Gold Nanoparticles Functionalized with 2-Thiouracil for Antiproliferative and Photothermal Therapies in Breast Cancer Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Gold Nanoparticles
2.2. Characterization of Functionalized Gold Nanoparticles
2.3. Concentration of Gold Nanoparticles
2.4. Antiproliferation Studies of Irradiated vs. Non-Irradiated Nanoparticles
3. Materials and Methods
3.1. Reagents Used
3.2. Synthesis of Gold Nanoparticles
3.3. Functionalization of Gold Nanoparticles (AuNPs) with 2-Thiouracil (2-TU)
3.4. Concentration and Purification of 2-TU-AuNPs by Comparative Centrifugation and Tangential Flow Filtration (TFF)
3.5. Characterization of Unfunctionalized (AuNPs) and Functionalized Gold Nanoparticles (2-TU-AuNPs)
3.6. Cell Culture
3.7. Anti-Proliferation Studies
3.8. Photothermal Therapy
3.9. Statistical Analysis
4. Conclusions
5. Future Research Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yang, Y.; Zheng, X.; Chen, L.; Gong, X.; Yang, H.; Duan, X.; Zhu, Y. Multifunctional Gold Nanoparticles in Cancer Diagnosis and Treatment. Int. J. Nanomed. 2022, 17, 2041–2067. [Google Scholar] [CrossRef]
- Lopez-Chaves, C.; Soto-Alvaredo, J.; Montes-Bayon, M.; Bettmer, J.; Llopis, J.; Sanchez-Gonzalez, C. Gold Nanoparticles: Distribution, Bioaccumulation and Toxicity. In Vitro and in Vivo Studies. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Aghevlian, S.; Yousefi, R.; Faghihi, R.; Abbaspour, A.; Niazi, A.; Jaberipour, M.; Hosseini, A. The Improvement of Anti-Proliferation Activity against Breast Cancer Cell Line of Thioguanine by Gold Nanoparticles. Med. Chem. Res. 2013, 22, 303–311. [Google Scholar] [CrossRef]
- França, Á.; Pelaz, B.; Moros, M.; Sánchez-Espinel, C.; Hernández, A.; Fernández-López, C.; Grazú, V.; de la Fuente, J.M.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; et al. Sterilization Matters: Consequences of Different Sterilization Techniques on Gold Nanoparticles. Small 2010, 6, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Luby, A.O.; Breitner, E.K.; Comfort, K.K. Preliminary Protein Corona Formation Stabilizes Gold Nanoparticles and Improves Deposition Efficiency. Appl. Nanosci. 2016, 6, 827–836. [Google Scholar] [CrossRef]
- Ahmad, R.; Fu, J.; He, N.; Li, S. Advanced Gold Nanomaterials for Photothermal Therapy of Cancer. J. Nanosci. Nanotechnol. 2016, 16, 67–80. [Google Scholar] [CrossRef]
- Liu, X.; Atwater, M.; Wang, J.; Huo, Q. Extinction Coefficient of Gold Nanoparticles with Different Sizes and Different Capping Ligands. Colloids Surf. B Biointerfaces 2007, 58, 3–7. [Google Scholar] [CrossRef]
- Abadeer, N.S.; Murphy, C.J. Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. J. Phys. Chem. C 2016, 120, 4691–4716. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, M.A. Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef]
- Cabral, R.M.; Baptista, P.V. The Chemistry and Biology of Gold Nanoparticle-Mediated Photothermal Therapy: Promises and Challenges. Nano LIFE 2013, 3, 1330001. [Google Scholar] [CrossRef]
- Yan, Y.; Olszewski, A.E.; Hoffman, M.R.; Zhuang, P.; Ford, C.N.; Dailey, S.H.; Jiang, J.J. Use of Lasers in Laryngeal Surgery. J. Voice 2010, 24, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.; Pedrosa, P.; Lima, J.C.; Fernandes, A.R.; Baptista, P.V. Photothermal Enhancement of Chemotherapy in Breast Cancer by Visible Irradiation of Gold Nanoparticles. Sci. Rep. 2017, 7, 10872. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-L.; Wang, L.; Liu, X.-Y.; Zhang, Z.-P.; Guo, H.-C.; Liu, W.-M.; Tang, S.-H. In Vitro Cancer Cell Imaging and Therapy Using Transferrin-Conjugated Gold Nanoparticles. Cancer Lett. 2009, 274, 319–326. [Google Scholar] [CrossRef]
