Characterization of a Novel M4 PAM PET Radioligand [11C]PF06885190 in Nonhuman Primates (NHP)
Abstract
:1. Introduction
2. Results and Discussions
3. Materials and Methods
3.1. General
3.2. Synthesis of [11C]Methyl Triflate ([11C]CH3OTff)
3.3. Synthesis of [11C]PF-06885190
3.4. Quality Control (QC) and Molar Activity (MA) Determination
3.5. Study Design in Non-Human Primates (NHPs), PET Experimental Procedure and Quantification
3.6. Radiometabolite Analysis
3.7. Protein Binding in Plasma
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kruse, A.C.; Kobilka, B.K.; Gautam, D.; Sexton, P.M.; Christopoulos, A.; Wess, J. Muscarinic acetylcholine receptors: Novel opportunities for drug development. Nat. Rev. Drug Discov. 2014, 13, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Lebois, E.P.; Thorn, C.; Edgerton, J.R.; Popiolek, M.; Xi, S. Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer’s disease. Neuropharmacology 2018, 136, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Vuckovic, Z.; Gentry, P.R.; Berizzi, A.E.; Hirata, K.; Varghese, S.; Thompson, G.; van der Westhuizen, E.T.; Burger, W.A.C.; Rahmani, R.; Valant, C.; et al. Crystal structure of the M-5 muscarinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 2019, 116, 26001–26007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.I. Muscarinic acetylcholine receptor expression in memory circuits: Implications for treatment of Alzheimer disease. Proc. Natl. Acad. Sci. USA 1996, 93, 13541–13546. [Google Scholar] [CrossRef] [Green Version]
- Bridges, T.M.; LeBois, E.P.; Hopkins, C.R.; Wood, M.R.; Jones, C.K.; Conn, P.J.; Lindsley, C.W. The Antipsychotic Potential of Muscarinic Allosteric Modulation. Drug News Perspect. 2010, 23, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Menniti, F.S.; Lindsley, C.W.; Conn, P.J.; Pandit, J.; Zagouras, P.; Volkmann, R.A. Allosteric Modulators for the Treatment of Schizophrenia: Targeting Glutamatergic Networks. Curr. Top. Med. Chem. 2013, 13, 26–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conn, P.J.; Lindsley, C.W.; Meiler, J.; Niswender, C.M. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat. Rev. Drug Discov. 2014, 13, 692–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, S.; Lingenfelter, K.S.; Bender, A.M.; Lindsley, C.W. Classics in Chemical Neuroscience: Memantine. ACS Chem. Neurosci. 2017, 8, 1823–1829. [Google Scholar] [CrossRef]
- Wood, M.R.; Noetzel, M.J.; Melancon, B.J.; Poslusney, M.S.; Nance, K.D.; Hurtado, M.A.; Luscombe, V.B.; Weiner, R.L.; Rodriguez, A.L.; Lamsal, A.; et al. Discovery of VU0467485/AZ13713945: An M-4 PAM Evaluated as a Preclinical Candidate for the Treatment of Schizophrenia. ACS Med. Chem. Lett. 2017, 8, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Tarr, J.C.; Wood, M.R.; Noetzel, M.J.; Melancon, B.J.; Lamsal, A.; Luscombe, V.B.; Rodriguez, A.L.; Byers, F.W.; Chang, S.C.; Cho, H.P.; et al. Challenges in the development of an M-4 PAM preclinical candidate: The discovery, SAR, and biological characterization of a series of azetidine-derived tertiary amides. Bioorg. Med. Chem. Lett. 2017, 27, 5179–5184. [Google Scholar] [CrossRef]
