Advance Progress on Luminescent Sensing of Nitroaromatics by Crystalline Lanthanide–Organic Complexes
Abstract
:1. Introduction
2. Fluorescent Sensing of Nitrobenzene Pollutants Based on the Structural Characteristics of Ln–Organic Complexes
2.1. 0D Discrete Structure
2.2. 1D Ln-Coordination Polymers
2.3. 2D Ln-Coordination Polymers
2.4. 3D Ln–Organic Frameworks
3. Detection Effect of Ln–Organic Complexes on Different Nitro Pollutants
3.1. Nitrobenzene (NB)
3.2. Nitrophenol (4-NP or 2-NP)
3.3. 2,4,6-Trinitrophenol (TNP)
4. Fluorescence Detection Mechanisms of Ln–Organic Complexes for Nitroaromatics
4.1. Resonance Energy Transfer (RET)
4.2. Competition Absorption (CA)
4.3. Photoinduced Electron Transfer (PET)
4.4. Structural Transformation Mechanism (ST)
4.5. Static or Dynamic Quenching Mechanism (SY)
5. Conclusions and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, M.; Sun, B.; Li, X.; Pan, Q.; Sun, J.; Ma, P.; Su, Z. Highly Fluorescent Cadmium Based Metal–Organic Frameworks for Rapid Detection of Antibiotic Residues, Fe3+ and Cr2O72− Ions. Inorg. Chem. 2021, 60, 9148–9156. [Google Scholar] [CrossRef]
- Liu, W.; Li, N.N.; Zhang, X.; Zhao, Y.; Zong, Z.; Wu, R.; Tong, J.; Bi, C.; Shao, F.; Fan, Y. Four Zn(II)-MOFs as Highly Sensitive Chemical Sensor for the Rapid Detection of Tetracycline, o-Nitro Phenol, Cr2O72−/PO43−, Fe3+/Al3+ in Water Environment. Cryst. Growth Des. 2021, 21, 5558–5572. [Google Scholar] [CrossRef]
- Li, J.; Tian, J.; Yu, H.; Fan, M.; Li, X.; Liu, F.; Sun, J.; Su, Z. Controllable Synthesis of Metal–Organic Frameworks Based on Anthracene Ligands for High-Sensitivity Fluorescence Sensing of Fe3+, Cr2O72−, and TNP. Cryst. Growth Des. 2022, 22, 2954–2963. [Google Scholar] [CrossRef]
- Ramu, A.G.; Salla, S.; Chandrasekaran, S.; Silambarasan, P.; Gopi, S.; Seo, S.-Y.; Yun, K.; Choi, D. A facile synthesis of metal ferrites and their catalytic removal of toxic nitro-organic pollutants. Environ. Pollut. 2021, 270, 116063. [Google Scholar] [CrossRef] [PubMed]
- Toxicological Profile for Nitrobenzene, Agency for Toxic Substances and Disease Registry U.S. Public Health Service. 1990. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp140.pdf (accessed on 28 April 2023).