- Sleightholm, L.; Zambre, A.; Chanda, N.; Afrasiabi, Z.; Katti, K.; Kannan, R. New Nanomedicine Approaches Using Gold–Thioguanine Nanoconjugates as Metallo-Ligands. Inorg. Chim. Acta 2011, 372, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, S.; Ouyang, R.; Yang, Y.; Tao, H.; Feng, K.; Zhang, X.; Xiong, F.; Guo, N.; Zong, T.; et al. Improvement in the Anticancer Activity of 6-Mercaptopurine via Combination with Bismuth(III). Chem. Pharm. Bull. 2016, 64, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, P.; Sinani, V.A.; Bahng, J.H.; Kam, N.W.S.; Lee, J.; Kotov, N.A. Gold Nanoparticles Enhance the Anti-Leukemia Action of a 6-Mercaptopurine Chemotherapeutic Agent. Langmuir 2008, 24, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Pandya, K.; Tormey, D.; Davis, T.; Falkson, G.; Banerjee, T.; Crowley, J. Phase II Trial of 6-Thioguanine in Metastatic Breast Cancer. Cancer Treat. Rep. 1980, 64, 191–192. [Google Scholar]
- Wang, R.; Yue, L.; Yu, Y.; Zou, X.; Song, D.; Liu, K.; Liu, Y.; Su, H. Gold Nanoparticles Modify the Photophysical and Photochemical Properties of 6-Thioguanine: Preventing DNA Oxidative Damage. J. Phys. Chem. C 2016, 120, 14410–14415. [Google Scholar] [CrossRef]
- Shah, A.; Nosheen, E.; Zafar, F.; Dionysiou, S.N.; Dionysiou, D.D.; Badshah, A.; Zia-ur-Rehman; Khan, G.S. Photochemistry and Electrochemistry of Anticancer Uracils. J. Photochem. Photobiol. B Biol. 2012, 117, 269–277. [Google Scholar] [CrossRef]
- Awad, S.M.; Youns, M.M.; Ahmed, N.M. Design, Synthesis and Biological Evaluation of Novel 2-Thiouracil-5-Sulfonamide Isosteres as Anticancer Agents. Pharmacophore 2018, 9, 13–24. [Google Scholar]
- Sarkar, A.R.; Mandal, S. Mixed-Ligand Peroxo Complexes of Vanadium Containing 2-Thiouracil and Its 6-Methyl Derivative. Synth. React. Inorg. Met.-Org. Chem. 2000, 30, 1477–1488. [Google Scholar] [CrossRef]
- Alcolea Palafox, M.; Franklin Benial, A.M.; Rastogi, V.K. Biomolecules of 2-Thiouracil, 4-Thiouracil and 2,4-Dithiouracil: A DFT Study of the Hydration, Molecular Docking and Effect in DNA:RNAMicrohelixes. Int. J. Mol. Sci. 2019, 20, 3477. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro da Silva, M.A.V.; Amaral, L.M.P.F.; Szterner, P. Experimental Study on the Thermochemistry of 2-Thiouracil, 5-Methyl-2-Thiouracil and 6-Methyl-2-Thiouracil. J. Chem. Thermodyn. 2013, 57, 380–386. [Google Scholar] [CrossRef]
- Mirón-Mérida, V.A.; González-Espinosa, Y.; Collado-González, M.; Gong, Y.Y.; Guo, Y.; Goycoolea, F.M. Aptamer–Target–Gold Nanoparticle Conjugates for the Quantification of Fumonisin B1. Biosensors 2021, 11, 18. [Google Scholar] [CrossRef]
- Masoud, M.S.; Mohamed, G.B.; Abdul-Razek, Y.H.; Ali, A.E.; Khairy, F.N. Spectral, Magnetic, and Thermal Properties of Some Thiazolylazo Complexes. J. Korean Chem. Soc. 2002, 46, 99–116. [Google Scholar] [CrossRef]
- Perera, G.S.; Athukorale, S.A.; Perez, F.; Pittman, C.U.; Zhang, D. Facile Displacement of Citrate Residues from Gold Nanoparticle Surfaces. J. Colloid. Interface Sci. 2018, 511, 335–343. [Google Scholar] [CrossRef]
- IRDG: Non-Destructive Identification of Minerals by Raman Microscopy. Available online: https://www.Irdg.Org/Ijvs/Ijvs-Volume-3-Edition-4/Non-Destructive-Identification-of-Minerals-by-Raman-Microscopy (accessed on 25 May 2023).
