Synthesis of Green Copper Nanoparticles Using Medicinal Plant Krameria sp. Root Extract and Its Applications
Abstract
:1. Introduction
2. Results
2.1. Synthesis of CuNP
2.2. Optimization of Conditions for Green Synthesis of CuNP
2.2.1. Effect of Temperature
2.2.2. Effect of Time
2.2.3. Effects of pH
2.3. Physiochemical Characterization of CuNP
2.4. CuNP Activity
2.4.1. Antioxidant Assay
2.4.2. Antimicrobial Activity
Antibacterial Activity
Antifungal Activity
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Extract and Reagent
4.3. Optimization of Conditions for Green Synthesis of CuNP
4.3.1. Effect of Temperature
4.3.2. Effect of Incubation Time
4.3.3. Effect of pH
4.4. Characterization of Green Synthesized CuNP
4.4.1. UV-Spectrophotometric Analysis
4.4.2. Fourier Transform Infrared (FTIR) Analysis
4.4.3. X-ray Diffraction Analysis
4.4.4. Electron Microscopy Analysis
4.5. CuNP Applications
4.5.1. Antioxidant Activity Test
4.5.2. Antimicrobial Activity of Extract and Synthesized Nanoparticles
Antibacterial Activity
Antifungal Activity
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Thakur, S.; Sharma, S.; Thakur, S.; Rai, R. Green synthesis of copper nano-particles using Asparagus adscendens Roxb. root and leaf extract and their antimicrobial activities. Int. J. Curr. Microbiol. Appl. Sci. 2018, 4, 683–694. [Google Scholar] [CrossRef]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2019, 1, 112. [Google Scholar] [CrossRef] [Green Version]
- Brokamp, G.; Dostert, N.; Cáceres, H.F.; Weigend, M. Parasitism and haustorium anatomy of Krameria lappacea (Dombey) Burdet & B.B. Simpson (Krameriaceae), an endangered medicinal plant from the Andean deserts. J. Arid Environ. 2012, 83, 94–100. [Google Scholar]
- Purniawan, A.; Maria Inge, L.; Royan Waf, P.; Aldise, M.N.; Adita Ayu, P.; Alfonsus Adrian, H.H.; Nur, H.O.; Sigit, T.; Jezzy, R.D.; Rima, R.P.; et al. Synthesis and assessment of copper-based nanoparticles as a surface coating agent for antiviral properties against SARS-CoV-2. Sci. Rep. 2022, 12, 4835. [Google Scholar] [CrossRef] [PubMed]
- Cornier, J.; Keck, C.M.; Van de Voorde, M. Nanocosmetics: From Ideas to Products; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Huq, M.A.; Ashrafudoulla, M.; Rahman, M.M.; Balusamy, S.R.; Akter, S. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers 2022, 4, 742. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.M.; Ali, A.M. Silver and zinc oxide nanoparticles induce developmental and physiological changes in the larval and pupal stages of Spodoptera littoralis (Lepidoptera: Noctuidae). J. Asia-Pac. Entomol. 2018, 4, 1373–1378. [Google Scholar] [CrossRef]
- Kaur, P.; Thakur, R.; Chaudhury, A. Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem. Lett. Rev. 2016, 1, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Almarhoon, Z.M.; Bakht, J.; Mabkhot, Y.N.; Rauf, A.; Shad, A.A. Single-Step Acer pentapomicum-Mediated Green Synthesis of Silver Nanoparticles and Their Potential Antimicrobial and Antioxidant Activities. J. Nanomater. 2022, 2022, 3783420. [Google Scholar] [CrossRef]
- Lobregas, M.O.S.; Camacho, D.H. Green synthesis of copper-based nanoparticles using microbes. In Copper Nanostructures: Next-Generation of Agrochemicals for Sustainable Agroecosystems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 17–44. [Google Scholar]
