Analysis of Volatile Compounds and Flavor Fingerprint Using Gas Chromatography–Ion Mobility Spectrometry (GC-IMS) on Crassostrea gigas with Different Ploidy and Gender
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-IMS Profiles of Male and Female Oysters with Different Ploidy Levels
2.2. Identification of VOCs in Male and Female Oysters with Different Ploidy Levels
2.3. Fingerprint Analysis of VOCs in Male and Female Oysters with Different Ploidy Levels
2.4. Principal Component Analysis (PCA) of Volatile Compounds Profiles
2.5. Comparison of Volatile Compounds between Different Sexes of Oysters
2.6. Comparison of Volatile Compounds between Different Ploidy Oysters
3. Materials and Methods
3.1. Materials
3.2. Experimental Methods
3.2.1. GC-IMS Analysis
3.2.2. GC-IMS Analysis
3.2.3. Data Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ma, Y.; Jiang, S.; Zeng, M. In vitro simulated digestion and fermentation characteristics of polysaccharide from oyster (Crassostrea gigas), and its effects on the gut microbiota. Food Res. Int. 2021, 149, 110646. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, R.; Zhang, T.; Xu, Y.; Jiang, S.; Zhao, Y. High Hydrostatic Pressure Treatment of Oysters (Crassostrea gigas)—Impact on Physicochemical Properties, Texture Parameters, and Volatile Flavor Compounds. Molecules 2021, 26, 5731. [Google Scholar] [CrossRef] [PubMed]
- Felici, A.; Vittori, S.; Meligrana, M.; Roncarati, A. Quality traits of raw and cooked cupped oysters. Eur. Food Res. Technol. 2020, 246, 349–353. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, Y.; Ma, H.; Wu, X.; Xiao, S.; Li, J.; Mo, R.; Yu, Z. Comparison of the biochemical composition and nutritional quality between diploid and triploid Hong Kong oysters, Crassostrea hongkongensis. Front. Physiol. 2018, 9, 1674. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Fonseca, B.P.; Góngora-Gómez, A.M.; Muñoz-Sevilla, N.P.; Domínguez-Orozco, A.L.; Hernández-Sepúlveda, J.A.; García-Ulloa, M.; Ponce-Palafox, J.T. Growth and economic performance of diploid and triploid Pacific oysters Crassostrea gigas cultivated in three lagoons of the Gulf of California. Lat. Am. J. Aquat. Res. 2017, 45, 466–480. [Google Scholar] [CrossRef]
- Hong, L.; Xiaoxue, W.; Bin, Z.; Haiqing, T.; Changhu, X.; Jiachao, X. Comparison of taste components between triploid and diploid oyster. J. Ocean. Univ. Qingdao 2002, 1, 55–58. [Google Scholar] [CrossRef]
- Quillet, E.; Panelay, P. Triploidy induction by thermal shocks in the Japanese oyster, Crassostrea gigas. Aquaculture 1986, 57, 271–279. [Google Scholar] [CrossRef]
- Dong, Q.; Eudeline, B.; Huang, C.; Allen, S.K., Jr.; Tiersch, T.R. Commercial-scale sperm cryopreservation of diploid and tetraploid Pacific oysters, Crassostrea gigas. Cryobiology 2005, 50, 1–16. [Google Scholar] [CrossRef]