- Melancon, B.J.; Wood, M.R.; Noetzel, M.J.; Nance, K.D.; Engelberg, E.M.; Han, C.H.; Lamsal, A.; Chang, S.C.; Cho, H.P.; Byers, F.W.; et al. Optimization of M-4 positive allosteric modulators (PAMs): The discovery of VU0476406, a non-human primate in vivo tool compound for translational pharmacology. Bioorg. Med. Chem. Lett. 2017, 27, 2296–2301. [Google Scholar] [CrossRef]
- Bubser, M.; Bridges, T.M.; Dencker, D.; Gould, R.W.; Grannan, M.; Noetzel, M.J.; Lamsal, A.; Niswender, C.M.; Daniels, J.S.; Poslusney, M.S.; et al. Selective Activation of M-4 Muscarinic Acetylcholine Receptors Reverses MK-801-Induced Behavioral Impairments and Enhances Associative Learning in Rodents. ACS Chem. Neurosci. 2014, 5, 920–942. [Google Scholar] [CrossRef]
- Lu, F.M.; Yuan, Z. PET/SPECT molecular imaging in clinical neuroscience: Recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 2015, 5, 433–447. [Google Scholar]
- Grimwood, S.; Hartig, P.R. Target site occupancy: Emerging generalizations from clinical and preclinical studies. Pharmacol. Ther. 2009, 122, 281–301. [Google Scholar] [CrossRef]
- Halldin, C.; Gulyas, B.; Langer, O.; Farde, L. Brain radioligands—State of the art and new trends. Q. J. Nucl. Med. 2001, 45, 139–152. [Google Scholar] [PubMed]
- Deng, X.; Hatori, A.; Chen, Z.; Kumata, K.; Shao, T.; Zhang, X.; Yamasaki, T.; Hu, K.; Yu, Q.; Ma, L.; et al. Synthesis and Preliminary Evaluation of (11) C-Labeled VU0467485/AZ13713945 and Its Analogues for Imaging Muscarinic Acetylcholine Receptor Subtype 4. ChemMedChem 2019, 14, 303–309. [Google Scholar] [CrossRef]
- Ozenil, M.; Aronow, J.; Millard, M.; Langer, T.; Wadsak, W.; Hacker, M.; Pichler, V. Update on PET Tracer Development for Muscarinic Acetylcholine Receptors. Pharmaceuticals 2021, 14, 530. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Li, W.P.; Lo, M.M.C.; Gao, X.L.; Wai, J.M.C.; Rudd, M.; Tellers, D.; Joshi, A.; Zeng, Z.Z.; Miller, P.; et al. Discovery of [C-11]MK-6884: A Positron Emission Tomography (PET) Imaging Agent for the Study of M4Muscarinic Receptor Positive Allosteric Modulators (PAMs) in Neurodegenerative Diseases. J. Med. Chem. 2020, 63, 2411–2425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krystal, J.H.; Kane, J.M.; Correll, C.U.; Walling, D.P.; Leoni, M.; Duvvuri, S.; Patel, S.; Chang, I.H.; Iredale, P.; Frohlich, L.; et al. Emraclidine, a novel positive allosteric modulator of cholinergic M4 receptors, for the treatment of schizophrenia: Atwo-part, randomised, double-blind, placebo-controlled, phase 1b trial. Lancet 2022, 400, 2210–2220. [Google Scholar] [CrossRef]
- Duvvuri, S.; Iredale, P.; Leoni, M.; Belov, V.; Guehl, N.; Moon, S.H.; Dhaynaut, M.; Rice, P.; Yokell, D.; El Fakhri, G.; et al. Evaluation of M4 Muscarinic Receptor Occupancy by CVL-231 Using [11C]MK-6884 Pet in Nonhuman Primates. Neuropsychopharmacology 2021, 46 (Suppl. S1), 342. [Google Scholar]
- Shichino, T.; Murakawa, M.; Adachi, T.; Arai, T.; Miyazaki, Y.; Mori, K. Effects of inhalation anaesthetics on the release of acetylcholine in the rat cerebral cortex in vivo. Br. J. Anaesth. 1998, 80, 365–370. [Google Scholar] [CrossRef]
- Andersson, J.; Truong, P.; Halldin, C. In-target produced [11C]methane: Increased specific radioactivity. Appl. Radiat. Isot. 2009, 67, 106–110. [Google Scholar] [CrossRef]
- Jahan, M.; Johnstrom, P.; Nag, S.; Takano, A.; Korsgren, O.; Johansson, L.; Halldin, C.; Eriksson, O. Synthesis and biological evaluation of C-11 AZ12504948; a novel tracer for imaging of glucokinase in pancreas and liver. Nucl. Med. Biol. 2015, 42, 387–394. [Google Scholar] [CrossRef]
