Donor–Acceptor–Donor 1H-Benzo[d]imidazole Derivatives as Optical Waveguides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of 1H-Benzo[d]imidazole Derivatives 1
2.2. Theoretical Calculations
2.3. Photophysical Data
2.4. Molecular Self-Assembly
2.5. Optical Waveguide Properties
2.6. X-ray Studies: Structure–Property Relationships
3. Materials and Methods
3.1. Materials and Reagents
3.2. Synthesis
3.2.1. Synthesis of 2-(3,5-Bis(trifluoromethyl)phenyl)-4,7-dibromo-1H-benzo[d]imidazole (4)
3.2.2. Procedure for the Synthesis of Arylakynylstannanes 6
- Synthesis of tributyl((3,4,5-trimethoxyphenyl)ethynyl)stannane (6b)
- Synthesis of (benzo[b]thiophen-2-ylethynyl)tributylstannane (6c)
3.2.3. Procedure for the Synthesis of 2-(3,5-Bis(trifluoromethyl)phenyl)-4,7-bis(arylalkynyl)-1H-benzo[d]imidazoles 1
- Synthesis of 2-(3,5-bis(trifluoromethyl)phenyl)-4,7-bis(phenylethynyl)-1H-benzo[d]imidazole (1a)
- Synthesis of 2-(3,5-bis(trifluoromethyl)phenyl)-4,7-bis((3,4,5-trimethoxyphenyl)ethynyl)-1H-benzo[d]imidazole (1b)
- Synthesis of 4,7-bis(benzo[b]thiophen-2-ylethynyl)-2-(3,5-bis(trifluoromethyl)phenyl)-1H-benzo[d]imidazole (1c)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wu, J.; Ma, H.; Yin, P.; Ge, Y.; Zhang, Y.; Li, L.; Zhang, H.; Lin, H. Two-Dimensional Materials for Integrated Photonics: Recent Advances and Future Challenges. Small Sci. 2021, 1, 2000053. [Google Scholar] [CrossRef]
- Chen, M.; Lu, L.; Yu, H.; Li, C.; Zhao, N. Integration of Colloidal Quantum Dots with Photonic Structures for Optoelectronic and Optical Devices. Adv. Sci. 2021, 8, 2101560. [Google Scholar] [CrossRef]
- Liu, D.-S.; Wu, J.; Xu, H.; Wang, Z. Emerging Light-Emitting Materials for Photonic Integration. Adv. Mater. 2021, 33, 2003733. [Google Scholar] [CrossRef]
- Chandrasekar, R. Mechanophotonics—Mechanical Micromanipulation of Single-Crystals toward Organic Photonic Integrated Circuits. Small 2021, 17, 2100277. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhuo, M.P.; Wang, X.D.; Wei, G.-Q.; Liao, L.-S. Optical waveguides based on one-dimensional organic crystals. PhotoniX 2021, 2, 2. [Google Scholar] [CrossRef]
- Shi, Y.-L.; Wang, X.-D. 1D Organic Micro/Nanostructures for Photonics. Adv. Funct. Mater. 2021, 31, 2008149. [Google Scholar] [CrossRef]
- Kirchain, R.; Kimerling, L. A roadmap for nanophotonics. Nat. Photonics 2007, 1, 303–305. [Google Scholar] [CrossRef]
- Álvarez-Conde, J.; García-Frutos, E.M.; Cabanillas-Gonzalez, J. Organic Semiconductor Micro/Nanocrystals for Laser Applications. Molecules 2021, 26, 958. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.M.; Davies, D.W.; Kitagawa, D.; Mahmoud Halabi, J.; Al-Handawi, M.B.; Tahir, I.; Tong, F.; Campillo-Alvarado, G.; Shtukenberg, A.G.; Alkhidir, T.; et al. Mechanical properties and peculiarities of molecular crystals. Chem. Soc. Rev. 2023, 52, 3098–3169. [Google Scholar] [CrossRef]
- Catalano, L.; Berthaud, J.; Dushaq, G.; Karothu, D.P.; Rezgui, R.; Rasras, M.; Ferlay, S.; Hosseini, M.W.; Naumov, P. Sequencing and welding of molecular single-crystal optical waveguides. Adv. Funct. Mater. 2020, 30, 2003443. [Google Scholar] [CrossRef]
- Tian, D.; Chen, Y. Optical Waveguides in Organic Crystals of Polycyclic Arenes. Adv. Opt. Mater. 2021, 9, 2002264. [Google Scholar] [CrossRef]
- Annadhasan, M.; Karothu, D.P.; Chinnasamy, R.; Catalano, L.; Ahmed, E.; Ghosh, S.; Naumov, P.; Chandrasekar, R. Micromanipulation of mechanically compliant organic single-crystal optical microwaveguides. Angew. Chem. Int. Ed. 2020, 59, 13821–13830. [Google Scholar] [CrossRef]
- Yu, X.; Liu, B.; Pan, X.; Zhang, H. Deep-Red-Emissive Flexible Optical Waveguide with High Elastic Performance Based on an Organic Crystal. ChemPhotoChem 2022, 6, e202200038. [Google Scholar] [CrossRef]