- Guo, X.; Allen, S.K., Jr. Viable tetraploids in the Pacific oyster (Crassostrea gigas Thunberg) produced by inhibiting polar body 1 in eggs. Mol. Mar. Biol. Biotechnol. 1994, 3, 42–50. [Google Scholar]
- Guo, X.; Allen, S.K., Jr. Reproductive potential and genetics of triploid Pacific oysters, Crassostrea gigas (Thunberg). Biol. Bull. 1994, 187, 309–318. [Google Scholar] [CrossRef]
- Nell, J.A. Farming triploid oysters. Aquaculture 2002, 210, 69–88. [Google Scholar] [CrossRef]
- Guo, X.; DeBrosse, G.A.; Allen, S.K., Jr. All-triploid Pacific oysters (Crassostrea gigas Thunberg) produced by mating tetraploids and diploids. Aquaculture 1996, 142, 149–161. [Google Scholar] [CrossRef]
- Qin, Y.; Li, R.; Liao, Q.; Shi, G.; Zhou, Y.; Wan, W.; Li, J.; Ma, H.; Zhang, Y.; Yu, Z. Comparison of biochemical composition, nutritional quality, and metals concentrations between males and females of three different Crassostrea sp. Food Chem. 2022, 398, 133868. [Google Scholar] [CrossRef]
- Hao, R.; Du, X.; Yang, C.; Deng, Y.; Zheng, Z.; Wang, Q. Integrated application of transcriptomics and metabolomics provides insights into unsynchronized growth in pearl oyster Pinctada fucata martensii. Sci. Total Environ. 2019, 666, 46–56. [Google Scholar] [CrossRef]
- Portillo-López, A.; Gould, M.C.; Stephano, J.L. MAPK is involved in metaphase I arrest in oyster and mussel oocytes. Biol. Cell 2003, 95, 275–282. [Google Scholar] [CrossRef]
- George, O.; Johnston, M.A.; Shuster, C.B. Aurora B kinase maintains chromatin organization during the MI to MII transition in surf clam oocytes. Cell Cycle 2006, 5, 2648–2656. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Asturiano, J.F. Reproduction in Aquatic Animals: From Basic Biology to Aquaculture Technology; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Pennarun, A.L.; Prost, C.; Demaimay, M. Aroma extracts from oyster Crassostrea gigas: Comparison of two extraction methods. J. Agric. Food Chem. 2002, 50, 299–304. [Google Scholar] [CrossRef]
- Pennarun, A.L.; Prost, C.; Haure, J.; Demaimay, M. Comparison of two microalgal diets. 2. Influence on odorant composition and organoleptic qualities of raw oysters (Crassostrea gigas). J. Agric. Food Chem. 2003, 51, 2011–2018. [Google Scholar] [CrossRef]
- Van Houcke, J.; Medina, I.; Linssen, J.; Luten, J. Biochemical and volatile organic compound profile of European flat oyster (Ostrea edulis) and Pacific cupped oyster (Crassostrea gigas) cultivated in the Eastern Scheldt and Lake Grevelingen, The Netherlands. Food Control 2016, 68, 200–207. [Google Scholar] [CrossRef]