- Sandoval, C.; Ríos, G.; Sepúlveda, N.; Salvo, J.; Souza-Mello, V.; Farías, J. Effectiveness of Copper Nanoparticles in Wound Healing Process Using In Vivo and In Vitro Studies: A Systematic Review. Pharmaceutics 2022, 14, 1838. [Google Scholar] [CrossRef]
- Shende, S.; Ingle, A.P.; Gade, A.; Rai, M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 2015, 6, 865–873. [Google Scholar] [CrossRef]
- Murthy, H.C.A.; Desalegn, T.; Kassa, M.; Abebe, B.; Assefa, T. Synthesis of Green Copper Nanoparticles Using Medicinal Plant Hagenia abyssinica (Brace) JF. Gmel. Leaf Extract: Antimicrobial Properties. J. Nanomater. 2020, 2020, 3924081. [Google Scholar] [CrossRef]
- Singh, A.; Gautam, P.K.; Verma, A.; Singh, V.; Shivapriya, P.M.; Shivalkar, S.; Sahoo, A.K.; Samanta, S.K. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol. Rep. 2020, 25, e00427. [Google Scholar] [CrossRef]
- Sumathi, S.; Thomas, A. Eco-friendly and antibacterial finishes of organic fabrics using herbal composite microencapsules. Int. J. Pharma Bio Sci. 2017, 8, 310–321. [Google Scholar]
- Tilwari, A.; Saxena, R. Biobased nano materials (plant-based for green materials) synthesis, properties and their application in biomedical science. In Advanced Nanocarbon Materials; CRC Press: Boca Raton, FL, USA, 2022; pp. 109–126. [Google Scholar]
- Zamindar, N.; Anari, E.S.; Bathaei, S.S.; Shirani, N.; Tabatabaei, L.; Mahdavi-Asl, N.; Khalili, A.; Paidari, S. Application of Copper Nano Particles in Antimicrobial Packaging: A Mini Review. Acta Sci. Nutr. Health 2020, 5, 14–18. [Google Scholar] [CrossRef]
- Genovese, C.; D’Angeli, F.; Bellia, F.; Distefano, A.; Spampinato, M.; Attanasio, F.; Nicolosi, D.; Di Salvatore, V.; Tempera, G.; Lo Furno, D.; et al. In Vitro Antibacterial, Anti-Adhesive and Anti-Biofilm Activities of Krameria lappacea (Dombey) Burdet & BB Simpson Root Extract against Methicillin-Resistant Staphylococcus aureus Strains. Antibiotics 2021, 10, 428. [Google Scholar]
- Aldakheel, R.K.; Gondal, M.A.; Nasr, M.M.; Dastageer, M.A.; Almessiere, M.A. Quantitative elemental analysis of nutritional, hazardous and pharmacologically active elements in medicinal Rhatany root using laser induced breakdown spectroscopy. Arab. J. Chem. 2021, 2, 102919. [Google Scholar] [CrossRef]
- Heiss, E.H.; Baumgartner, L.; Schwaiger, S.; Heredia, R.J.; Atanasov, A.G.; Rollinger, J.M.; Stuppner, H.; Dirsch, V.M. Ratanhiaphenol III from Ratanhiae radix is a PTP1B inhibitor. Planta Med. 2012, 7, 678–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, L.; Sosa, S.; Atanasov, A.G.; Bodensieck, A.; Fakhrudin, N.; Bauer, J.; Del Favero, G.; Ponti, C.; Heiss, E.H.; Schwaiger, S.; et al. Lignan derivatives from Krameria lappacea roots inhibit acute inflammation in vivo and pro-inflammatory mediators in vitro. J. Nat. Prod. 2011, 8, 1779–1786. [Google Scholar] [CrossRef]
- Carini, M.; Aldini, G.; Orioli, M.; Facino, R.M. Antioxidant and photoprotective activity of a lipophilic extract containing neolignans from Krameria triandra roots. Planta Med. 2002, 03, 193–197. [Google Scholar] [CrossRef]
- Shakhatreh, S. Rhatany Indicators as a Subsistent to Synthetic Indicator. J. Chem. Pharm. Res. 2012, 6, 2952–2954. [Google Scholar]