- Dodd, L.J.; Lima, C.; Costa-Milan, D.; Neale, A.R.; Saunders, B.; Zhang, B.; Sarua, A.; Goodacre, R.; Hardwick, L.J.; Kuball, M.; et al. Raman Analysis of Inverse Vulcanised Polymers. Polym. Chem. 2023, 14, 1369–1386. [Google Scholar] [CrossRef]
- TRACES Centre: Understanding Raman Spectroscopy Principles and Theory. Available online: https://www.utsc.utoronto.ca/~traceslab/pdfs/raman_understanding.pdf (accessed on 25 May 2023).
- Surapaneni, S.K.; Bashir, S.; Tikoo, K. Gold Nanoparticles-Induced Cytotoxicity in Triple Negative Breast Cancer Involves Different Epigenetic Alterations Depending upon the Surface Charge. Sci. Rep. 2018, 8, 12295. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Fallah Shojaei, A.; Karimi, F.; Tabatabaeian, K.; Shakeri, S. Au Nanoparticle Loaded with 6-Thioguanine Anticancer Drug as a New Strategy for Drug Delivery. J. Nanostruct. 2018, 8, 217–424. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Qian, J.; Hou, G.; Wang, Y.; Ji, L.; Suo, A. NIR/PH Dual-Responsive Polysaccharide-Encapsulated Gold Nanorods for Enhanced Chemo-Photothermal Therapy of Breast Cancer. Mater. Sci. Eng. C 2019, 103, 109854. [Google Scholar] [CrossRef]
- Iglesias, E. Gold Nanoparticles as Colorimetric Sensors for the Detection of DNA Bases and Related Compounds. Molecules 2020, 25, 2890. [Google Scholar] [CrossRef] [PubMed]
- Altunbek, M.; Culha, M. Influence of Plasmonic Nanoparticles on the Performance of Colorimetric Cell Viability Assays. Plasmonics 2017, 12, 1749–1760. [Google Scholar] [CrossRef]
- Piella, J.; Bastús, N.G.; Puntes, V. Size-Dependent Protein–Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona. Bioconjug. Chem. 2017, 28, 88–97. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenzana-Vázquez, G.; Pavel, I.; Meléndez, E. Gold Nanoparticles Functionalized with 2-Thiouracil for Antiproliferative and Photothermal Therapies in Breast Cancer Cells. Molecules 2023, 28, 4453. https://doi.org/10.3390/molecules28114453
Lorenzana-Vázquez G, Pavel I, Meléndez E. Gold Nanoparticles Functionalized with 2-Thiouracil for Antiproliferative and Photothermal Therapies in Breast Cancer Cells. Molecules. 2023; 28(11):4453. https://doi.org/10.3390/molecules28114453
Chicago/Turabian StyleLorenzana-Vázquez, Génesis, Ioana Pavel, and Enrique Meléndez. 2023. "Gold Nanoparticles Functionalized with 2-Thiouracil for Antiproliferative and Photothermal Therapies in Breast Cancer Cells" Molecules 28, no. 11: 4453. https://doi.org/10.3390/molecules28114453
APA StyleLorenzana-Vázquez, G., Pavel, I., & Meléndez, E. (2023). Gold Nanoparticles Functionalized with 2-Thiouracil for Antiproliferative and Photothermal Therapies in Breast Cancer Cells. Molecules, 28(11), 4453. https://doi.org/10.3390/molecules28114453