Physicochemical and Volatile Flavor Properties of Fish Skin under Conventional Frying, Air Frying and Vacuum Frying
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Attributes
2.2. Oil Content, Conjugated Diene Value (CDV) and TBARS
2.3. Volatile Flavor Compounds
2.4. Principle Component Analysis (PCA)
3. Materials and Methods
3.1. Sample Preparation
3.2. Frying Process
3.3. Moisture Content, Water Activity, Color, and Breaking Force
3.4. Oil Content, TBARS, and Conjugated Diene Value (CDV)
3.5. Volatile Flavor Compound
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture. 2022. Available online: https://www.fao.org/3/cc0461en/cc0461en.pdf (accessed on 30 March 2022).
- Food and Agriculture Organization of the United Nations (FAO). Developing Sustainable Food Value Chains-Guiding Principles. 2014. Available online: http://www.fao.org/3/a-i3953e.pdf (accessed on 30 March 2022).
- Yu, K.S.; Cho, H.; Hwang, K.T. Physicochemical properties and oxidative stability of frying oils during reapeated frying of potato chip. Food Sci. Biotechnol. 2018, 27, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, D.D.; Fernando, K.; Awanthika, T. Effect of Frying in Different Cooking Oils on the Fatty Acid Profile of Nile Tilapia (Oreochromis niloticus) Fillets. J. Adv. Agric. Technol. 2018, 5, 1–5. [Google Scholar] [CrossRef]
- Devi, S.; Zhang, M.; Ju, R.; Bhandari, B. Recent development of innovative methods for efficient frying technology. Crit. Rev. Food Sci. Nutr. 2021, 61, 3700–3724. [Google Scholar] [CrossRef]
- Biandolino, F.; Parlapiano, I.; Denti, G.; Nardo, V.D.; Prato, E. Effect of different cooking methods on lipid content and fatty acid profiles of Mytilus galloprovincialis. Foods 2021, 10, 416. [Google Scholar] [CrossRef] [PubMed]
- Belkova, B.; Hradecky, J.; Hurkova, K.; Forstova, V.; Vaclavik, L.; Hajslova, J. Impact of vacuum frying on quality of potato crisps and frying oil. Food Chem. 2018, 214, 51–59. [Google Scholar] [CrossRef]
- Yamsaengsung, R.; Yaeed, S.; Ophithakorn, T. Vacuum frying of fish tofu and effect on oil quality usage life. J. Food Process Eng. 2017, 40, e12587. [Google Scholar] [CrossRef]
- Fang, M.; Huang, G.J.; Sung, W.C. Mass transfer and texture characteristics of fish skin during deep-fat frying, electrostatic frying, air frying and vacuum frying. LWT-Food Sci. Technol. 2021, 137, 110494. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Zhou, R.; Ren, Y.; Wang, K.; Jiang, N.; Gao, R. Physicochemical and sensory properties of a tilapia skin-based ready-to-eat snack prepared by infrared drying and air frying. Appl. Food Res. 2022, 2, 100155. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, X.; Zhao, M.; Liu, X.; Pang, Y.; Zhang, M. Characterization of the key aroma constituents in fried tilapia through the sensorics concept. Foods 2022, 11, 494. [Google Scholar] [CrossRef]
- Moyano, P.C.; Pedreschi, F. Kinetics of oil uptake during frying of potato slices: Effect of pre-treatments. LWT-Food Sci. Technol. 2006, 39, 285–291. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, M.; Zhang, W.; Adhikari, B.; Yang, Z. Application of novel microwave-assisted vacuum frying to reduce the oil uptake and improve the quality of potato chips. LWT-Food Sci. Technol. 2016, 73, 490–497. [Google Scholar] [CrossRef]
