Facile Synthesis of P-Doped ZnIn2S4 with Enhanced Visible-Light-Driven Photocatalytic Hydrogen Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structure of Photocatalysts
2.2. Photocatalytic Hydrogen Evolution Activity
2.3. Charge Transfer Dynamics and Energy Band Structures Analysis
3. Materials and Methods
3.1. Synthesis of P-Doped ZIS and Pure ZIS
3.2. Characterization
3.3. Photocatalytic Activity
3.4. Photoelectrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fu, C.F.; Wu, X.; Yang, J. Material design for photocatalytic water splitting from a theoretical perspective. Adv. Mater. 2018, 30, 1802106. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.P.; Zhao, Y.; Wang, S.Y.; Li, C.; Li, R.G. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 2022, 51, 3561–3608. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Luo, S.Q.; Huang, H.M.; Deng, B.W.; Ye, J.H. Solar-driven hydrogen production: Recent advances, challenges, and future perspectives. ACS Energy Lett. 2022, 7, 1043–1065. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Zhao, J.H.; Wang, H.; Xiao, B.; Zhang, W.; Zhao, X.B.; Lv, T.P.; Thangamuthu, M.; Zhang, J.; Guo, Y.; et al. Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%. Nat. Commun. 2022, 13, 58. [Google Scholar] [CrossRef]
- Ruan, X.W.; Cui, X.Q.; Cui, Y.; Fan, X.F.; Li, Z.Y.; Xie, T.F.; Ba, K.K.; Jia, G.R.; Zhang, H.Y.; Zhang, L.; et al. Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%. Adv. Energy Mater. 2022, 12, 220029. [Google Scholar]
- Kumar, A.; Raizad, P.; Singh, P.; Saini, R.V.; Sain, A.K.; Ahmad, H.-B. Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification. Chem. Eng. J. 2020, 391, 123496. [Google Scholar] [CrossRef]
- Li, H.J.; Zhou, Y.; Tu, W.G.; Ye, J.H.; Zou, Z.G. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 2015, 25, 998–1013. [Google Scholar] [CrossRef]
- Wang, J.; Sun, S.J.; Zhou, R.; Li, Y.Z.; He, Z.T.; Ding, H.; Chen, D.M.; Ao, W.H. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4. J. Mater. Sci. Technol. 2021, 78, 1–19. [Google Scholar] [CrossRef]
- Yadav, G.; Ahmaruzzaman, M. ZnIn2S4 and ZnIn2S4 based advanced hybrid materials: Structure, morphology and applications in environment and energy. Inorg. Chem. Commun. 2022, 138, 109288. [Google Scholar] [CrossRef]
- Wang, Y.J.; Huang, W.J.; Guo, S.H.; Xin, X.; Zhang, Y.Z.; Guo, P.; Tang, S.W.; Li, X.H. Sulfur-deficient ZnIn2S4/oxygen-deficient WO3 hybrids with carbon layer bridges as a novel photothermal/photocatalytic integrated system for Z-scheme overall water splitting. Adv. Energy Mater. 2021, 11, 210245. [Google Scholar] [CrossRef]
- Zhang, G.P.; Wu, H.; Chen, D.Y.; Li, N.J.; Xu, Q.F.; Li, H.; He, J.H.; Lu, J.M. A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application. Green Energy Environ. 2022, 7, 176–204. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, F.X.; Guo, Y.J.; Guo, F.; Shi, W.L.; Yang, S.T. Near-infrared light driven ZnIn2S4-based photocatalysts for environmental and energy applications: Progress and perspectives. Molecules 2023, 28, 2142. [Google Scholar] [CrossRef]
- Zheng, X.L.; Song, Y.M.; Liu, Y.H.; Yang, Y.Q.; Wu, D.X.; Yang, Y.J.; Feng, S.Y.; Li, J.; Liu, W.F.; Shen, Y.J.; et al. ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting. Coord. Chem. Rev. 2023, 475, 214898. [Google Scholar] [CrossRef]
- Ren, Y.J.; Foo, J.J.; Zeng, D.Q.; Ong, W.J. ZnIn2S4-based nanostructures in artificial photosynthesis: Insights into photocatalytic reduction toward sustainable energy production. Small Struct. 2022, 3, 2200017. [Google Scholar] [CrossRef]
