Effect of Frost on the Different Metabolites of Two Mulberry (Morus nigra L. and Morus alba L.) Leaves
Abstract
:1. Introduction
2. Results and Discussion
2.1. Detection of the Overall Metabolome of Mulberry Leaf and Evaluation of Data Quality
2.2. Analysis of Differences in Metabolic Accumulation Patterns of Morus nigra L. and Morus alba L. before and after the Frost
2.3. Dynamic Changes of Metabolite Contents of Morus nigra L. and Morus alba L. before and after Frost
2.4. Metabolite Content in Mulberry Leaves Affected by the Day–Night Cycle
3. Materials and Methods
3.1. Materials
3.2. Experimental Methods
3.2.1. Preparation and Extraction of Sample
3.2.2. Chromatographic and Mass Spectrometry Conditions
3.3. Metabolome Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chang, J.C.; Hsu, Y.H. Mulberry. In Temperate Fruits; Apple Academic Press: Palm Bay, FL, USA, 2021; pp. 491–535. [Google Scholar]
- Bakhtiyarullaevich, U.F.; Norqobilovich, M.A.; Kamaraddinovich, K.S. Agrotechnics of cultivation and use of mulberry seedlings for picturesque landscaping of highways. Galaxy Int. Interdiscip. Res. J. 2023, 11, 363–370. [Google Scholar]
- Gundogdu, M.; Muradoglu, F.; Sensoy, R.G.; Yilmaz, H.J.S.H. Determination of fruit chemical properties of Morus nigra L.; Morus alba L. and Morus rubra L. by HPLC. Sci. Hortic. 2011, 132, 37–41. [Google Scholar] [CrossRef]
- Foster, S.; Duke, J.A. A Field Guide to Medicinal Plants: Eastern and Central North America; Houghton Mifflin Company: Boston, MA, USA, 1990. [Google Scholar]
- Munir, A.; Khera, R.A.; Rehman, R.; Nisar, S. Multipurpose white mulberry: A review. Int. J. Biol. Chem. Sci. 2018, 13, 31–35. [Google Scholar]
- Adachi, K. Analytical insights for silk science and technology. Anal. Sci. 2023, 29, 427–429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, Q.; Zhu, S.; Liu, B.; Liu, F.; Xu, Y. Mulberry leaf (Morus alba L.): A review of its potential influences in mechanisms of action on metabolic diseases. Pharmacol. Res. 2022, 175, 106029. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Dai, H.; An, Y.; Cheng, L.; Shi, L.; Lv, Y.; Zhao, B. Mulberry leaf flavonoids inhibit liver inflammation in type 2 diabetes rats by regulating TLR4/MyD88/NF-κB signaling pathway. Evid.-Based Complement. Altern. Med. 2022, 2022, 3354062. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Mohamad Razali, U.H.; Saikim, F.H.; Mahyudin, A.; Mohd Noor, N.Q.I. Morus alba L. plant: Bioactive compounds and potential as a functional food ingredient. Foods 2021, 10, 689. [Google Scholar] [CrossRef]
- Jiang, Y.; Nie, W.J. Chemical properties in fruits of mulberry species from the Xinjiang province of China. Food Chem. 2015, 174, 460–466. [Google Scholar] [CrossRef]