- Avrutin, E.A.; Ryvkin, B.S. Semiconductor laser design with an asymmetric large optical cavity waveguide and a bulk active layer near p-cladding for efficient high-power red light emission. Semicond. Sci. Technol. 2022, 37, 125002. [Google Scholar] [CrossRef]
- Vinod Kumar, A.; Rohullah, M.; Chosenyah, M.; Ravi, J.; Venkataramudu, U.; Chandrasekar, R. Amphibian-like Flexible Organic Crystal Optical Fibers for Underwater/Air Micro-Precision Lighting and Sensing. Angew. Chem. Int. Ed. 2023, 62, e202300046. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jia, Y.; Dai, L.; Yang, Y.; Li, J. Controlled rod nanostructured assembly of diphenylalanine and their optical waveguide properties. ACS Nano 2015, 9, 2689–2695. [Google Scholar] [CrossRef] [PubMed]
- Ravi, J.; Annadhasan, M.; Kumar, A.V.; Chandrasekar, R. Mechanically Reconfigurable Organic Photonic Integrated Circuits Made from Two Electronically Different Flexible Microcrystals. Adv. Funct. Mater. 2021, 31, 2100642. [Google Scholar] [CrossRef]
- Karothu, D.P.; Dushaq, G.; Ahmed, E.; Catalano, L.; Polavaram, S.; Ferreira, R.; Li, L.; Mohamed, S.; Rasras, M.; Naumov, P. Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared. Nat. Commun. 2021, 12, 1326. [Google Scholar] [CrossRef]
- Pan, X.; Zheng, A.; Yu, X.; Di, Q.; Li, L.; Duan, P.; Ye, K.; Naumov, P.; Zhang, H.A. Low-Temperature-Resistant Flexible Organic Crystal with Circularly Polarized Luminescence. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203938. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, D.; Yue, J.; Zhang, X.; Wu, Z.; Zhang, T.; Chen, C.; Fei, T. Optical Waveguide Sensors for Measuring Human Temperature and Humidity with Gel Polymer Electrolytes. ACS Appl. Mater. Interfaces 2021, 22, 60384–60392. [Google Scholar] [CrossRef]
- Mahmoud Halabi, J.; Ahmed, E.; Sofela, S.; Naumov, P. Performance of molecular crystals in conversion of light to mechanical work. Proc. Natl. Acad. Sci. USA 2021, 2, e2020604118. [Google Scholar] [CrossRef] [PubMed]
- Torres-Moya, I.; Martín, R.; Díaz-Ortiz, Á.; Prieto, P.; Carrillo, J.R. Self-Assembled Alkynyl Azoles and Benzoazoles as Colored Optical Waveguides. Isr. J. Chem. 2018, 58, 827–836. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, W. Organic sensitizers from D–π–A to D–A–π–A: Effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem. Soc. Rev. 2013, 42, 2039–2058. [Google Scholar] [CrossRef] [PubMed]
- Akpınar, H.; Balan, A.; Baran, D.; Ünver, E.K.; Toppare, L. Donor–acceptor–donor type conjugated polymers for electrochromic applications: Benzimidazole as the acceptor unit. Polymer 2010, 51, 6123–6131. [Google Scholar] [CrossRef]
- Neophytou, M.; Ioannidou, H.A.; Ioannou, T.A.; Chochos, C.L.; Economopoulos, S.P.; Koutentis, P.A.; Itskos, G.; Choulis, S.A. 2-(2, 3, 4, 5, 6-Pentafluorophenyl)-1H-benzo[d]imidazole, a fluorine-rich building block for the preparation of conjugated polymer donors for organic solar cell applications. Polym. Chem. 2012, 3, 2236–2243. [Google Scholar] [CrossRef]
- Wang, F.; Hu, J.; Cao, X.; Yang, T.; Tao, Y.; Mei, L.; Zhang, X.; Huang, W. A low-cost phenylbenzoimidazole containing electron transport material for efficient green phosphorescent and thermally activated delayed fluorescent OLEDs. J. Mater. Chem. C 2015, 3, 5533–5540. [Google Scholar] [CrossRef]
- Shen, X.; Jiao, T.; Zhang, Q.; Guo, H.; Lv, Y.; Zhou, J.; Gao, F. Nanostructures and self-assembly of organogels via benzimidazole/benzothiazole imide derivatives with different alkyl substituent chains. J. Nanomater. 2013, 2013, 409087. [Google Scholar] [CrossRef] [Green Version]