- Meng, S.G.; Chen, C.; Gu, X.M.; Wu, H.H.; Meng, Q.Q.; Zhang, J.F.; Chen, S.F.; Fu, X.L.; Liu, D.; Lei, W.W. Efficient photocatalytic H2 evolution, CO2 reduction and N2 fixation coupled with organic synthesis by cocatalyst and vacancies engineering. Appl. Catal. B Environ. 2021, 285, 119789. [Google Scholar] [CrossRef]
- Jing, X.D.; Lu, N.; Huang, J.D.; Zhang, P.; Zhang, Z.Y. One-step hydrothermal synthesis of S-defect-controlled ZnIn2S4 microflowers with improved kinetics process of charge-carriers for photocatalytic H2 evolution. J. Energy Chem. 2021, 58, 397–407. [Google Scholar] [CrossRef]
- Si, S.H.; Shou, H.W.; Mao, Y.Y.; Bao, X.L.; Zhai, G.Y.; Song, K.P.; Wang, Z.Y.; Wang, P.; Liu, Y.Y.; Zheng, Z.K.; et al. Low-coordination single Au atoms on ultrathin ZnIn2S4 nanosheets for selective photocatalytic CO2 reduction towards CH4. Angew. Chem. Int. Ed. 2022, 61, 202209446. [Google Scholar] [CrossRef]
- Shi, X.W.; Dai, C.; Wang, X.; Hu, J.Y.; Zhang, J.Y.; Zheng, L.X.; Mao, L.; Zheng, H.J.; Zhu, M.S. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287. [Google Scholar] [CrossRef]
- Du, C.; Yan, B.; Lin, Z.; Yang, G. Enhanced carrier separation and increased electron density in 2D heavily N-doped ZnIn2S4 for photocatalytic hydrogen production. J. Mater. Chem. A 2020, 8, 207. [Google Scholar] [CrossRef]
- Yang, W.L.; Zhang, L.; Xie, J.F.; Zhang, X.D.; Liu, Q.H.; Yao, T.; Wei, S.Q.; Zhang, Q.; Xie, Y. Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S4 nanosheets for hydrogen evolution. Angew. Chem. Int. Ed. 2016, 55, 6716–6720. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Gao, W.; Liu, C.H.; Xu, S.; Li, Z.Y. A novel 2D/1D core-shell heterostructures coupling MOF-derived iron oxides with ZnIn2S4 for enhanced photocatalytic activity. J. Hazard. Mater. 2020, 392, 122500. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Ao, D. Construction of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites for visible-light-driven H2 production. Appl. Catal. B Envrion. 2018, 221, 433–442. [Google Scholar] [CrossRef]
- Wang, L.B.; Cheng, B.; Zhang, L.Y.; Yu, J.G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 210344. [Google Scholar]
- Wang, S.; Guan, B.Y.; Lou, X.W.D. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J. Am. Chem. Soc. 2018, 140, 5037–5040. [Google Scholar] [CrossRef]
- Li, W.; Lin, Z.; Yang, G. A 2D self-assembled MoS2/ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution. Nanoscale 2017, 9, 18290–18298. [Google Scholar] [CrossRef]
- Wang, W.; Tadé, M.O.; Shao, Z.P. Nitrogen-doped simple and complex oxides for photocatalysis: A review. Prog. Mater. Sci. 2018, 92, 33–63. [Google Scholar] [CrossRef]
- Pan, Y.; Yuan, X.Z.; Jiang, L.B.; Yu, H.B.; Zhang, J.; Wang, H.; Guan, R.P.; Zeng, G.M. Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide. Chem. Eng. J. 2018, 354, 407–431. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, F.; Stringfollow, G.; Wei, S.H. Strain-enhanced doping in semiconductors: Effects of dopant size and charge state. Phys. Rev. Lett. 2010, 105, 195503. [Google Scholar] [CrossRef]
- Qin, J.; Zhao, Q.; Zhao, Y.; Wu, Y.; Pan, B.; Wang, C. Metal-free phosphorus-doped ZnIn2S4 nanosheets for enhanced photocatalytic CO2 reduction. J. Phys. Chem. C 2021, 125, 23813–23820. [Google Scholar] [CrossRef]