- Liu, S.; Xu, H.; Jian, S.; Xue, Q.; Lin, Z. Molecular basis of taste and micronutrient content in Kumamoto oysters (Crassostrea sikamea) and Portuguese oysters (Crassostrea angulata) from Xiangshan bay. Front. Physiol. 2021, 12, 713736. [Google Scholar] [CrossRef]
- Cochet, M.; Brown, M.; Kube, P.; Elliott, N.; Delahunty, C. Understanding the impact of growing conditions on oysters: A study of their sensory and biochemical characteristics. Aquac. Res. 2013, 46, 637–646. [Google Scholar] [CrossRef]
- Elmore, J.; Mottram, D. Flavour Development in Meat. Improving the Sensory & Nutritional Quality of Fresh Meat; Elsevier: Amsterdam, The Netherlands, 2009; pp. 111–146. [Google Scholar]
- Zhang, Z.; Li, T.; Wang, D.; Zhang, L.; Chen, G. Study on the volatile profile characteristics of oyster Crassostrea gigas during storage by a combination sampling method coupled with GC/MS. Food Chem. 2009, 115, 1150–1157. [Google Scholar] [CrossRef]
- Piveteau, F.; Le Guen, S.; Gandemer, G.; Baud, J.-P.; Prost, C.; Demaimay, M. Aroma of fresh oysters Crassostrea gigas: Composition and aroma notes. J. Agric. Food Chem. 2000, 48, 4851–4857. [Google Scholar] [CrossRef]
- Lotfy, S.N.; Fadel, H.H.; El-Ghorab, A.H.; Shaheen, M.S. Stability of encapsulated beef-like flavourings prepared from enzymatically hydrolysed mushroom proteins with other precursors under conventional and microwave heating. Food Chem. 2015, 187, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, H.; Zhang, Y.; Tang, J.; Yu, D. Determination of aroma compounds in pork broth produced by different processing methods. Flavour Fragr. J. 2016, 31, 319–328. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, J.; Pei, Z.; Wei, P.; Xiang, D.; Cao, X.; Shen, X.; Li, C. Volatile flavour components and the mechanisms underlying their production in golden pompano (Trachinotus blochii) fillets subjected to different drying methods: A comparative study using an electronic nose, an electronic tongue and SDE-GC-MS. Food Res. Int. 2019, 123, 217–225. [Google Scholar] [CrossRef]
- Ma, R.; Liu, X.; Tian, H.; Han, B.; Li, Y.; Tang, C.; Zhu, K.; Li, C.; Meng, Y. Odor-active volatile compounds profile of triploid rainbow trout with different marketable sizes. Aquac. Rep. 2020, 17, 100312. [Google Scholar] [CrossRef]
- Ramírez, R.; Cava, R. Volatile profiles of dry-cured meat products from three different Iberian X Duroc genotypes. J. Agric. Food Chem. 2007, 55, 1923–1931. [Google Scholar] [CrossRef]
- Duflos, G.; Coin, V.M.; Cornu, M.; Antinelli, J.F.; Malle, P. Determination of volatile compounds to characterize fish spoilage using headspace/mass spectrometry and solid-phase microextraction/gas chromatography/mass spectrometry. J. Sci. Food Agric. 2006, 86, 600–611. [Google Scholar] [CrossRef]
