52 | 59.060 | 1.53 | 60.3 | 1.55 | 1 1 0 |
1.497 | 60.8 | 1.49 | 60.8 | 1.50 | 61.2 | 1.52 | 1 1 3 |
1.432 | 66.2 | 1.40 | 65.75 | 1.41 | 65.0 | 1.43 | 1 1 6 |
Parameter | Mg/Al | Mg/Al/Fe | Mg/Fe |
---|---|---|---|
c | 23.01 | 22.09 | 22.87 |
a | 3.04 | 3.08 | 3.1 |
D | 83 | 85 | 98 |
MgO * | Mg/Al500 | Mg/Al/Fe500 | Mg/Fe500 | h k l | ||||
---|---|---|---|---|---|---|---|---|
d/Å | 2θ/° | d/Å | 2θ/° | d/Å | 2θ/° | d/Å | ||
2.432 | 35.55 | 2.523 | 35.90 | 2.499 | 36.05 | 2.489 | 1 1 0 | |
2.107 | 43.45 | 2.0081 | 43.10 | 2.097 | 43.30 | 2.088 | 2 0 0 | |
1.490 | 63.2 | 1.470 | 62.90 | 1.476 | 62.65 | 1.482 | 2 2 0 | |
a | 4.213 | 4.233 | 4.213 | 4.233 | ||||
D | - | 47 | 91 | 88 |
Sample | SBET | rBET | St | rt |
---|---|---|---|---|
Mg/Al | 109 | 0.9998 | 99 | 0.9999 |
Mg/Al/Fe | 43 | 0.9998 | 43 | 0.9999 |
Mg/Fe | 40 | 0.9997 | 40 | 0.9999 |
Mg/Al500 | 109 | 0.9984 | 108 | 0.9998 |
Mg/Al/Fe500 | 176 | 0.9997 | 175 | 0.9994 |
Mg/Fe500 | 104 | 0.9999 | 104 | 0.9992 |
Pseudo-First Order | Pseudo-Second Order | |||||
---|---|---|---|---|---|---|
qe (mg g−1) | k1 (min−1) | r2 | qe (mg g−1) | k2 (g mg−1 min−1) | r2 | |
Mg/Al | 608.50 | 0.0458 | 0.9844 | 384.62 | 6.4 × 10−5 | 0.9817 |
Mg/Al/Fe | 550.54 | 0.0234 | 0.8711 | --- | --- | --- |
Mg/Fe | 531.07 | 0.0451 | 0.9781 | 526.32 | 3.8 × 10−5 | 0.9265 |
Mg/Al500 | 291.26 | 0.0284 | 0.9692 | 285.71 | 1.7 × 10−4 | 0.9233 |
Mg/Al/Fe500 | 145.98 | 0.0099 | 0.9068 | --- | --- | --- |
Mg/Fe500 | 238.25 | 0.0407 | 0.9557 | 222.22 | 1.8 × 10−4 | 0.8335 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trujillano, R.; Rives, V.; Miguel, R.; González, B. Preparation of Original and Calcined Layered Double Hydroxide as Low-Cost Adsorbents: The Role of the Trivalent Cation on Methylene Blue Adsorption. Molecules 2023, 28, 4717. https://doi.org/10.3390/molecules28124717
Trujillano R, Rives V, Miguel R, González B. Preparation of Original and Calcined Layered Double Hydroxide as Low-Cost Adsorbents: The Role of the Trivalent Cation on Methylene Blue Adsorption. Molecules. 2023; 28(12):4717. https://doi.org/10.3390/molecules28124717
Chicago/Turabian StyleTrujillano, Raquel, Vicente Rives, Rodrigo Miguel, and Beatriz González. 2023. "Preparation of Original and Calcined Layered Double Hydroxide as Low-Cost Adsorbents: The Role of the Trivalent Cation on Methylene Blue Adsorption" Molecules 28, no. 12: 4717. https://doi.org/10.3390/molecules28124717
APA StyleTrujillano, R., Rives, V., Miguel, R., & González, B. (2023). Preparation of Original and Calcined Layered Double Hydroxide as Low-Cost Adsorbents: The Role of the Trivalent Cation on Methylene Blue Adsorption. Molecules, 28(12), 4717. https://doi.org/10.3390/molecules28124717