- Ma, G.; Chai, X.; Hou, G.; Zhao, F.; Meng, Q. Phytochemistry, bioactivities and future prospects of mulberry leaves: A review. Food Chem. 2022, 372, 131335. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhu, Y.; Fan, J.; Wang, D.; Gong, X.; Ouyang, Z. Accumulation of flavonoid glycosides and UFGT gene expression in mulberry leaves (Morus alba L.) before and after frost. Chem. Biodivers. 2017, 14, e1600496. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.Q.; Cheng, S.Y.; Zhang, J.Q.; Lin, H.F.; Chen, Y.Y.; Yue, S.J.; Zhao, Y.C. Morus alba L. Leaves-Integration of Their Transcriptome and Metabolomics Dataset: Investigating Potential Genes Involved in Flavonoid Biosynthesis at Different Harvest Times. Front. Plant. Sci. 2021, 12, 2452. [Google Scholar] [CrossRef] [PubMed]
- Dalmagro, A.P.; Camargo, A.; da Silva Filho, H.H.; Valcanaia, M.M.; de Jesus, P.C.; Zeni, A.L.B. Seasonal variation in the antioxidant phytocompounds production from the Morus nigra leaves. Ind. Crops Prod. 2018, 123, 323–330. [Google Scholar] [CrossRef]
- Zou, Y.; Liao, S.; Shen, W.; Liu, F.; Tang, C.; Chen CY, O.; Sun, Y. Phenolics and antioxidant activity of mulberry leaves depend on cultivar and harvest month in Southern China. Int. J. Mol. Sci. 2012, 13, 16544–16553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Chen, G.; Ma, B.; Zhong, C.; He, N. Metabolic profiling and transcriptome analysis of mulberry leaves provide insights into flavonoid biosynthesis. J. Agric. Food Chem. 2020, 68, 1494–1504. [Google Scholar] [CrossRef]
- Sugiyama, M.; Katsube, T.; Koyama, A.; Itamura, H. Seasonal changes in functional component contents in mulberry (Morus alba L.) leaves. Horticult. J. 2017, 86, 534–542. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.Y.; Wan, Y.; Hao, J.Y.; Hu, R.Z.; Chen, C.; Yao, X.H.; Li, L. Evaluation of the alkaloid, polyphenols, and antioxidant contents of various mulberry cultivars from different planting areas in eastern China. Ind. Crops Prod. 2018, 122, 298–307. [Google Scholar] [CrossRef]
- Hu, X.Q.; Jiang, L.; Zhang, J.G.; Deng, W.; Wang, H.L.; Wei, Z.J. Quantitative determination of 1-deoxynojirimycin in mulberry leaves from 132 varieties. Ind. Crops Prod. 2013, 49, 782–784. [Google Scholar] [CrossRef]
- Kim, I.; Kim, J.W.; Lee, H.S.; Ha, N.K.; Ryu, K.S. Regional and varietal variation of 1-deoxynojirimycin (DNJ) content in the mulberry leaves. Int. J. Ind. Entom. 2001, 2, 141–147. [Google Scholar]