No.1 | Compound | CAS# | Formula | MW a | RI b | Rt c | Dt d | Comment e |
---|---|---|---|---|---|---|---|---|
1 | (E, Z)-2,6-nonadienal | C557482 | C9H14O | 138.2 | 1737.5 | 1580.877 | 1.3853 | |
2 | phenylacetaldehyde | C122781 | C8H8O | 120.2 | 1691.5 | 1441.904 | 1.25563 | Monomer |
3 | Propanoic acid | C79094 | C3H6O2 | 74.1 | 1597.9 | 1195.785 | 1.10796 | Monomer |
4 | Propanoic acid | C79094 | C3H6O2 | 74.1 | 1603.6 | 1209.576 | 1.26464 | Dimer |
5 | (E)-Non-3-en-2-one | C18402830 | C9H16O | 140.2 | 1611.9 | 1229.733 | 1.37089 | Monomer |
6 | (E)-Non-3-en-2-one | C18402830 | C9H16O | 140.2 | 1612.7 | 1231.854 | 1.89675 | Dimer |
7 | (E) -2-nonenal | C18829566 | C9H16O | 140.2 | 1549.9 | 1086.517 | 1.40871 | Monomer |
8 | (E) -2-nonenal | C18829566 | C9H16O | 140.2 | 1550.3 | 1087.265 | 1.96933 | Dimer |
9 | phenylacetaldehyde | C122781 | C8H8O | 120.2 | 1691.2 | 1441.125 | 1.53643 | Dimer |
10 | Benzaldehyde | C100527 | C7H6O | 106.1 | 1531.9 | 1048.106 | 1.1505 | Monomer |
11 | Benzaldehyde | C100527 | C7H6O | 106.1 | 1529.3 | 1042.566 | 1.46691 | Dimer |
12 | (E, E)-2,4-heptadienal | C4313035 | C7H10O | 110.2 | 1503.8 | 990.859 | 1.6172 | |
13 | p-methyl anisole | C104938 | C8H10O | 122.2 | 1491.9 | 967.468 | 1.1157 | |
14 | Furfural | C98011 | C5H4O2 | 96.1 | 1484.8 | 953.925 | 1.08248 | Monomer |
15 | 3-(methylsulfanyl)propanal | C3268493 | C4H8OS | 104.2 | 1466.1 | 918.838 | 1.08564 | Monomer |
16 | 3-(methylsulfanyl)propanal | C3268493 | C4H8OS | 104.2 | 1467.4 | 921.301 | 1.39572 | Dimer |
17 | Furfural | C98011 | C5H4O2 | 96.1 | 1484.2 | 952.694 | 1.33244 | Dimer |
20 | (E)-2-octenal | C2548870 | C8H14O | 126.2 | 1434.9 | 863.438 | 1.33086 | Monomer |
21 | (E)-2-octenal | C2548870 | C8H14O | 126.2 | 1434.9 | 863.438 | 1.81812 | Dimer |
22 | (E, E)-2,4-hexadienal | C142836 | C6H8O | 96.1 | 1411.6 | 824.042 | 1.1157 | Monomer |
23 | (E, E)-2,4-hexadienal | C142836 | C6H8O | 96.1 | 1413.1 | 826.505 | 1.44793 | Dimer |
24 | 1-nonanal | C124196 | C9H18O | 142.2 | 1403.7 | 811.116 | 1.4764 | Monomer |
25 | 1-nonanal | C124196 | C9H18O | 142.2 | 1404 | 811.731 | 1.94152 | Dimer |
28 | 1 -hexanol | C111273 | C6H14O | 102.2 | 1370.7 | 759.409 | 1.32611 | Monomer |
29 | 1 -hexanol | C111273 | C6H14O | 102.2 | 1369.5 | 757.562 | 1.64093 | Dimer |
30 | 1-Hydroxy-2-propanone | C116096 | C3H6O2 | 74.1 | 1313.6 | 677.539 | 1.2217 | |
31 | 2-Butanone, 3-hydroxy | C513860 | C4H8O2 | 88.1 | 1294.8 | 652.276 | 1.3317 | Dimer |
32 | Acetic acid | C64197 | C2H4O2 | 60.1 | 1502.6 | 988.507 | 1.05136 | |
33 | 1-Octen-3-ol | C3391864 | C8H16O | 128.2 | 1479.7 | 944.205 | 1.1587 | |
36 | 2-Butanone, 3-hydroxy | C513860 | C4H8O2 | 88.1 | 1296.6 | 654.891 | 1.06375 | Monomer |
37 | 1-octanal | C124130 | C8H16O | 128.2 | 1298.7 | 657.566 | 1.82562 | |