- Zhong, L.X.; Mao, B.D.; Liu, M.; Liu, M.Y.; Sun, Y.Q.; Song, Y.T.; Zhang, Z.M.; Lu, T.B. Construction of hierarchical photocatalysts by growing ZnIn2S4 nanosheets on Prussian blue analogue-derived bimetallic sulfides for solar co-production of H2 and organic chemicals. J. Energy Chem. 2021, 54, 386–394. [Google Scholar] [CrossRef]
- Chen, Z.; Li, D.; Zhang, W.; Shao, Y.; Chen, T.; Sun, M.; Fu, X. Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation. J. Phys. Chem. C 2009, 113, 4433–4440. [Google Scholar] [CrossRef]
- Wu, Y.; Yao, S.K.; Lv, G.Z.; Wang, Y.W.; Zhang, H.J.; Liao, P.L.; Wang, Y. Construction of p-n junctions in single-unit-cell ZnIn2S4 nanosheet arrays toward promoted photoelectrochemical performance. J. Catal. 2021, 401, 262–270. [Google Scholar] [CrossRef]
- Kouser, S.; Lingampalli, S.R.; Chithaiah, P.; Roy, A.; Saha, S.; Waghmare, U.V.; Rao, C.N.R. Extraordinary changes in the electronic structure and properties of CdS and ZnS by anionic substitution: Cosubstitution of P and Cl in place of S. Angew. Chem. Int. Ed. 2015, 54, 8149–8153. [Google Scholar] [CrossRef]
- Virieux, H.; Troedec, M.L.; Cros-Gagneux, A.; Ojo, W.S.; Delpech, F.; Nayral, C.; Martinez, H.; Chaudret, B. InP/ZnS nanocrystals: Coupling NMR and XPS for fine surface and interface description. J. Am. Chem. Soc. 2012, 134, 19701–19708. [Google Scholar] [CrossRef]
- Hu, J.; Lu, S.H.; Ma, J.F.; Zhu, F.; Komarneni, S. Composite of g-C3N4/ZnIn2S4 for efficient adsorption and visible light photocatalytic reduction of Cr(VI). Environ. Sci. Pollut. Res. 2022, 29, 76404–76416. [Google Scholar] [CrossRef] [PubMed]
- Zuo, G.C.; Ma, S.S.; Yin, Z.Z.; Chen, W.Y.; Wang, Y.T.; He, H. Z-Scheme modulated charge transfer on InVO4@ZnIn2S4 for durable overall water splitting. Small 2023, 19, 2207031. [Google Scholar] [CrossRef] [PubMed]
- Chong, W.K.; Ng, B.J.; Kong, X.Y.; Tan, L.L.; Putri, L.K.; Chai, S.P. Non-metal doping induced dual p-n charge properties in a single ZnIn2S4 crystal structure provoking charge transfer behaviors and boosting photocatalytic hydrogen generation. Appl. Catal. B Environ. 2023, 325, 122372. [Google Scholar] [CrossRef]
- Yin, H.F.; Cao, Y.; Fan, T.L.; Zhang, M.; Yao, J.C.; Li, P.F.; Chen, S.M.; Liu, X.H. In situ synthesis of Ag3PO4/C3N5 Z-scheme heterojunctions with enhanced visible-light-responsive photocatalytic performance for antibiotics removal. Sci. Total Environ. 2021, 754, 141926. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, X.; Dong, Y.Y.; Hu, C.Y.; Xiang, X.K.; Zeng, X.T.; Jia, J.H.; Jin, C.; Ding, L.; Chen, X.B. In-situ synthesis of 0D/1D CeO2/Zn0.4Cd0.6S S-scheme heterostructures for boosting photocatalytic remove of antibiotic and chromium. Ceram. Int. 2023, 49, 5842–5853. [Google Scholar] [CrossRef]
- Lv, H.J.; Yin, H.F.; Jiao, N.; Yuan, C.Y.; Weng, S.T.; Zhou, K.L.; Dang, Y.Y.; Wang, X.F.; Lu, Z.; Zhang, Y.Z. Efficient charge transfer and effective active sites in lead-free halide double perovskite S-scheme heterojunctions for photocatalytic H2 evolution. Small Methods 2023, 7, 2201365. [Google Scholar] [CrossRef]
- Wu, B.G.; Zhang, L.P.; Jiang, B.J.; Li, Q.; Tian, C.G.; Xie, Y.; Li, W.Z.; Fu, H.G. Ultrathin porous carbon nitride bundles with an adjustable energy band structure toward simultaneous solar photocatalytic water splitting and selective phenylcarbinol oxidation. Angew. Chem. Int. Ed. 2021, 60, 4951. [Google Scholar] [CrossRef]