- Guria, M.K.; Majumdar, M.; Bhattacharyya, M. Green synthesis of protein capped nano-gold particle: An excellent recyclable nano-catalyst for the reduction of nitro-aromatic pollutants at higher concentration. J. Mol. Liq. 2016, 222, 549–557. [Google Scholar] [CrossRef]
- Luo, J.; Cong, J.; Liu, J.; Gao, Y.; Liu, X. A facile approach for synthesizing molecularly imprinted graphene for ultrasensitive and selective electrochemical detecting 4-nitrophenol. Anal. Chim. Acta 2015, 864, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Dang, D.K.; Sundaram, C.; Ngo, Y.L.T.; Choi, W.M.; Chung, J.S.; Kim, E.J.; Hur, S.H. Pyromellitic acid-derived highly fluorescent N-doped carbon dots for the sensitive and selective determination of 4-nitrophenol. Dyes Pigm. 2019, 165, 327–334. [Google Scholar] [CrossRef]
- Rajak, R.; Saraf, M.; Verma, S.K.; Kumar, R.; Mobin, S.M. Dy(III)-Based Metal–Organic Framework as a Fluorescent Probe for Highly Selective Detection of Picric Acid in Aqueous Medium. Inorg. Chem. 2019, 58, 16065–16074. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.Y.; Yu, H.H.; Fu, P.; Su, Z.M.; Li, X.; Hu, X.L.; Gao, F.W.; Pan, Q.Q. Luminescent Cd(II) metal-organic frameworks with anthracene nitrogen-containing organic ligands as novel multifunctional chemosensors for the detection of picric acid, pesticides, and ferric ions. Dyes Pigm. 2021, 185, 108834. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Q.; Wang, C.; Su, M. Enhanced Turn-On Fluorescence Detection of Aqueous Lead Ions with Size-Shrinkable Hydrogels. ACS Omega. 2021, 6, 11897–11901. [Google Scholar] [CrossRef]
- Wang, J.-X.; Yin, J.; Shekhah, O.; Bakr, O.M.; Eddaoudi, M.; Mohammed, O.F. Energy Transfer in Metal–Organic Frameworks for Fluorescence Sensing. ACS Appl. Mater. Interfaces. 2022, 14, 9970–9986. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Singh, A.; Wang, X.; Kumar, A.; Liu, J. Luminescent sensing of nitroaromatics by crystalline porous materials. CrystEngComm 2020, 22, 7736–7781. [Google Scholar] [CrossRef]
- Yang, S.X.; Hu, J.S.; Zhang, J.; He, T.C.; Zhang, L.Y.; Chen, H. A high selectively and sensitively fluorescent Eu metal-organic framework for sensing nitro aromatic compounds in aqueous media. Inorg. Chim. Acta 2022, 536, 120914. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, J.; Sun, C.; Li, X. A thermal and pH stable fluorescent metal-organic framework sensor for high selectively and sensitively sensing nitro aromatic compounds in aqueous media. J. Mol. Struct. 2021, 1245, 131059. [Google Scholar] [CrossRef]
- Silver, B. Atomic Absorption Spectroscopy Reveals Anomalous Transfer of Heavy Metal across a Water/1,2-DCE Interface. Port. Electrochim. Acta 2021, 39, 415–420. [Google Scholar] [CrossRef]
- Ruella Oliveira, S.; Tuttis, K.; Rita Thomazela Machado, A.; Cristina de Souza Rocha, C.; Maria Greggi Antunes, L.; Barbosa, F. Cell-to-cell heterogeneous association of prostate cancer with gold nanoparticles elucidated by single-cell inductively coupled plasma mass spectrometry. Microchem. J. 2022, 177, 107275. [Google Scholar] [CrossRef]
- Lamei, N.; Ezoddin, M.; Kakavandi, N.R.; Abdi, K.; Ghazi-khansari, M. Ultrasound-Assisted Switchable Solvent in Determination of Quaternary Ammonium Herbicide Paraquat in Biological, Environmental Water, and Apple Juice Samples Using Chemical Reduction Process Coupled to GC–MS Detection. Chromatographia 2018, 81, 923–930. [Google Scholar] [CrossRef]