38 | 2-Ethyl-3-methyl pyrazine | C15707230 | C7H10N2 | 122.2 | 1426.5 | 849.028 | 1.16209 | |
41 | butyl pentanoate | C591684 | C9H18O2 | 158.2 | 1304.3 | 665.014 | 1.40639 | |
43 | 3-Octanone | C106683 | C8H16O | 128.2 | 1265.7 | 598.497 | 1.71809 | Dimer |
44 | (Z)-4-heptenal | C6728310 | C7H12O | 112.2 | 1254.7 | 579.319 | 1.14747 | Monomer |
45 | 2-pentyl furan | C3777693 | C9H14O | 138.2 | 1239 | 552.949 | 1.25109 | |
46 | (E)-2-hexen-1-al | C6728263 | C6H10O | 98.1 | 1227.3 | 534.114 | 1.51085 | |
47 | 3-Methyl-2-butenal | C107868 | C5H8O | 84.1 | 1211.6 | 509.799 | 1.35897 | |
48 | Heptaldehyde | C111717 | C7H14O | 114.2 | 1194.1 | 484.114 | 1.69822 | |
49 | 1-butanol | C71363 | C4H10O | 74.1 | 1169.8 | 450.824 | 1.38425 | |
50 | (Z)-2-Methylpent-2-enal | C623369 | C6H10O | 98.1 | 1157.3 | 434.743 | 1.48969 | |
51 | (E)-2-Pentenal | C1576870 | C5H8O | 84.1 | 1139.8 | 413.076 | 1.35223 | |
52 | (Z)-2-pentenal | C1576869 | C5H8O | 84.1 | 1118 | 387.568 | 1.36614 | |
53 | (E)-3-penten-2-one | C3102338 | C5H8O | 84.1 | 1105.9 | 374.154 | 1.35167 | |
54 | (E)-2-butenal | C123739 | C4H6O | 70.1 | 1053.9 | 331.065 | 1.20029 | |
55 | 1-Penten-3-one | C1629589 | C5H8O | 84.1 | 1031.9 | 315.212 | 1.31048 | |
56 | 3-Pentanone | C96220 | C5H10O | 86.1 | 985.5 | 285.945 | 1.35723 | |
57 | Ethyl propanoate | C105373 | C5H10O2 | 102.1 | 961.9 | 274.969 | 1.45295 | |
58 | 2-Butanone | C78933 | C4H8O | 72.1 | 901 | 248.547 | 1.24704 | |
59 | Ethyl Acetate | C141786 | C4H8O2 | 88.1 | 884 | 241.637 | 1.33831 | |
60 | 3-Octanone | C106683 | C8H16O | 128.2 | 1265.2 | 597.553 | 1.30973 | Monomer |
62 | ethyl (E)-2-butenoate | C623701 | C6H10O2 | 114.1 | 1150.4 | 426.075 | 1.18305 | |
63 | 1-Propanol | C71238 | C3H8O | 60.1 | 1043.2 | 323.287 | 1.11199 | |
64 | Butanal | C123728 | C4H8O | 72.1 | 896.2 | 246.591 | 1.28862 | |
65 | 1-Pentanol | C71410 | C5H12O | 88.1 | 1263.7 | 594.974 | 1.25483 | Monomer |
67 | 2-propanone | C67641 | C3H6O | 58.1 | 843.9 | 226.112 | 1.11453 | |
68 | (Z)-4-heptenal | C6728310 | C7H12O | 112.2 | 1254 | 578.092 | 1.61885 | Dimer |
70 | 2-Heptanone | C110430 | C7H14O | 114.2 | 1193.4 | 483.056 | 1.65086 | |
73 | 2-methyl-2-hepten-6-one | C110930 | C8H14O | 126.2 | 1351.1 | 730.198 | 1.17369 | |
74 | 1-Pentanol | C71410 | C5H12O | 88.1 | 1264.4 | 596.137 | 1.51151 | Dimer |
75 | 2-Nonanone | C821556 | C9H18O | 142.2 | 1396.2 | 799.107 | 1.40828 | |
76 | 2,3,5- trimethylpyrazine | C14667551 | C7H10N2 | 122.2 | 1393.1 | 794.156 | 1.16446 | |
79 | 1-Butanol, 3-methyl | C123513 | C5H12O | 88.1 | 1216.4 | 517.124 | 1.49232 | |
80 | ethyl-butyrate | C105544 | C6H12O2 | 116.2 | 1040.9 | 321.634 | 1.56149 | |
81 | 1-Octen-3-one | C4312996 | C8H14O | 126.2 | 1321.3 | 688.033 | 1.67936 | |