- Xu, C.X.; Kong, Y.L.; Zhang, W.J.; Yang, M.D.; Wang, K.; Chang, L.; Chen, W.; Huang, G.B.; Zhang, J. S-scheme 2D/2D FeTiO3/g-C3N4 hybrid architectures as visible-light-driven photo-fenton catalysts for tetracycline hydrochloride degradation. Sep. Purif. Technol. 2022, 303, 122266. [Google Scholar] [CrossRef]
- Yin, H.F.; Yuan, C.Y.; Lv, H.J.; Zhang, K.Y.; Chen, X.; Zhang, Y.Z. Hierarchical Ti3C2 MXene/Zn3In2S6 Schottky junction for efficient visible-light-driven Cr(VI) photoreduction. Ceram. Int. 2022, 48, 11320–11329. [Google Scholar] [CrossRef]
- Pei, C.Y.; Li, T.; Zhang, M.; Wang, J.W.; Chang, L.; Xiong, X.Q.; Chen, W.; Huang, G.B.; Han, D.M. Synergistic effects of interface coupling and defect sites in WO3/InVO4 architectures for highly efficient nitrogen photofixation. Sep. Purif. Technol. 2022, 290, 120875. [Google Scholar] [CrossRef]
- Yin, H.F.; Fan, T.L.; Cao, Y.; Li, P.F.; Yao, X.X.; Liu, X.H. Construction of three-dimensional MgIn2S4 nanoflowers/two-dimensional oxygen-doped g-C3N4 nanosheets direct Z-scheme heterojunctions for efficient Cr(VI) reduction: Insight into the role of superoxide radicals. J. Hazard. Mater. 2021, 420, 126567. [Google Scholar] [CrossRef]
- Ângelo, J.; Magalhães, P.; Andrade, L.; Mendes, A. Characterization of TiO2-based semiconductors for photocatalysis by electrochemical impedance spectroscopy. Appl. Surf. Sci. 2016, 387, 183–189. [Google Scholar] [CrossRef]
- Yang, X.X.; Chen, X.; Cao, H.L.; Li, C.; Wang, L.L.; Wu, Y.L.; Wang, C.Z.; Li, Y. Rational synthesis of Cu7Se4-CuxCo1-xSe2 double-shell hollow nanospheres for high performance supercapacitors. J. Power Sources 2020, 480, 228741. [Google Scholar] [CrossRef]
- Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S.Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812. [Google Scholar] [CrossRef]
- Yang, J.; Wang, D.; Han, H.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. ACS Chem. Res. 2013, 46, 1900–1909. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.-Y.; Conte, M.; Anpo, M.; Tang, Z.-R.; Xu, Y.-J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051–13085. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.S.; Wang, P.F.; Zhan, S.H. Shedding light on the role of interfacial chemical bond in heterojunction photocatalysis. Nano Res. 2022, 15, 10158–10170. [Google Scholar] [CrossRef]
- Huang, W.X.; Li, Z.P.; Wu, C.; Zhang, H.J.; Sun, J.; Li, Q. Delaminating Ti3C2 MXene by blossom of ZnIn2S4 microflowers for noble-metal-free photocatalytic hydrogen production. J. Mater. Sci. Technol. 2022, 120, 89–98. [Google Scholar] [CrossRef]
- Cai, M.D.; Zha, X.Q.; Zhuo, Z.Z.; Cheng, Q.; Wei, Y.X.; Sun, S. Enhanced photocatalytic hydrogen production of ZnIn2S4 by using surface-engineered Ti3C2Tx MXene as a cocatalyst. Meterials 2023, 16, 2168. [Google Scholar]
- Zhan, J.J.; Gu, X.Y.; Zhao, Y.; Zhang, K.; Yan, Y.; Qi, K.Z. Photocatalytic hydrogen production and tetracycline degradation using ZnIn2S4 quantum dots modified g-C3N4 composites. Nanomaterials 2023, 13, 305. [Google Scholar] [CrossRef]
- Hou, W.Q.; Chen, C.; Chen, M.; Xu, Y.M. Improved activity and stability of ZnIn2S4 for H2 production under visible light through cerium UiO-66. Sustain. Energy Fuels 2023, 7, 1447–1453. [Google Scholar]
- Ma, Y.; Xu, J.; Xu, S.M.; Liu, Z.L.; Liu, X.Y.; Li, Z.Z.; Shang, Y.; Li, Q. Construction of 3D/3D heterojunction between new noble metal free ZnIn2S4 and non-inert metal NiMoO4 for enhanced hydrogen evolution performance under visible light. Int. J. Hydrogen Energy 2023, in press. [Google Scholar]