- Gruznov, V.M.; Baldin, M.N.; Makas, A.L.; Titov, B.G. Progress in methods for the identification of explosives in Russia. J. Anal. Chem. 2011, 66, 1236–1246. [Google Scholar] [CrossRef]
- Brown, K.E.; Greenfield, M.T.; McGrane, S.D.; Moore, D.S. Advances in explosives analysis–part I: Animal, chemical, ion, and mechanical methods. Anal. Bioanal. Chem. 2016, 408, 35–47. [Google Scholar] [CrossRef]
- Brown, K.E.; Greenfield, M.T.; McGrane, S.D.; Moore, D.S. Advances in explosives analysis–part II: Photon and neutron methods. Anal. Bioanal. Chem. 2016, 408, 49–65. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Xu, X.; Xin, J.-W.; Ghulamb, M.; Fan, J.; Dong, X.; Qiu, L.-L.; Xue, M.; Meng, Z.-H. Molecularly imprinted colloidal array for the high-throughput screening of explosives. Chin. J. Anal. Chem. 2023, 51, 100215. [Google Scholar] [CrossRef]
- Bairy, G.; Dey, A.; Dutta, B.; Ray, P.P.; Sinha, C. 2D Cd(II)-MOF of Pyridyl-Imidazoquinazoline: Structure, Luminescence, and Selective Detection of TNP and Fabrication of Semiconducting Devices. Cryst. Growth Des. 2022, 22, 3138–3147. [Google Scholar] [CrossRef]
- Razavi, S.A.A.; Morsali, A.; Piroozzadeh, M. A Dihydrotetrazine-Functionalized Metal–Organic Framework as a Highly Selective Luminescent Host–Guest Sensor for Detection of 2,4,6-Trinitrophenol. Inorg. Chem. 2022, 61, 7820–7834. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.; Mandal, S.C.; Pathak, B.; Neogi, S. Guest-Induced Ultrasensitive Detection of Multiple Toxic Organics and Fe3+ Ions in a Strategically Designed and Regenerative Smart Fluorescent Metal–Organic Framework. ACS Appl. Mater. Interfaces 2019, 11, 9042–9053. [Google Scholar] [CrossRef]
- Li, H.-Y.; Zhao, S.-N.; Zang, S.-Q.; Li, J. Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401. [Google Scholar] [CrossRef] [PubMed]
- Verbitskiy, E.V.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: A review. Dye. Pigment. 2020, 180, 108414. [Google Scholar] [CrossRef]
- Ahmed, R. Review: Fluorophores for detecting Nitroaromatic Compounds, Picric Acid. Int. J. Multidiscip. Res. Anal. 2023, 6, 1119–1131. [Google Scholar] [CrossRef]
- Svalova, T.S.; Saigushkina, A.A.; Verbitskiy, E.V.; Chistyakov, K.A.; Varaksin, M.V.; Rusinov, G.L.; Charushin, V.N.; Kozitsina, A.N. Rapid and sensitive determination of nitrobenzene in solutions and commercial honey samples using a screen-printed electrode modified by 1,3-/1,4-diazines. Food Chem. 2022, 372, 131279. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, Y.; He, C.; Duan, C. Synthesis of a Lanthanide Metal–Organic Framework and Its Fluorescent Detection for Phosphate Group-Based Molecules Such as Adenosine Triphosphate. Inorg. Chem. 2022, 61, 3132–3140. [Google Scholar] [CrossRef]
- Sun, Y.-Q.; Cheng, Y.; Yin, X.-B. Dual-Ligand Lanthanide Metal–Organic Framework for Sensitive Ratiometric Fluorescence Detection of Hypochlorous Acid. Anal. Chem. 2021, 93, 3559–3566. [Google Scholar] [CrossRef]
- Wang, G.-D.; Li, Y.-Z.; Shi, W.-J.; Zhang, B.; Hou, L.; Wang, Y.-Y. A robust cluster-based Eu-MOF as multi-functional fluorescence sensor for detection of antibiotics and pesticides in water. Sens. Actuators B Chem. 2021, 331, 129377. [Google Scholar] [CrossRef]