82 | (E)-2-Heptenal | C18829555 | C7H12O | 112.2 | 1333.5 | 704.915 | 1.6689 | |
83 | 2-ethyl furan | C3208160 | C6H8O | 96.1 | 957.8 | 273.08 | 1.29858 | |
84 | 1-Penten-3-ol | C616251 | C5H10O | 86.1 | 1171.9 | 453.687 | 0.94218 | |
85 | 2-butylfuran | C4466244 | C8H12O | 124.2 | 1130.9 | 402.512 | 1.17811 |
No. | Compound | The Peak Volume | |||
---|---|---|---|---|---|
2N-M | 2N-F | 4N-M | 4N-F | ||
3 | Propanoic acid | 104.56 ± 3.98 b | 122.28 ± 7.57 a | - | - |
- | - | 300.06 ± 49.44 b | 615.37 ± 103.41 a | ||
13 | p-methyl anisole | 175.79 ± 12.15 a | 94.12 ± 11.26 b | - | - |
- | - | 164.68 ± 15.94 a | 112.81 ± 22.24 b | ||
21 | (E)-2-octenal | 85.89 ± 7.44 a | 70.27 ± 10.64 b | - | - |
- | - | 88.06 ± 6.30 | 80.31 ± 14.13 | ||
23 | (E,E)-2,4-hexadienal | 43.16 ± 2.50 b | 56.04 ± 7.30 a | - | - |
- | - | 47.54 ± 10.81 | 45.02 ± 2.52 | ||
30 | 1-Hydroxy-2-propanone | 477.89 ± 44.53 a | 324.98 ± 53.87 b | - | - |
- | - | 342.43 ± 28.23 b | 551.35 ± 21.73 a | ||
31 | 2-Butanone,3-hydroxy | 72.97 ± 7.12 b | 93.46 ± 8.48 a | - | - |
- | - | 234.25 ± 55.86 | 155.55 ± 15.99 | ||
32 | Acetic acid | 1576.30 ± 5.72 b | 1652.99 ± 16.02 a | - | - |
- | - | 1760.70 ± 45.02 | 1825.28 ± 37.38 | ||
36 | 2-Butanone,3-hydroxy | 95.25 ± 6.71 b | 129.73 ± 12.40 a | - | - |
- | - | 235.27 ± 24.64 a | 176.28 ± 9.61 b | ||
43 | 3-Octanone | 465.51 ± 16.49 a | 165.57 ± 2.74 b | - | - |
- | - | 1676.19 ± 155.93 a | 450.18 ± 70.83 b | ||
45 | 2-pentyl furan | 130.04 ± 8.65 a | 99.22 ± 13.44 b | - | - |
- | - | 114.70 ± 21.40 b | 163.59 ± 12.81 a | ||
49 | 1-butanol | 1062.35 ± 26.96 b | 1165.43 ± 13.89 a | - | - |
- | - | 1227.71 ± 80.73 b | 1434.19 ± 13.50 a | ||
56 | 3-Pentanone | 3463.02 ± 33.01 a | 2435.40 ± 75.58 b | - | - |
- | - | 4518.05 ± 266.45 | 3509.57 ± 578.61 | ||
57 | Ethyl propanoate | 815.47 ± 52.01 b | 2568.56 ± 54.98 a | - | - |
- | - | 3093.35 ± 40.73 b | 3523.66 ± 107.29 a | ||
58 | 2-Butanone | 745.20 ± 34.15 | 794.30 ± 46.05 | - | - |
- | - | 893.98 ± 33.19 b | 1112.21 ± 10.28 a | ||
60 | 3-Octanone | 850.65 ± 37.88 a | 417.32 ± 36.7 b | - | - |
- | - | 1300.20 ± 43.89 a | 652.47 ± 111.80 b | ||
62 | ethyl (E)-2-butenoate | 379.92 ± 68.51 | 308.87 ± 4.05 | - | - |
- | - | 284.01 ± 5.25 a | 264.81 ± 7.75 b | ||
64 | Butanal | 330.81 ± 15.83 b | 472.97 ± 56.93 a | - | - |
- | - | 558.10 ± 48.26 b | 662.81 ± 35.06 a | ||
67 | 2-propanone | 2616.37 ± 52.58 a | 2328.45 ± 134.30 b | - | - |
- | - | 3054.40 ± 95.93 a | 2775.62 ± 66.91 b | ||
73 | 2-methyl-2-hepten-6-one | 78.51 ± 6.50 | 67.43 ± 4.05 | - | - |
- | - | 82.51 ± 4.17 a | 66.90 ± 5.42 b | ||
75 | 2-Nonanone | 59.67 ± 4.50 a | 44.86 ± 3.27 b | - | - |
- | - | 54.25 ± 7.59 | 53.33 ± 7.33 | ||