- Marchetti, L.; Saviane, A.; Montà, A.D.; Paglia, G.; Pellati, F.; Benvenuti, S.; Cappellozza, S. Determination of 1-deoxynojirimycin (1-dnj) in leaves of italian or italy-adapted cultivars of mulberry (Morus sp. pl.) by hplc-ms. Plants 2021, 10, 1553. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Lai, J.; Wu, Y.; Fang, S.; Liang, X. Investigation on Antioxidant Activity and Different Metabolites of Mulberry (Morus spp.) Leaves Depending on the Harvest Months by UPLC–Q-TOF-MS with Multivariate Tools. Molecules 2023, 28, 1947. [Google Scholar] [CrossRef] [PubMed]
ID | Compounds | Class | DNJ | |||||
---|---|---|---|---|---|---|---|---|
MA130 | MA015 | MA150 | MA009 | MA010 | MA005 | |||
MA038 | 7,2′-Dihydroxy-4′-methoxy-8-prenylflavan | Flavonoids | −0.80 | - | - | - | −0.53 | −0.37 |
MA061 | Alboctalol | Flavonoids | −0.36 | −0.62 | −0.33 | - | −0.62 | - |
MA071 | 2′,4′,7-Trihydroxy-8-(2-hydroxyethyl)flavan 4-me-2-glc | Flavonoids | −0.84 | - | - | - | - | −0.44 |
MA072 | Kaempferol-3-O-rutinoside | Flavonoids | −0.44 | −0.64 | - | - | −0.62 | - |
MA080 | Sanggenon T. | Flavonoids | −0.93 | - | - | - | - | - |
MA097 | 2′,4′,7-Trihydroxy-8-(2-hydroxyethyl)flavan 7-me | Flavonoids | −0.56 | −0.55 | −0.34 | - | −0.62 | - |
MA099 | cis-Mulberroside A. | Flavonoids | −0.65 | −0.35 | - | - | −0.59 | −0.55 |
MA120 | Isobavachin | Flavonoids | −0.37 | −0.32 | - | - | −0.73 | - |
MA123 | Isobavachalcone | Flavonoids | −0.38 | −0.39 | - | - | −0.75 | - |
MA127 | Sanggenofuran B | Flavonoids | −0.38 | −0.59 | −0.38 | - | −0.65 | - |
MA133 | Moracin I | Flavonoids | −0.52 | - | - | - | −0.55 | - |
MA146 | Apigenin-7-O-glucoside | Flavonoids | −0.51 | −0.46 | - | - | −0.62 | −0.41 |
MA149 | Sanggenofuran A. | Flavonoids | −0.61 | - | - | - | - | - |
MA126 | Guangsangon I. | Flavonols | −0.34 | −0.44 | −0.41 | - | −0.87 | −0.52 |
MA135 | Guangsangon B1 | Flavonols | - | - | −0.39 | - | −0.69 | −0.50 |
MA024 | Artoindonesianin O | Others | −0.46 | −0.56 | - | - | −0.61 | - |
MA103 | Australone B | Others | −0.57 | −0.41 | −0.34 | - | −0.76 | −0.34 |
MA109 | Wittifuran B | Others | - | −0.67 | −0.36 | - | −0.56 | - |
MA121 | Yunanensin E | Others | −0.39 | −0.61 | −0.36 | - | −0.79 | −0.30 |
MA125 | Yunanensin A | Others | −0.34 | −0.43 | −0.41 | - | −0.79 | −0.45 |
MA028 | Ferulic acid | Phenylpropanoids | −0.52 | - | - | - | −0.52 | - |
MA029 | 6,7-Dihydroxycoumarin | Phenylpropanoids | - | - | - | - | - | - |
MA132 | 3′-O-[β-D-Glucopyranosyl-(1→6)-β-D-glucopyranoside], 4-O-β-D-glucopyranoside Mulberry | Polysaccharide | - | - | −0.44 | −0.48 | −0.54 | −0.51 |
MA107 | Mongolicin G. | Flavonoids | −0.51 | - | - | −0.40 | - | −0.38 |
MA119 | Macrourin G | Flavonoids | - | −0.47 | - | - | −0.72 | - |
Sampling Date | Time | HS_1 | HS_2 | HS_3 | YS_1 | YS_2 | YS_2 |
---|---|---|---|---|---|---|---|
9.19 | 9:00 a.m. | HS_1_1 | HS_2_1 | HS_3_1 | YS_1_1 | YS_2_1 | YS_3_1 |