- Xu, M.-Y.; Liang, G.-Y.; Feng, J.-S.; Liang, G.-M.; Wang, X.-J. Temperature-Induced Structural Transformations of Lanthanide Coordination Polymers Based on a Semirigid Tricarboxylic Acid Ligand: Crystal Structures and Luminescence Properties. Cryst. Growth Des. 2022, 22, 1583–1593. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, M.; Tian, F.; Liu, Z. Stable Europium-based Metal–Organic Frameworks for Naked-eye Ultrasensitive Detecting Fluoroquinolones Antibiotics. Inorg. Chem. 2021, 60, 5282–5289. [Google Scholar] [CrossRef]
- Bodman, S.E.; Butler, S.J. Advances in anion binding and sensing using luminescent lanthanide complexes. Chem. Sci. 2021, 12, 2716–2734. [Google Scholar] [CrossRef]
- Sahoo, S.; Mondal, S.; Sarma, D. Luminescent Lanthanide Metal-Organic Frameworks (Ln MOFs): A Versatile Platform towards Organomolecule Sensing. Coord. Chem. Rev. 2022, 470, 214707. [Google Scholar] [CrossRef]
- Chai, H.M.; Yan, J.L.; Zhang, G.Q.; Wang, J.X.; Ren, Y.X.; Gao, L.J. Five Mesoporous Lanthanide Metal-Organic Frameworks: Syntheses, Structures, and Fluorescence Sensing of Fe3+, Cr2O72−, and H2O2 and Electrochemical Sensing of Trinitrophenol. Inorg. Chem. 2022, 61, 7286–7295. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.C.; Guo, F.S.; Bai, N.N.; Wu, Y.L.; Yang, F.; Liang, J.Y.; Li, Z.J.; Wang, Y.Y. Two 3D Isostructural Ln(III)-MOFs: Displaying the Slow Magnetic Relaxation and Luminescence Properties in Detection of Nitrobenzene and Cr2O72−. Inorg. Chem. 2016, 55, 11323–11330. [Google Scholar] [CrossRef]
- Gao, T.; Ma, Z.; Ren, Y.; Wang, Z.; Zhang, M.; Chen, X.; Wang, J. High sensitive fluorescent sensing and photocatalytic degradation performance of two-dimensional Tb-organic network. J. Rare Earths 2023, in press. [Google Scholar] [CrossRef]
- Ma, J.J.; Liu, W.S. Effective luminescence sensing of Fe3+, Cr2O72−, MnO4− and 4-nitrophenol by lanthanide metal–organic frameworks with a new topology type. Dalton Trans. 2019, 48, 12287–12295. [Google Scholar] [CrossRef]
- Yue, D.; Zhao, D.; Zhang, J.; Zhang, L.; Jiang, K.; Zhang, X.; Cui, Y.; Yang, Y.; Chen, B.; Qian, G. A luminescent cerium metal–organic framework for the turn-on sensing of ascorbic acid. Chem. Commun. 2017, 53, 11221–11224. [Google Scholar] [CrossRef]
- Zhang, N.; Li, B.; Wang, X.; Liu, D.; Han, X.; Bai, F.; Xing, Y. High-efficiency fluorescent probe constructed by triazine polycarboxylic acid for detecting nitro compounds. Inorg. Chim. Acta 2020, 507, 119591. [Google Scholar] [CrossRef]
- Chen, F.; Wang, J.; Dong, M.W.; Zhang, S.L.; Wu, C.P.; Liu, J.Q. Five lanthanide supramolecular frameworks based on mixed 3-(4-hydroxyphenyl)propanoic acid and 1,10-phenanthroline tectons: Crystal structures and luminescent properties. J. Mol. Struct. 2019, 1177, 117–123. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, X.; Niu, M.; Hao, W.; Shi, D.; Schipper, D. High-Nuclearity Cd(II)–Nd(III) Nanowheel with NIR Emission Sensing of Metal Cations and Nitro-Based Explosives. Cryst. Growth Des. 2021, 21, 2821–2827. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, X.; Niu, M.; Shi, D.; Schipper, D. One high-nuclearity Yb(III) nanoring with NIR luminescent sensing towards antibiotics and explosives. J. Lumin. 2022, 241, 118494. [Google Scholar] [CrossRef]