- Palazoğlu, T.K.; Savran, D.; Gökmen, V. Effect of cooking method (baking compared with frying) on acrylamide level of potato chips. J. Food Sci. 2010, 75, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Sobol, Z.; Jakubowski, T.; Surma, M. Effect of potato tuber exposure to UV-C radiation and semi-product soaking in water on acrylamide content in French fries dry matter. Sustainability 2020, 12, 3426. [Google Scholar] [CrossRef]
- Wu, R.; Jiang, Y.; Qin, R.; Shi, H.; Jia, C.; Rong, J.; Liu, R. Study of the formation of food hazard factors in fried fish nuggets. Food Chem. 2022, 373, 131562. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Ji, H.; Liu, S.; He, X. Vacuum frying of breaded shrimps. Food Sci. Technol. 2015, 62, 734–739. [Google Scholar] [CrossRef]
- Ding, Y.; Zhou, T.; Liao, Y.; Lin, H.; Deng, S.; Zhang, B. Comparative studies on the physicochemical and volatile flavour properties of traditional deep fried and circulating-air fried Hairtail (Trichiurus lepturus). Foods 2022, 11, 2710. [Google Scholar] [CrossRef]
- Yu, X.; Li, L.; Xue, J.; Wang, J.; Song, G.; Zhang, Y.; Shen, Q. Effect of air-frying conditions on the quality attributes and lipidomic characteristics of surimi during processing. Innov. Food Sci. Emerg. Technol. 2020, 60, 102305. [Google Scholar] [CrossRef]
- Moosavi, S.M.R.; Farhoosh, R. A new insight into the evaluation of used frying oils based on the kinetics of chemical changes during the process. Foods 2023, 12, 316. [Google Scholar] [CrossRef]
- Liu, J.; Liu, D.; Zheng, A.; Ma, Q. Haem-mediated protein oxidation affects water-holding capacity of beef during refrigerated storage. Food Chem. X 2022, 14, 100304. [Google Scholar] [CrossRef]
- Secci, G.; Parisi, G. From farm to fork: Lipid oxidation in fish products. A review. Ital. J. Anim. Sci. 2016, 15, 124–136. [Google Scholar] [CrossRef]
- Weber, J.; Bochi, V.C.; Ribeiro, C.P.; Victório, A.D.M.; Emanuelli, T. Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. Food Chem. 2008, 106, 140–146. [Google Scholar] [CrossRef]
- Wan, P.; Liu, J.; Chen, D.W. Analysis of aroma-active compounds in bighead carp head soup and their influence on umami of a model soup. Microchem. J. 2021, 168, 106436. [Google Scholar] [CrossRef]
- Sánchez-Zapata, E.; Amensour, M.; Oliver, R.; Fuentes-Zaragoza, E.; Navarro, C.; Fernández-López, J.; Sendra, E.; Sayas, E.; Pérez-Alvarez, J.A. Quality characteristics of dark muscle from yellowfin tuna Thunnus albacares to its potential application in the food industry. Food Nutr. Sci. 2011, 2, 22–30. [Google Scholar] [CrossRef]
- Pacetti, D.; Lucci, P.; Mozzon, M.; Gagliardi, R.; Fiorini, D.; Frega, N.G. Influence of deep-fat frying process on phospholipid molecular species composition of Sardina pilchardus fillet. Food Control 2015, 48, 155–162. [Google Scholar] [CrossRef]