- Sirivibulkovit, K.; Nouanthavong, S.; Sameenoi, Y. Paper-based DPPH Assay for Antioxidant Activity Analysis. Analyt. Sci. 2018, 7, 795–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaqub, A.; Malkani, N.; Shabbir, A.; Ditta, S.O.A.; Tanvir, F.; Ali, S.; Naz, M.; Kazmi, S.O.A.R.; Ullah, R. Novel Biosynthesis of Copper Nanoparticles Using Zingiber and Allium sp. with Synergic Effect of Doxycycline for Anticancer and Bactericidal Activity. Curr. Microbiol. 2020, 9, 2287–2299. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, A.I.; Vincent, O.I.; Olujenyo, O.M. Phytochemical Screening and Antifungal Activity of Chromolaena odorata Extracts Against Isolate of Phytophthora megakarya Using Agar-Well Diffusion Method. Asian J. Med. Biol. Res. 2018, 1, 7–13. [Google Scholar] [CrossRef]
- Nieto-Maldonado, A.; Bustos-Guadarrama, S.; Espinoza-Gomez, H.; Flores-López, L.Z.; Ramirez-Acosta, K.; Alonso-Nuñez, G.; Cadena-Nava, R.D. Green Synthesis of Copper Nanoparticles Using Different Plant Extracts and Their Antibacterial Activity. J. Environ. Chem. Eng. 2022, 10, 107130. [Google Scholar] [CrossRef]
- Gupta, M.N.; Khare, S.K.; Sinha, R. Interfaces between Nanomaterials and Microbes; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Jahan, I.; Erci, F.; Isildak, I. Facile Microwave-Mediated Green Synthesis of non-Toxic Copper Nanoparticles Using Citrus sinensis Aqueous Fruit Extract and Their Antibacterial Potentials. J. Drug Deliv. Sci. Technol. 2021, 61, 102172. [Google Scholar] [CrossRef]
- Aljeldah, M.; Al Shammari, B.; Farrag, E.S.; Taha, E.M.; Mahmoud, S.Y. Prevalence of Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus in Northeastern Saudi Hospitals. J. Pure Appl. Microbiol. 2022, 2, 1192–1199. [Google Scholar] [CrossRef]
- Desalegn, T.; Murthy, H.C.; Ravikumar, C.R.; Nagaswarupa, H.P. Green Synthesis of CuO Nanostructures Using Syzygium guineense (Willd.) DC Plant Leaf Extract and Their Applications. J. Nanostruct. 2021, 1, 81–94. [Google Scholar]
- Khani, R.; Roostaei, B.; Bagherzade, G.; Moudi, M. Green Synthesis of Copper Nanoparticles by Fruit Extract of Ziziphus spina-christi (L.) Willd.: Application for Adsorption of Triphenylmethane dye and Antibacterial Assay. J. Mol. Liq. 2018, 255, 541–549. [Google Scholar] [CrossRef]
- Fayaz, A.M.; Balaji, K.; Kalaichelvan, P.T.; Venkatesan, R. Fungal Based Synthesis of Silver Nanoparticles—An Effect of Temperature on the Size of Particles. Colloids Surf. B Biointerf. 2009, 1, 123–126. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, S.O.; Mahmoud, S.Y.; Farrag, E.S. Synthesis of Green Copper Nanoparticles Using Medicinal Plant Krameria sp. Root Extract and Its Applications. Molecules 2023, 28, 4629. https://doi.org/10.3390/molecules28124629
Alshammari SO, Mahmoud SY, Farrag ES. Synthesis of Green Copper Nanoparticles Using Medicinal Plant Krameria sp. Root Extract and Its Applications. Molecules. 2023; 28(12):4629. https://doi.org/10.3390/molecules28124629
Chicago/Turabian StyleAlshammari, Shifaa O., Sabry Younis Mahmoud, and Eman Saleh Farrag. 2023. "Synthesis of Green Copper Nanoparticles Using Medicinal Plant Krameria sp. Root Extract and Its Applications" Molecules 28, no. 12: 4629. https://doi.org/10.3390/molecules28124629
APA StyleAlshammari, S. O., Mahmoud, S. Y., & Farrag, E. S. (2023). Synthesis of Green Copper Nanoparticles Using Medicinal Plant Krameria sp. Root Extract and Its Applications. Molecules, 28(12), 4629. https://doi.org/10.3390/molecules28124629