- Shi, D.; Yang, X.; Chen, H.; Jiang, D.; Liu, J.; Ma, Y.; Schipper, D.; Jones, R.A. Large Ln42 coordination nanorings: NIR luminescence sensing of metal ions and nitro explosives. Chem. Comm. 2019, 55, 13116–13119. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Yang, X.; Chen, H.; Ma, Y.; Schipper, D.; Jones, R.A. Self-assembly of luminescent 42-metal lanthanide nanowheels with sensing properties towards metal ions and nitro explosives. J. Mater. Chem. C 2019, 7, 13425–13431. [Google Scholar] [CrossRef]
- Jiang, D.; Yang, X.; Zheng, X.; Bo, L.; Zhu, T.; Chen, H.; Zhang, L.; Huang, S. Self-assembly of luminescent 12-metal Zn–Ln planar nanoclusters with sensing properties towards nitro explosives. J. Mater. Chem. C 2018, 6, 8513–8521. [Google Scholar] [CrossRef]
- Wang, S.; Sun, B.; Su, Z.; Hong, G.; Li, X.; Liu, Y.; Pan, Q.; Sun, J. Lanthanide-MOFs as multifunctional luminescent sensors. Inorg. Chem. Front. 2022, 9, 3259–3266. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Q.; Zhou, H.; Gao, H.; Li, D.; Li, Y. One-dimensional Europium-coordination polymer as luminescent sensor for highly selective and sensitive detection of 2,4,6-trinitrophenol. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 264, 120303. [Google Scholar] [CrossRef]
- Li, J.J.; Fan, T.T.; Qu, X.L.; Han, H.L.; Li, X. Temperature-induced 1D lanthanide polymeric frameworks based on Lnn (n = 2, 2, 4, 6) cores: Synthesis, crystal structures and luminescence properties. Dalton Trans. 2016, 45, 2924–2935. [Google Scholar] [CrossRef]
- Liu, W.; Liu, G.; Gao, G.; Gao, Z.; Zhang, Y.; Wu, S.; Gao, E.; Zhu, M. A new dysprosium (III)-Organic framework as a ratiometric luminescent sensor for Nitro-compounds and antibiotics in aqueous solutions. Inorg. Chem. Commun. 2021, 133, 108952. [Google Scholar] [CrossRef]
- Smith, J.A.; Singh-Wilmot, M.A.; Carter, K.P.; Cahill, C.L.; Ridenour, J.A. Supramolecular assembly of lanthanide-2,3,5,6-tetrafluoroterephthalic acid coordination polymers via fluorine⋯fluorine interactions: A platform for luminescent detection of Fe3+ and nitroaromatic compounds. New J. Chem. 2020, 44, 12317–12330. [Google Scholar] [CrossRef]
- Smith, J.A.; Singh-Wilmot, M.A.; Carter, K.P.; Cahill, C.L.; Ridenour, J.A. Lanthanide-2,3,5,6-Tetrabromoterephthalic Acid Metal–Organic Frameworks: Evolution of Halogen···Halogen Interactions across the Lanthanide Series and Their Potential as Selective Bifunctional Sensors for the Detection of Fe3+, Cu2+, and Cryst. Growth Des. 2019, 19, 305–319. [Google Scholar] [CrossRef]
- Gao, T.; Ren, Y.; Wang, Z.; Zhang, M.; Cao, J.; Wang, J. A multi-functional Tb-organic network featuring high selectivity fluorescent sensing for Fe3+, Cr2O72−, tetracycline and 2,4,6-trinitrophenol in aqueous solution. J. Solid State Chem. 2022, 309, 123002. [Google Scholar] [CrossRef]
- Cheng, X.; Hu, J.; Li, J.; Zhang, M. Tunable emission and selective luminescence sensing for nitro- pollutants and metal ions based on bifunctional lanthanide metal-organic frameworks. J. Lumin. 2020, 221, 117100. [Google Scholar] [CrossRef]
- Zhang, S.-R.; Du, D.-Y.; Qin, J.-S.; Li, S.-L.; He, W.-W.; Lan, Y.-Q.; Su, Z.-M. 2D Cd(II)–Lanthanide(III) Heterometallic–Organic Frameworks Based on Metalloligands for Tunable Luminescence and Highly Selective, Sensitive, and Recyclable Detection of Nitrobenzene. Inorg. Chem. 2014, 53, 8105–8113. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Zhang, Y.; Lu, L.; Zhu, M.; Yuan, C.; Feng, S. Seven Ln(III) coordination polymers with two kinds of geometric coordination but the same 3D topological property: Luminescence sensing and magnetic property. Dalton Trans. 2022, 51, 12324–12333. [Google Scholar] [CrossRef]