- Liu, H.L.; Fang, M. Characteristion of aroma active volatile components in roasted mullet roe. Food Chem. 2022, 385, 132736. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Y.; Sun, X.; Li, J. Application of artificial neural network based on traditional detection and GC-MS in prediction of free radicals in thermal oxidation of vegetable oil. Molecules 2021, 26, 6717. [Google Scholar] [CrossRef]
- Gee, G.W.; Campbell, M.D.; Campbell, G.S.; Campbell, J.H. Rapid measurement of low soil water potentials using a water activity meter. Soil Sci. Soc. Am. J. 1992, 56, 1068–1070. [Google Scholar] [CrossRef]
- Cruz-Romero, M.; Kelly, A.L.; Kerry, J.P. Effects of high-pressure and heat treatments on physical and biochemical characteristics of oysters (Crassostrea gigas). Innov. Food Sci. Emerg. Technol. 2007, 8, 30–38. [Google Scholar] [CrossRef]
- Ke, P.J.; Cervantes, E.; Robles-Martinez, C. Determination of thiobarbituric acid reactive substances (TBARS) in fish tissue by an improved distillation-spectrophotometric method. J. Sci. Food Agric. 1984, 35, 1248–1254. [Google Scholar] [CrossRef]
- Pena-Ramos, E.A.; Xiong, Y.L.L. Whey and soy protein, hydrolysates inhibit lipid oxidation in, cooked pork patties. Meat Sci. 2003, 64, 259–263. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Paraskevopoulou, A.; Pantazi, F.; Skendi, A. Cake perception, texture and aroma profile as affected by wheat flour and cocoa replacement with carob flour. Foods 2020, 9, 1586. [Google Scholar] [CrossRef] [PubMed]
AF6 | AF12 | CF2 | CF8 | VF8 | VF24 | |
---|---|---|---|---|---|---|
L* value | ||||||
BE | 58.93 ± 2.55 Ac | 54.13 ± 3.68 ABb | 49.71 ± 2.74 BCa | 44.13 ± 5.80 Db | 54.79 ± 2.46 Aba | 44.88 ± 0.58 CDb |
BK | 45.28 ± 1.48 Ac | 40.94 ± 2.36 Bd | 40.49 ± 3.14 Bbc | 37.66 ± 1.03 Cc | 42.28 ± 0.69 Bc | 36.75 ± 0.28 Cd |
a* value | ||||||
BE | −3.38 ± 0.91 Aa | −3.21 ± 0.86 Aa | −3.70 ± 1.58 Aab | −2.64 ± 2.61 Aa | −8.58 ± 0.95 Bb | −4.91 ± 0.12 Aa |
BK | −5.50 ± 0.90 ABb | −5.37 ± 0.81 Ab | −6.41 ± 0.36 Bc | −4.85 ± 0.82 Abc | −7.88 ± 0.04 Cb | −5.26 ± 0.25 Aa |
b* value | ||||||
BE | 39.65 ± 1.87 Aa | 40.49 ± 1.35 Aa | 30.90 ± 3.47 Cb | 35.35 ± 1.56 Ba | 25.23 ± 3.04 Db | 30.60 ± 0.67 Ca |
BK | 26.22 ± 5.08 Ab | 27.55 ± 1.35 Ab | 23.95 ± 2.57 ABc | 28.11 ± 2.86 Ab | 21.47 ± 0.30 Bc | 21.48 ± 0.54 Bc |
Raw | AF6 | AF12 | CF2 | CF8 | VF8 | VF24 | |
---|---|---|---|---|---|---|---|
Crude fat (dry basis, %) | |||||||
16.45 ± 0.69 D | 11.37 ± 1.49 E | 8.74 ± 2.65 E | 31.09 ± 3.33 B | 42.27 ± 2.23 A | 17.24 ± 1.82 D | 22.18 ± 1.39 C | |
Conjugated diene value (CDV, mmol/g) | |||||||
BE | 0.54 ± 0.03 Eb | 1.31 ± 0.31 Dc | 2.32 ± 0.37 Cb | 3.16 ± 0.25 Bb | 5.62 ± 0.40 Aa | 0.97 ± 0.22 DEc | 2.40 ± 0.47 Ca |
BK | 0.84 ± 0.12 Fa | 1.56 ± 0.33 Ec | 4.30 ± 0.27 Ba | 3.69 ± 0.17 Cb | 6.02 ± 0.65 Aa | 1.48 ± 0.11 Eb | 2.11 ± 0.08 Da |
TBARS (mg MDA/kg) | |||||||
BE | 1.09 ± 0.09 Da | 2.84 ± 0.41 Cd | 4.92 ± 0.35 Ab | 1.16 ± 0.07 Dc | 1.48 ± 0.06 Dab | 2.83 ± 0.45 Cc | 3.44 ± 0.12 Bab |
BK | 1.50 ± 0.29 Da | 3.83 ± 0.42 Bc | 5.95 ± 0.28 Aa | 1.30 ± 0.08 Dbc | 1.66 ± 0.23 Da | 2.92 ± 0.26 Cbc | 3.93 ± 0.26 Ba |
Relative Content (ppb) | AF6 | AF12 | CF2 | CF8 | VF8 | VF24 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BE | BK | BE | BK | BE | BK | BE | BK | BE | BK | BE | BK | |