82 | (E)-2-Heptenal | 76.38 ± 6.70 a | 57.71 ± 6.00 b | - | - |
- | - | 332.24 ± 18.93 a | 116.55 ± 27.76 b | ||
83 | 2-ethyl furan | 40.83 ± 7.08 b | 71.54 ± 2.00 a | - | - |
- | - | 81.72 ± 2.01 b | 95.48 ± 5.88 a | ||
85 | 2-butylfuran | 15.21 ± 1.43 | 13.14 ± 1.62 | - | - |
- | - | 53.36 ± 6.71 a | 20.86 ± 9.20 b | ||
TVOC f | 27,027.36 ± 1521.508 | 26,771.64 ± 2015.42 | - | - | |
- | - | 34,016.38 ± 953.05 | 34,890.89 ± 2916.28 |
No. | Compound | The Peak Volume | ||||
---|---|---|---|---|---|---|
2N-M | 2N-F | 3N | 4N-M | 4N-F | ||
3 | Propanoic acid | 104.56 ± 3.98 c | - | 190.68 ± 30.05 b | 300.06 ± 49.44 a | - |
- | 122.28 ± 7.57 b | 190.68 ± 30.05 b | - | 615.37 ± 103.41 a | ||
15 | 3-(methylsulfanyl)propanal | 92.75 ± 0.69 b | - | 104.51 ± 3.62 a | 103.67 ± 5.93 a | - |
- | 92.71 ± 4.40 b | 104.51 ± 3.62 a | - | 102.83 ± 0.82 a | ||
30 | 1-Hydroxy-2-propanone | 477.89 ± 44.53 a | - | 311.82 ± 42.53 b | 342.43 ± 28.23 b | - |
- | 324.98 ± 53.87 b | 311.82 ± 42.53 b | - | 551.35 ± 21.73 a | ||
31 | 2-Butanone,3-hydroxy-D | 72.97 ± 7.12 b | - | 64.33 ± 10.64 b | 234.25 ± 55.86 a | - |
- | 93.46 ± 8.48 b | 64.33 ± 10.64 c | - | 155.55 ± 15.99 a | ||
32 | Acetic acid | 1576.30 ± 5.72 c | - | 1641.73 ± 2.81 b | 1760.70 ± 45.02 a | - |
- | 1652.99 ± 16.02 b | 1641.73 ± 2.81 b | - | 1825.28 ± 37.38 a | ||
36 | 2-Butanone,3-hydroxy | 95.25 ± 6.71 b | - | 90.66 ± 16.97 b | 235.27 ± 24.64 a | - |
- | 129.73 ± 12.40 b | 90.66 ± 16.97 c | - | 176.28 ± 9.61 a | ||
43 | 3-Octanone | 465.51 ± 16.49 c | - | 700.41 ± 42.92 b | 1676.19 ± 155.93 a | - |
- | 165.57 ± 2.74 c | 700.41 ± 42.92 a | - | 450.18 ± 70.83 b | ||
44 | (Z)-4-heptenal | 111.71 ± 38.42 b | - | 100.00 ± 21.30 b | 202.99 ± 5.99 a | - |
- | 144.08 ± 37.23 b | 100.00 ± 21.30 b | - | 244.71 ± 48.97 a | ||
49 | 1-butanol | 1062.35 ± 26.96 b | - | 1129.44 ± 34.33 ab | 1227.71 ± 80.73 a | - |
- | 1165.43 ± 13.89 b | 1129.44 ± 34.33 b | - | 1434.19 ± 13.50 a | ||
54 | (E)-2-butenal | 209.26 ± 22.19 b | - | 202.55 ± 22.17 b | 328.25 ± 25.85 a | - |
- | 278.55 ± 107.07 b | 202.55 ± 22.17 b | - | 521.75 ± 157.66 a | ||
56 | 3-Pentanone | 3463.02 ± 33.01 b | - | 2957.40 ± 98.31 c | 4518.05 ± 266.45 a | - |
- | 2435.40 ± 75.58 b | 2957.40 ± 98.31 ab | - | 3509.57 ± 578.61 a | ||
57 | Ethyl propanoate | 815.47 ± 52.01 c | - | 1969.56 ± 54.98 b | 3093.35 ± 40.73 a | - |
- | 2568.56 ± 54.98 b | 1969.56 ± 54.98 c | - | 3523.66 ± 107.29 a | ||
58 | 2-Butanone | 745.20 ± 34.15 b | - | 879.82 ± 49.96 a | 893.98 ± 33.19 a | - |
- | 794.30 ± 46.05 c | 879.82 ± 49.96 b | - | 1112.21 ± 10.28 a | ||
59 | Ethyl Acetate | 532.94 ± 31.52 b | - | 593.64 ± 57.28 b | 1378.32 ± 360.09 a | - |
- | 1057.36 ± 317.92 b | 593.64 ± 57.28 b | - | 1636.02 ± 316.90 a | ||