- Song, N.; Li, W.; Luo, W.; Zhai, Z.; Wang, S.; Huai, R.; Zhang, D.; Zhou, Z.; Yang, L. Efficient and selective fluorescence sensing of nitro-containing aromatic compounds by a binuclear lanthanide-based metal-organic framework. J. Solid State Chem. 2022, 316, 123568. [Google Scholar] [CrossRef]
- Ren, L.L.; Cui, Y.Y.; Cheng, A.L.; Gao, E.Q. Water-stable lanthanide-based metal-organic frameworks for rapid and sensitive detection of nitrobenzene derivatives. J. Solid State Chem. 2019, 270, 463–469. [Google Scholar] [CrossRef]
- Liu, W.; Li, D.; Wang, F.; Chen, X.; Wang, X.; Tian, Y. A luminescent lanthanide MOF as highly selective and sensitive fluorescent probe for nitrobenzene and Fe3+. Opt. Mater. 2022, 123, 111895. [Google Scholar] [CrossRef]
- Hidalgo-Rosa, Y.; Mena-Ulecia, K.; Treto-Suárez, M.A.; Schott, E.; Páez-Hernández, D.; Zarate, X. Expanding the Knowledge of the Selective-Sensing Mechanism of Nitro Compounds by Luminescent Terbium Metal–Organic Frameworks through Multiconfigurational ab Initio Calculations. J. Phys. Chem. C 2022, 126, 7040–7050. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.G.; Song, F.Q.; Wang, H.; Song, X.Q.; Yu, X.X.; Liu, W.S. The construction of a novel luminescent lanthanide framework for the selective sensing of Cu2+ and 4-nitrophenol in water. Dalton Trans. 2021, 50, 1874–1886. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lynch, V.; Nielsen, K.; Johnsen, C.; Jeppesen, J.; Sessler, J. A chloride-anion insensitive colorimetric chemosensor for trinitrobenzene and picric acid. Anal. Bioanal. Chem. 2009, 395, 393–400. [Google Scholar] [CrossRef]
- Herrera-Chacon, A.; Gonzalez-Calabuig, A.; del Valle, M. Dummy Molecularly Imprinted Polymers Using DNP as a Template Molecule for Explosive Sensing and Nitroaromatic Compound Discrimination. Chemosensors 2021, 9, 255. [Google Scholar] [CrossRef]
- Xu, W.; Chen, H.; Xia, Z.; Ren, C.; Han, J.; Sun, W.; Wei, Q.; Xie, G.; Chen, S. A Robust TbIII-MOF for Ultrasensitive Detection of Trinitrophenol: Matched Channel Dimensions and Strong Host–Guest Interactions. Inorg. Chem. 2019, 58, 8198–8207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Li, B.H.; Ma, P.; Zhang, L.M.; Zhang, W.X. An RGH–MOF as a naked eye colorimetric fluorescent sensor for picric acid recognition. J. Mater. Chem. C 2017, 5, 4661–4669. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, J.; Xi, L.; Xie, J.; Wang, X.; Ma, Y.; Li, L. Two Novel Lanthanide Metal–Organic Frameworks: Selective Luminescent Sensing for Nitrobenzene, Cu2+, and MnO4−. Cryst. Growth Des. 2020, 20, 5225–5234. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Zeng, H.; Zhu, X.W.; Lu, W.G.; Li, D. Metal–organic frameworks as photoluminescent biosensing platforms: Mechanisms and applications. Chem. Soc. Rev. 2021, 50, 4484–4513. [Google Scholar] [CrossRef]
- Ma, W.P.; Yan, B. Lanthanide Functionalized MOF Thin Films as Effective Luminescent Materials and Chemical Sensors for Ammonia. Dalton Trans. 2020, 49, 15663–15671. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, X.; Zhang, X.; Liu, L.; Xie, J.; Chen, Z. Eu(III)-organic complex as recyclable dual-functional luminescent sensor for simultaneous and quantitative sensing of 2,4,6-trinitrophenol and CrO42− in aqueous solution. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 239, 118497. [Google Scholar] [CrossRef]