- Cavdar, O.; Baluk, M.; Malankowska, A.; Żak, A.; Lisowski, W.; Klimczuk, T.; Zaleska-Medynska, A. Photocatalytic hydrogen evolution from glycerol-water mixture under visible light over zinc indium sulfide (ZnIn2S4) nanosheets grown on bismuth oxychloride (BiOCl) microplates. J. Coll. Inter. Sci. 2023, 640, 578–587. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhao, Y.J.; Zhang, B.; Wu, G.G.; Wu, J.; Hou, H.W. Spatial separation of redox centers for boosting cooperative photocatalytic hydrogen evolution with oxidation coupling of benzylamine over Pt@UiO-66-NH2@ZnIn2S4. Cataly. Sci. Technol. 2023, 13, 2517–2528. [Google Scholar] [CrossRef]
- Li, Z.Z.; Xu, J.; Liu, Z.L.; Liu, X.Y.; Xu, S.M.; Ma, Y. 2D NiCo2S4 decorated on ZnIn2S4 formed S-scheme heterojunction for photocatalytic hydrogen production. Int. J. Hydrogen Energy 2023, 48, 3466–3477. [Google Scholar] [CrossRef]
- He, Y.Q.; Liu, Y.X.; Zhang, Z.; Wang, X.Y.; Li, C.G.; Shi, Z.; Feng, S.H. Atomically dispersed bismuth on ZnIn2S4 Dual-Functional photocatalyst for photocatalytic hydrogen production coupled with oxidation of aromatic alcohols to aldehydes. Appl. Surf. Sci. 2023, 622, 156911. [Google Scholar] [CrossRef]
- Yu, M.M.; Zhang, N.; Zhao, Y.X.; Sun, M.; Yan, T. Highly efficient visible-light photocatalytic hydrogen production using ZIF-derived Co9S8/N, S-CNTs-ZnIn2S4 composite. Chem. Phys. Lett. 2023, 821, 140470. [Google Scholar] [CrossRef]
- Lu, Y.; Jia, X.F.; Liu, X.F.; Zhang, J.Y. W5+–W5+ pair induced LSPR of W18O49 to sensitize ZnIn2S4 for full-spectrum solar-light-driven photocatalytic hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2203638. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Xing, Z.Y.; Yuan, G.Z.; Wei, X.W. Integration of ReS2 on ZnIn2S4 for boosting the hydrogen evolution coupled with selective oxidation of biomass intermediate under visible light. Int. J. Hydrogrn Energy 2023, 48, 5107–5115. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, K.; Wu, X.; Zhu, M.; Zhang, H.; Zhang, K.; Wang, Y.; Loh, K.P.; Shi, Y.; Xu, Q.-H. In situ synthesis of lead-free halide perovskite Cs2AgBiBr6 supported on nitrogen-doped carbon for efficient hydrogen evolution in aqueous HBr solution. ACS Appl. Mater. Interfaces 2021, 13, 10037–10046. [Google Scholar] [CrossRef] [PubMed]
Samples | TOF (h−1) | H2 Generation (μmol g−1 h−1) | BET (m2 g−1) | H2 Generation/BET (μmol m2 h−1) |
---|---|---|---|---|
ZIS | 0.174 | 411.1 | 54.18 | 7.5 |
P-ZIS-1.0 | 0.663 | 1566.6 | 71.64 | 21.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Chen, H.; Yin, H.; Yuan, C.; Lv, H.; Fei, Q.; Zhang, Y.; Zhao, Q.; Zheng, M.; Zhang, Y. Facile Synthesis of P-Doped ZnIn2S4 with Enhanced Visible-Light-Driven Photocatalytic Hydrogen Production. Molecules 2023, 28, 4520. https://doi.org/10.3390/molecules28114520
Feng X, Chen H, Yin H, Yuan C, Lv H, Fei Q, Zhang Y, Zhao Q, Zheng M, Zhang Y. Facile Synthesis of P-Doped ZnIn2S4 with Enhanced Visible-Light-Driven Photocatalytic Hydrogen Production. Molecules. 2023; 28(11):4520. https://doi.org/10.3390/molecules28114520
Chicago/Turabian StyleFeng, Xiangrui, Hongji Chen, Hongfei Yin, Chunyu Yuan, Huijun Lv, Qian Fei, Yujin Zhang, Qiuyu Zhao, Mengmeng Zheng, and Yongzheng Zhang. 2023. "Facile Synthesis of P-Doped ZnIn2S4 with Enhanced Visible-Light-Driven Photocatalytic Hydrogen Production" Molecules 28, no. 11: 4520. https://doi.org/10.3390/molecules28114520