- Langer, O.; Nagren, K.; Dolle, F.; Lundkvist, C.; Sandell, J.; Swahn, C.G.; Vaufrey, F.; Crouzel, C.; Maziere, B.; Halldin, C. Precursor synthesis and radiolabelling of the dopamine D-2 receptor ligand [C-11]raclopride from [C-11]methyl triflate. J. Label. Compd. Rad. 1999, 42, 1183–1193. [Google Scholar] [CrossRef]
- Nag, S.; Lehmann, L.; Heinrich, T.; Thiele, A.; Kettschau, G.; Nakao, R.; Gulyas, B.; Halldin, C. Synthesis of Three Novel Fluorine-18 Labeled Analogues of L-Deprenyl for Positron Emission Tomography (PET) studies of Monoamine Oxidase B (MAO-B). J. Med. Chem. 2011, 54, 7023–7029. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.D.; Gebhart, G.F.; Gonder, J.C.; Keeling, M.E.; Kohn, D.F. Special Report: The 1996 Guide for the Care and Use of Laboratory Animals. ILAR J. 1997, 38, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, P.; Farde, L.; Halldin, C.; Swahn, C.G.; Sedvall, G.; Foged, C.; Hansen, K.T.; Skrumsager, B. PET examination of [11C]NNC 687 and [11C]NNC 756 as new radioligands for the D1-dopamine receptor. Psychopharmacology 1993, 113, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Varrone, A.; Sjoholm, N.; Eriksson, L.; Gulyas, B.; Halldin, C.; Farde, L. Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT. Eur. J. Nucl. Med. Mol. I 2009, 36, 1639–1650. [Google Scholar] [CrossRef]
- Logan, J.; Fowler, J.S.; Volkow, N.D.; Wolf, A.P.; Dewey, S.L.; Schlyer, D.J.; Macgregor, R.R.; Hitzemann, R.; Bendriem, B.; Gatley, S.J.; et al. Graphical Analysis of Reversible Radioligand Binding from Time Activity Measurements Applied to [N-C-11-Methyl]-(-)-Cocaine Pet Studies in Human-Subjects. J. Cereb. Blood Flow Metab. 1990, 10, 740–747. [Google Scholar] [CrossRef] [Green Version]
- Moein, M.M.; Nakao, R.; Amini, N.; Abdel-Rehim, M.; Schou, M.; Halldin, C. Sample preparation techniques for radiometabolite analysis of positron emission tomography radioligands; trends, progress, limitations and future prospects. Trac-Trends Anal. Chem. 2019, 110, 1–7. [Google Scholar] [CrossRef]
- Finnema, S.J.; Stepanov, V.; Nakao, R.; Sromek, A.W.; Zhang, T.Z.; Neumeyer, J.L.; George, S.R.; Seeman, P.; Stabin, M.G.; Jonsson, C.; et al. F-18-MCL-524, an F-18-Labeled Dopamine D-2 and D-3 Receptor Agonist Sensitive to Dopamine: A Preliminary PET Study. J. Nucl. Med. 2014, 55, 1164–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Precursor | Methylating Agent | Amount of Precursor (mg) | Solvent | Base | Reaction Temp (°C) | Reaction Time (min) | RCY (%) |
---|---|---|---|---|---|---|---|
Free-base | [11C]CH3I | 0.5–1.0 | Acetone | NaOH | 60 | 5 | 0 |
Free-base | [11C]CH3I | 0.5–1.0 | CH3CN | KOH/NaOH | 60 | 5 | 0 |
Free-base | [11C]CH3I | 0.5–1.0 | MeOH | KOH/NaOH | 30–100 | 1–5 | 0 |
Free-base | [11C]CH3OTf | 0.5 | DMSO | NaOH | RT | 3 | 0 |
Free-base | [11C]CH3OTf | 0.6 | DMF | RT | 3 | 0 | |
Free-base | [11C]CH3OTf | 0.7 | DMF | 60 | 3 | 0 | |
Free-base | [11C]CH3OTf | 0.6 | DMF | 90 | 3 | 1% | |
Free-base | [11C]CH3OTf | 0.5 | DMSO | 60 | 3 | 0 | |
Free-base | [11C]CH3I | 0.5 | DMSO | RT | 3 | 0 | |
Free-base | [11C]CH3I | 0.5 | DMSO | KOH/NaOH | RT | 5 | 0 |
Free-base | [11C]CH3OTf | 0.5 | DMSO | RT/60 | 3 | 0 | |
Free-base | [11C]CH3OTf | 0.7 | Acetone | RT/60 | 0 | ||