60 | 3-Octanone-M | 850.65 ± 37.88 c | - | 1052.75 ± 32.04 b | 1300.20 ± 43.89 a | - |
- | 417.32 ± 36.7 c | 1052.75 ± 32.04 a | - | 652.47 ± 111.80 b | ||
62 | ethyl (E)-2-butenoate | 379.92 ± 68.51 a | - | 371.75 ± 4.54 a | 284.01 ± 5.25 b | - |
- | 308.87 ± 4.05 b | 371.75 ± 4.54 a | - | 264.81 ± 7.75 c | ||
64 | Butanal | 330.81 ± 15.83 b | - | 387.23 ± 19.72 b | 558.10 ± 48.26 a | - |
- | 472.97 ± 56.93 b | 387.23 ± 19.72 c | - | 662.81 ± 35.06 a | ||
67 | 2-propanone | 2616.37 ± 52.58 c | - | 2812.23 ± 76.19 b | 3054.40 ± 95.93 a | - |
- | 2328.45 ± 134.30 b | 2812.23 ± 76.19 a | - | 2775.62 ± 66.91 a | ||
80 | ethyl-butyrate | 14.77 ± 2.37 ab | - | 13.38 ± 3.50 b | 19.84 ± 1.30 a | - |
- | 14.09 ± 2.05 b | 13.38 ± 3.50 b | - | 24.56 ± 6.10 a | ||
82 | (E)-2-Heptenal | 76.38 ± 6.70 c | - | 185.52 ± 12.88 b | 332.24 ± 18.93 a | - |
- | 57.71 ± 6.00 c | 185.52 ± 12.88 a | - | 116.55 ± 27.76 b | ||
83 | 2-ethyl furan | 40.83 ± 7.08 c | - | 59.79 ± 2.36 b | 81.72 ± 2.01 a | - |
- | 71.54 ± 2.00 b | 59.79 ± 2.36 c | - | 95.48 ± 5.88 a | ||
84 | 1-Penten-3-ol | 1733.78 ± 17.79 b | - | 1821.35 ± 9.59 a | 1604.56 ± 20.70 c | - |
- | 1744.23 ± 8.94 b | 1821.35 ± 9.59 a | - | 1649.95 ± 25.41 c | ||
TVOC | 27,027.36 ± 1521.50 b | - | 28,222.26 ± 714.81 b | 34,016.38 ± 953.05 a | - | |
- | 26,771.64 ± 2015.46 b | 28,222.26 ± 714.81 b | - | 34,890.89 ± 2916.28 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Sun, Y.; Cui, M.; Zhang, E.; Dong, L.; Wang, Y.; Wang, W.; Li, Z.; Yang, J. Analysis of Volatile Compounds and Flavor Fingerprint Using Gas Chromatography–Ion Mobility Spectrometry (GC-IMS) on Crassostrea gigas with Different Ploidy and Gender. Molecules 2023, 28, 4475. https://doi.org/10.3390/molecules28114475
Fu J, Sun Y, Cui M, Zhang E, Dong L, Wang Y, Wang W, Li Z, Yang J. Analysis of Volatile Compounds and Flavor Fingerprint Using Gas Chromatography–Ion Mobility Spectrometry (GC-IMS) on Crassostrea gigas with Different Ploidy and Gender. Molecules. 2023; 28(11):4475. https://doi.org/10.3390/molecules28114475
Chicago/Turabian StyleFu, Jingjing, Youmei Sun, Mingxian Cui, Enshuo Zhang, Luyao Dong, Yanchun Wang, Weijun Wang, Zan Li, and Jianmin Yang. 2023. "Analysis of Volatile Compounds and Flavor Fingerprint Using Gas Chromatography–Ion Mobility Spectrometry (GC-IMS) on Crassostrea gigas with Different Ploidy and Gender" Molecules 28, no. 11: 4475. https://doi.org/10.3390/molecules28114475
APA StyleFu, J., Sun, Y., Cui, M., Zhang, E., Dong, L., Wang, Y., Wang, W., Li, Z., & Yang, J. (2023). Analysis of Volatile Compounds and Flavor Fingerprint Using Gas Chromatography–Ion Mobility Spectrometry (GC-IMS) on Crassostrea gigas with Different Ploidy and Gender. Molecules, 28(11), 4475. https://doi.org/10.3390/molecules28114475