9.26 | 9:00 a.m. | HS_1_2 | HS_2_2 | HS_3_2 | YS_1_2 | YS_2_2 | YS_3_2 |
9.29 | 9:00 a.m. | HS_1_3 | HS_2_3 | HS_3_3 | YS_1_3 | YS_2_3 | YS_3_3 |
10.02 | 9:00 a.m. | HS_1_4 | HS_2_4 | HS_3_4 | YS_1_4 | YS_2_4 | YS_3_4 |
10.05 | 9:00 a.m. | HS_1_5 | HS_2_5 | HS_3_5 | YS_1_5 | YS_2_5 | YS_3_5 |
10.09 | 9:00 a.m. | HS_1_6 | HS_2_6 | HS_3_6 | YS_1_6 | YS_2_6 | YS_3_6 |
10.13 | 9:00 a.m. | HS_1_7 | HS_2_7 | HS_3_7 | YS_1_7 | YS_2_7 | YS_3_7 |
10.17 | 9:00 a.m. | HS_1_8 | HS_2_8 | HS_3_8 | YS_1_8 | YS_2_8 | YS_3_8 |
10.21 | 9:00 a.m. | HS_1_9 | HS_2_9 | HS_3_9 | YS_1_9 | YS_2_9 | YS_3_9 |
10.22 | 9:00 a.m. | HS_1_10 | HS_2_10 | HS_3_10 | YS_1_10 | YS_2_10 | YS_3_10 |
10.23 | 9:00 a.m. | HS_1_11 | HS_2_11 | HS_3_11 | YS_1_11 | YS_2_11 | YS_3_11 |
10.23 | 4:00 p.m. | HS_1_12 | HS_2_12 | HS_3_12 | YS_1_12 | YS_2_12 | YS_3_12 |
10.23 | 4:00 p.m. | HS_1_13 | HS_2_13 | HS_3_13 | YS_1_13 | YS_2_13 | YS_3_13 |
10.24 | 9:00 a.m. | HS_1_14 | HS_2_14 | HS_3_14 | YS_1_14 | YS_2_14 | YS_3_14 |
10.24 | 4:00 p.m. | HS_1_15 | HS_2_15 | HS_3_15 | YS_1_15 | YS_2_15 | YS_3_15 |
10.24 | 11:00 p.m. | HS_1_16 | HS_2_16 | HS_3_16 | YS_1_16 | YS_2_16 | YS_3_16 |
10.25 | 9:00 a.m. | HS_1_17 | HS_2_17 | HS_3_17 | YS_1_17 | YS_2_17 | YS_3_17 |
10.25 | 4:00 p.m. | HS_1_18 | HS_2_18 | HS_3_18 | YS_1_18 | YS_2_18 | YS_3_18 |
10.25 | 11:00 p.m. | HS_1_19 | HS_2_19 | HS_3_19 | YS_1_19 | YS_2_19 | YS_3_19 |
10.26 | 9:00 a.m. | HS_1_20 | HS_2_20 | HS_3_20 | YS_1_20 | YS_2_20 | YS_3_20 |
10.26 | 4:00 p.m. | HS_1_21 | HS_2_21 | HS_3_21 | YS_1_21 | YS_2_21 | YS_3_21 |
10.26 | 11:00 p.m. | HS_1_22 | HS_2_22 | HS_3_22 | YS_1_22 | YS_2_22 | YS_3_22 |
10.30 | 9:00 a.m. | HS_1_23 | HS_2_23 | HS_3_23 | YS_1_23 | YS_2_23 | YS_3_23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhao, J.; Fan, S.; Liao, J.; Chen, Y.; Wang, Y. Effect of Frost on the Different Metabolites of Two Mulberry (Morus nigra L. and Morus alba L.) Leaves. Molecules 2023, 28, 4718. https://doi.org/10.3390/molecules28124718
Yang L, Zhao J, Fan S, Liao J, Chen Y, Wang Y. Effect of Frost on the Different Metabolites of Two Mulberry (Morus nigra L. and Morus alba L.) Leaves. Molecules. 2023; 28(12):4718. https://doi.org/10.3390/molecules28124718
Chicago/Turabian StyleYang, Lu, Jiuyang Zhao, Shaoli Fan, Jinfa Liao, Yicun Chen, and Yangdong Wang. 2023. "Effect of Frost on the Different Metabolites of Two Mulberry (Morus nigra L. and Morus alba L.) Leaves" Molecules 28, no. 12: 4718. https://doi.org/10.3390/molecules28124718
APA StyleYang, L., Zhao, J., Fan, S., Liao, J., Chen, Y., & Wang, Y. (2023). Effect of Frost on the Different Metabolites of Two Mulberry (Morus nigra L. and Morus alba L.) Leaves. Molecules, 28(12), 4718. https://doi.org/10.3390/molecules28124718