Free-base | [11C]CH3OTf | 0.6 | Acetone | KOH/NaOH | RT | 3 | 0 |
Free-base | [11C]CH3OTf | 0.6 | Acetone | 60 | 3 | 2% | |
Free-base | [11C]CH3OTf | 0.6 | Acetone | RT | 3 | 5% | |
Free-base | [11C]CH3OTf | 1.0 | Acetone | RT | 3–10 | 5% | |
Protected | [11C]CH3OTf | 0.6 | Acetone | KOH/NaOH | RT/60 | 3 | 15% |
Protected | [11C]CH3OTf | 0.6–1.0 | Acetone | 60 | 3 | >55% | |
Protected | [11C]CH3OTf | 0,6 | Acetone | RT | 3 | 45% | |
Protected | [11C]CH3OTf | 1.0 | Acetone | RT | 3–10 | 45% | |
Protected | [11C]CH3OTf | 0.6 | Acetone | 75–100 | 3–10 | 25% | |
Protected | [11C]CH3I | 0.5 | DMSO | KOH/NaOH | 60 | 5 | 20% |
NHP | SEX | Body Weight (Kg) | Administrated Radioactivity (MBq) | Molar Activity (GBq/µmol) | Administrated Mass (µg) | Condition |
---|---|---|---|---|---|---|
M1 | Male | 7.8 | 97 | 399 | 0.09 | Baseline |
109 | 530 | 0.07 | Pretreatment (CVL-231) | |||
121 | 258 | 0.12 | Baseline | |||
131 | 173 | 0.13 | Pretreatment (Donepezil) | |||
M2 | Male | 7.2 | 112 | 191 | 0.20 | Baseline |
88 | 275 | 0.11 | Pretreatment (CVL-231) |
1-TC | Logan | |||||
---|---|---|---|---|---|---|
Baseline | Pretreatment | %Decrease | Baseline | Pretreatment | %Decrease | |
cerebellum | 2.205 | 1.875 | 15.0% | 3.055 | 2.401 | 21.4% |
caudate | 2.388 | 2.357 | 1.3% | 2.683 | 2.475 | 7.8% |
putamen | 2.632 | 2.539 | 3.5% | 3.006 | 2.795 | 7.0% |
thalamus | 2.496 | 2.337 | 6.4% | 2.778 | 2.367 | 14.8% |
frontal cortex | 2.521 | 2.140 | 15.1% | 2.940 | 2.394 | 18.6% |
temporal cortex | 2.690 | 2.383 | 11.4% | 2.992 | 2.717 | 9.2% |
hippocampus | 2.361 | 2.146 | 9.1% | 2.595 | 2.341 | 9.8% |
anterior cing- urate cortex | 2.245 | 2.030 | 9.6% | 2.503 | 2.293 | 8.4% |
posterior cing- urate cortex | 2.384 | 1.963 | 17.7% | 2.723 | 2.225 | 18.3% |
parietal cortex | 2.515 | 2.109 | 16.1% | 2.709 | 2.316 | 14.5% |
occipital cortex | 2.871 | 2.462 | 14.2% | 3.534 | 2.873 | 18.7% |
amygdala | 2.290 | 2.137 | 6.7% | 2.549 | 2.304 | 9.6% |
ventral striatum | 2.305 | 2.144 | 7.0% | 2.398 | 2.324 | 3.1% |
insula | 2.617 | 2.314 | 11.6% | 2.811 | 2.631 | 6.4% |
(average) | 10.3% | 12.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nag, S.; Arakawa, R.; Jia, Z.; Lachapelle, E.; Zhang, L.; Maresca, K.; Chen, L.; Jahan, M.; Mccarthy, T.; Halldin, C. Characterization of a Novel M4 PAM PET Radioligand [11C]PF06885190 in Nonhuman Primates (NHP). Molecules 2023, 28, 4612. https://doi.org/10.3390/molecules28124612
Nag S, Arakawa R, Jia Z, Lachapelle E, Zhang L, Maresca K, Chen L, Jahan M, Mccarthy T, Halldin C. Characterization of a Novel M4 PAM PET Radioligand [11C]PF06885190 in Nonhuman Primates (NHP). Molecules. 2023; 28(12):4612. https://doi.org/10.3390/molecules28124612
Chicago/Turabian StyleNag, Sangram, Ryosuke Arakawa, Zhisheng Jia, Erik Lachapelle, Lei Zhang, Kevin Maresca, Laigao Chen, Mahabuba Jahan, Timothy Mccarthy, and Christer Halldin. 2023. "Characterization of a Novel M4 PAM PET Radioligand [11C]PF06885190 in Nonhuman Primates (NHP)" Molecules 28, no. 12: 4612. https://doi.org/10.3390/molecules28124612
APA StyleNag, S., Arakawa, R., Jia, Z., Lachapelle, E., Zhang, L., Maresca, K., Chen, L., Jahan, M., Mccarthy, T., & Halldin, C. (2023). Characterization of a Novel M4 PAM PET Radioligand [11C]PF06885190 in Nonhuman Primates (NHP). Molecules, 28(12), 4612. https://doi.org/10.3390/molecules28124612