Pentanal | n.d. | n.d. | 23 ± 3 | 16 ± 4 | n.d. | n.d. | n.d. | n.d. | n.d. | 90 ± 53 | 125 ± 25 | 120 ± 13 |
Hexanal | 64 ± 9 | 128 ± 3 | 41 ± 9 | 198 ± 7 | 66 ± 16 | 80 ± 33 | 59 ± 19 | 40 ± 13 | 271 ± 1 | 235 ± 23 | 433 ± 68 | 403 ± 128 |
Octanal | n.d. | n.d. | 96 ± 19 | 86 ± 4 | n.d. | n.d. | n.d. | n.d. | 8 ± 5 | 18 ± 0 | n.d. | n.d. |
Nonanal | 1 ± 0 | 304 ± 31 | 679 ± 59 | 730 ± 177 | 495 ± 68 | 651 ± 106 | 793 ± 53 | 736 ± 64 | 113 ± 13 | 115 ± 35 | 170 ± 48 | 158 ± 98 |
3-Methylbutanal | 125 ± 13 | 98 ± 15 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 63 ± 28 | n.d. | 63 ± 38 | 55 ± 30 |
3-Methylhexanal | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 25 ± 18 | 29 ± 20 | n.d. | n.d. |
(E)-2-Octenal | n.d. | n.d. | n.d. | n.d. | 65 ± 13 | 80 ± 23 | 96 ± 11 | 101 ± 19 | 141 ± 1 | 168 ± 48 | 233 ± 8 | 205 ± 18 |
(E)-2-Nonenal | 166 ± 6 | 210 ± 30 | 280 ± 38 | 309 ± 76 | n.d. | n.d. | n.d. | n.d. | 44 ± 4 | 51 ± 16 | 68 ± 10 | 65 ± 0 |
(E)-2-Decenal | n.d. | n.d. | 346 ± 39 | 475 ± 160 | 320 ± 75 | 419 ± 64 | 526 ± 41 | 545 ± 30 | 85 ± 5 | 114 ± 26 | 148 ± 0 | 145 ± 15 |
(E)-2-Dodecenal | 68 ± 15 | 105 ± 8 | 341 ± 26 | 710 ± 8 | 550 ± 170 | 711 ± 99 | 739 ± 51 | 819 ± 29 | 226 ± 16 | 269 ± 56 | 320 ± 10 | 340 ± 15 |
(E,E)-2,4-Decadienal | 75 ± 8 | 126 ± 4 | 565 ± 43 | 929 ± 259 | 1015 ± 43 | 1400 ± 75 | 1451 ± 59 | 1659 ± 64 | 424 ± 11 | 540 ± 105 | 645 ± 108 | 623 ± 90 |
Benzaldehyde | 244 ± 36 | 230 ± 53 | 211 ± 24 | 365 ± 85 | 66 ± 21 | 68 ± 5 | 129 ± 14 | 146 ± 9 | 19 ± 6 | 15 ± 3 | 20 ± 5 | 23 ± 10 |
1-Dodecanol | 60 ± 23 | 64 ± 36 | 78 ± 26 | 45 ± 13 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Methylpyrazine | 45 ± 13 | 35 ± 3 | 44 ± 16 | 55 ± 8 | n.d. | 3 ± 1 | 3 ± 1 | n.d. | 21 ± 4 | n.d. | n.d. | n.d. |
Methylethenylpyrazine | n.d. | n.d. | n.d. | n.d. | 9 ± 6 | 9 ± 4 | 8 ± 0 | 13 ± 0 | n.d. | n.d. | n.d. | n.d. |
2,5-Dimethylpyrazine | 301 ± 1 | 374 ± 59 | 351 ± 99 | 251 ± 94 | n.d. | n.d. | n.d. | n.d. | 120 ± 45 | 179 ± 66 | 275 ± 25 | 228 ± 25 |
Benzophenone | 20 ± 10 | 15 ± 5 | 21 ± 1 | 11 ± 1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, M.-C.; Chin, P.-S.-Y.; Sung, W.-C.; Chen, T.-Y. Physicochemical and Volatile Flavor Properties of Fish Skin under Conventional Frying, Air Frying and Vacuum Frying. Molecules 2023, 28, 4376. https://doi.org/10.3390/molecules28114376
Fang M-C, Chin P-S-Y, Sung W-C, Chen T-Y. Physicochemical and Volatile Flavor Properties of Fish Skin under Conventional Frying, Air Frying and Vacuum Frying. Molecules. 2023; 28(11):4376. https://doi.org/10.3390/molecules28114376
Chicago/Turabian StyleFang, Ming-Chih, Peng-Shih-Yun Chin, Wen-Chieh Sung, and Tai-Yuan Chen. 2023. "Physicochemical and Volatile Flavor Properties of Fish Skin under Conventional Frying, Air Frying and Vacuum Frying" Molecules 28, no. 11: 4376. https://doi.org/10.3390/molecules28114376
APA StyleFang, M. -C., Chin, P. -S. -Y., Sung, W. -C., & Chen, T. -Y. (2023). Physicochemical and Volatile Flavor Properties of Fish Skin under Conventional Frying, Air Frying and Vacuum Frying. Molecules, 28(11), 4376. https://doi.org/10.3390/molecules28114376