- García-Frutos, E.M.; Pandey, U.K.; Termine, R.; Omenat, A.; Barberá, J.; Serrano, J.L.; Golemme, A.; Gómez-Lor, B. High charge mobility in discotic liquid-crystalline triindoles: Just a core business? Angew. Chem. Int. Ed. 2011, 50, 7399–7402. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Jin, C.; Shao, S.; Yue, Y.; Zhang, Y.; Wang, S.; Chang, R.; Zhang, H.; Zhao, J.; Li, X. Electron-deficient Cu site catalyzed acetylene hydrochlorination. Green Energy Environ. 2022; in press. [Google Scholar] [CrossRef]
- von Ragué Schleyer, P.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N.J. Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. J. Am. Chem. Soc. 1996, 118, 6317–6318. [Google Scholar] [CrossRef]
- Chen, Z.; Wannere, C.S.; Corminboeuf, C.; Puchta, R.; von Ragué Schleyer, P. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 2005, 105, 3842–3888. [Google Scholar] [CrossRef]
- Gierschner, J.; Cornil, J.; Egelhaaf, H.J. Optical bandgaps of π-conjugated organic materials at the polymer limit: Experiment and theory. Adv. Mater. 2007, 19, 173–191. [Google Scholar] [CrossRef]
- Vinay Pradeep, V.; Tardio, C.; Torres-Moya, I.; Rodriguez, A.M.; Vinod Kumar, A.; Annadhasan, M.; de la Hoz, A.; Prieto, P.; Chandrasekar, R. Mechanical processing of naturally bent organic crystalline microoptical waveguides and junctions. Small 2021, 17, 2006795. [Google Scholar] [CrossRef] [PubMed]
- Tardío, C.; Álvarez-Conde, J.; Torres-Moya, I.; Rodríguez, A.M.; de la Hoz, A.; Cabanillas-González, J.; Prieto, P. New insights into structure/optical waveguide behavior relationships in linear bisethynylbenzenes. J. Mater. Chem. C 2022, 10, 6411–6418. [Google Scholar] [CrossRef]
- Ravi, J.; Chandrasekar, R. Micromechanical Fabrication of Resonator Waveguides Integrated Four-Port Photonic Circuit from Flexible Organic Single Crystals. Adv. Opt. Mater. 2021, 9, 2100550. [Google Scholar] [CrossRef]
- Shang, J.; Zhang, X.; Zhang, V.L.; Zhang, X.; Yu, T. Exciton–Photon Interactions in Two-Dimensional Semiconductor Microcavities. ACS Photonics, 2023; accepted. [Google Scholar] [CrossRef]
- Murali, M.G.; Rao, A.D.; Ramamurthy, P.C. New low band gap 2-(4-(trifluoromethyl)phenyl)-1H-benzo[d]imidazole and benzo [1,2-c;4,5-c′]bis [1,2,5]thiadiazole based conjugated polymers for organic photovoltaics. RSC Adv. 2014, 4, 44902–44910. [Google Scholar] [CrossRef]
- Zhu, S.S.; Swager, T.M. Conducting polymetallorotaxanes: Metal ion mediated enhancements in conductivity and charge localization. J. Am. Chem. Soc. 1997, 119, 12568–12577. [Google Scholar] [CrossRef]
Compound | λabs (nm) | λem (nm) | Φ 1 |
---|---|---|---|
1a | 304/342 | 429 | 0.55 |
1b | 284/353 | 459 | 0.77 |
1c | 316/384 | 431, 455 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tardío, C.; Álvarez Conde, J.; Rodríguez, A.M.; Prieto, P.; Hoz, A.d.l.; Cabanillas-González, J.; Torres-Moya, I. Donor–Acceptor–Donor 1H-Benzo[d]imidazole Derivatives as Optical Waveguides. Molecules 2023, 28, 4631. https://doi.org/10.3390/molecules28124631
Tardío C, Álvarez Conde J, Rodríguez AM, Prieto P, Hoz Adl, Cabanillas-González J, Torres-Moya I. Donor–Acceptor–Donor 1H-Benzo[d]imidazole Derivatives as Optical Waveguides. Molecules. 2023; 28(12):4631. https://doi.org/10.3390/molecules28124631
Chicago/Turabian StyleTardío, Carlos, Javier Álvarez Conde, Ana María Rodríguez, Pilar Prieto, Antonio de la Hoz, Juan Cabanillas-González, and Iván Torres-Moya. 2023. "Donor–Acceptor–Donor 1H-Benzo[d]imidazole Derivatives as Optical Waveguides" Molecules 28, no. 12: 4631. https://doi.org/10.3390/molecules28124631
APA StyleTardío, C., Álvarez Conde, J., Rodríguez, A. M., Prieto, P., Hoz, A. d. l., Cabanillas-González, J., & Torres-Moya, I. (2023). Donor–Acceptor–Donor 1H-Benzo[d]imidazole Derivatives as Optical Waveguides. Molecules, 28(12), 4631. https://doi.org/10.3390/molecules28124631