Ln–Organic Complexes | Analytes | Detection Limit | Solvent | Mechanism | Refs |
---|---|---|---|---|---|
[EuL(H2O)3]·3H2O·0.75DMF | NB | none | DMF | Static | [38] |
[Tb(FDA)(DMF)]·DMF | NB | 0.01666 μg/mL | DMF | PET + Static | [41] |
[Eu2(HPA)6(phen)2]·4H2O | NB | - | H2O | - | [43] |
[Eu2(TFPht)3(phen)2(H2O)2]·H2O | NB | ppm | H2O | PET | [51] |
[CdCl(L)Eux(H2O)(DMA)](NO3)·3DMA | NB | - | H2O | PET | [57] |
{[Ln(dttpa)1.5(H2O)]·xH2O}n | NB | 12.5 μM | CH3CN | PET + CA | [58] |
{[Ln2(NSBPDC)3(H2O)4]·x(H2O)}n | NB | 11.315 μM | Ethanol | PET + CA | [60] |
{[Tb(FDA)1.5(DMF)]·DMF}n | NB | - | DMF | PET | [61] |
[Tb(BTTA)1.5(H2O)4.5]n | NB | - | Methanol | ST | [62] |
{[Ln2(L2)2(H2O)5]·3H2O}n | NB | 1.46 μM | Methanol | PET | [67] |
[Tb2(TTHA)(H2O)4] | NB PNT TNP | 0.489 0.609 0.919 | Ethanol | PET | [42] |
[Ln2(L)2(H2O)2]·5H2O | 4-NP | 7.6 × 10−5 M | H2O | CA | [40] |
[Dy(L)(NO3)(DMF)3] | 4-NP | 0.0676 μM | H2O | CA | [52] |
[Eu0.5Tb0.5(L)(H2O)3]n | 4-NP | - | DMF | RET | [56] |
LZG-Eu/Tb | 4-NP | 0.0112 μM | H2O | CA | [63] |
{Eu2(TBrTA)3(H2O)8·2H2O}n | 4-NP DNP TNP | 17 μM 43.1 μM 74.6 μM | Ethanol | CA + PET + electrostatic | [54] |
[Nd42L14(OH)28(OAc)84] | 2-NP | 8.22 μM | H2O | [46] | |
[Yb42L14(OH)28(OAc)84] | 2-NP | 27.1 μM | CH3CN | PET + other | [47] |
[Tb4(2-pyia)6(HAc)0.5(2,2′-bipy) (H2O)4.5]·2,2′-bipy·H2O | TNP | 0.0271 μM | H2O | CA + PET + dynamic | [39] |
[Cd8Nd4L8(OAc)8]·4OH | TNP | 0.55 μM | H2O | PET + inner filter effect | [44] |
[Yb18(L1)8(HL[2])2(OAc)20] | TNP | 5.1 μM | CH3CN | PET + other | [45] |
[Tb(BDPO)(H2O)4] | TNP | 0.20 μM | H2O | RET | [49] |
[Eu(BDPO)(H2O)4] | TNP | 0.21 μM | H2O | RET | [49] |
[Eu(L)6(DMF)] | TNP | 3.39 μM | CH3CN | PET + CA | [50] |
[Tb2(pyia)3(phen)2(H2O)]·H2O | TNP | 0.080 μM | H2O | CA | [55] |
[Tb(TCBA)(H2O)2]·DMF | TNP | 1.64 ppb | Ethanol | PET | [63] |
RGH-Eu(BTC) | TNP | 0.45 μM | Ethanol | PET + H-bonds | [65] |
{[Eu2(HL)2(H2O)4]·3H2O}n | TNP | 2.5 μM | H2O | RET + electrostatic interaction | [68] |
[Eu(TFTA)1.5(H2O)2]·H2O | 4-NTP 2,4-DNP 5-TNP | 21.8 μM 31.2 μM 26.8 μM | Methanol | CA + inner filter effect | [53] |
La(HTCPE)(H2O)2 | NA | 5.68 μM | DMF | PET + interactions | [59] |
[Eu2(dtztp)(OH)2(DMF)(H2O)2.5]·2H2O | DCN | 5.28 ppm | H2O | RET + PET | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Ma, Z.; Gao, T.; Liang, Y. Advance Progress on Luminescent Sensing of Nitroaromatics by Crystalline Lanthanide–Organic Complexes. Molecules 2023, 28, 4481. https://doi.org/10.3390/molecules28114481
Ren Y, Ma Z, Gao T, Liang Y. Advance Progress on Luminescent Sensing of Nitroaromatics by Crystalline Lanthanide–Organic Complexes. Molecules. 2023; 28(11):4481. https://doi.org/10.3390/molecules28114481
Chicago/Turabian StyleRen, Yixia, Zhihu Ma, Ting Gao, and Yucang Liang. 2023. "Advance Progress on Luminescent Sensing of Nitroaromatics by Crystalline Lanthanide–Organic Complexes" Molecules 28, no. 11: 4481. https://doi.org/10.3390/molecules28114481
APA StyleRen, Y., Ma, Z., Gao, T., & Liang, Y. (2023). Advance Progress on Luminescent Sensing of Nitroaromatics by Crystalline Lanthanide–Organic Complexes. Molecules, 28(11), 4481. https://doi.org/10.3390/molecules28114481