Optical Window to Polarity of Electrolyte Solutions
Abstract
:1. Introduction
1.1. Background
1.2. Born Polarity vs. Onsager Polarity: What’s the Difference?
2. Results
2.1. Selection of a Photoprobe
2.2. Onsager Polarity of Electrolyte Solutions
2.3. Born Polarity of Electrolyte Solutions
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Derr, J.B.; Tamayo, J.; Clark, J.A.; Morales, M.; Mayther, M.F.; Espinoza, E.M.; Rybicka-Jasinska, K.; Vullev, V.I. Multifaceted aspects of charge transfer. Phys. Chem. Chem. Phys. 2020, 22, 21583–21629. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Fara, D.C.; Yang, H.; Tämm, K.; Tamm, T.; Karelson, M. Quantitative Measures of Solvent Polarity. Chem. Rev. 2004, 104, 175–198. [Google Scholar] [CrossRef]
- Spange, S.; Weiß, N.; Schmidt, C.H.; Schreiter, K. Reappraisal of Empirical Solvent Polarity Scales for Organic Solvents. Chem.-Methods 2021, 1, 42–60. [Google Scholar] [CrossRef]
- Schein, C.H. Solubility as a Function of Protein-Structure and Solvent Components. Bio/Technology 1990, 8, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Tedder, J.M. Which Factors Determine the Reactivity and Regioselectivity of Free-Radical Substitution and Addition-Reactions. Angew. Chem. Int. Ed. 1982, 21, 401–410. [Google Scholar] [CrossRef]
- Espinoza, E.M.; Clark, J.A.; Soliman, J.; Derr, J.B.; Morales, M.; Vullev, V.I. Practical Aspects of Cyclic Voltammetry: How to Estimate Reduction Potentials When Irreversibility Prevails. J. Electrochem. Soc. 2019, 166, H3175–H3187. [Google Scholar] [CrossRef]
- Karmakar, N.K.; Pandey, S.; Pandey, R.K.; Shukla, S.S. Solvatochromism: A tool for solvent discretion for UV-Vis spectroscopic studies. Appl. Spectrosc. Rev. 2021, 56, 513–529. [Google Scholar] [CrossRef]
- Ryu, H.G.; Mayther, M.F.; Tamayo, J.; Azarias, C.; Espinoza, E.M.; Banasiewicz, M.; Lukasiewicz, L.G.; Poronik, Y.M.; Jezewski, A.; Clark, J.; et al. Bidirectional Solvatofluorochromism of a Pyrrolo[3,2-b]pyrrole-Diketopyrrolopyrrole Hybrid. J. Phys. Chem. C 2018, 122, 13424–13434. [Google Scholar] [CrossRef]
- Jones, G., II; Vullev, V.I. Medium Effects on the Stability of Terbium(III) Complexes with Pyridine-2,6-dicarboxylate. J. Phys. Chem. A 2002, 106, 8213–8222. [Google Scholar] [CrossRef]
- Larsen, J.M.; Espinoza, E.M.; Hartman, J.D.; Lin, C.-K.; Wurch, M.; Maheshwari, P.; Kaushal, R.K.; Marsella, M.J.; Beran, G.J.O.; Vullev, V.I. Building blocks for bioinspired electrets: Molecular-level approach to materials for energy and electronics. Pure Appl. Chem. 2015, 87, 779–792. [Google Scholar] [CrossRef]
- Born, M. Volumes and heats of hydration of ions. Z. Phys. 1920, 1, 45–48. [Google Scholar] [CrossRef]
- Marcus, R.A.; Sutin, N. Electron Transfers in Chemistry and Biology. Biochim. Biophys. Acta 1985, 811, 265–322. [Google Scholar] [CrossRef]
- O’Mari, O.; Vullev, V.I. Electrochemical analysis in charge-transfer science: The devil in the details. Curr. Opin. Electrochem. 2022, 31, 100862. [Google Scholar] [CrossRef] [PubMed]
- Bao, D.; Millare, B.; Xia, W.; Steyer, B.G.; Gerasimenko, A.A.; Ferreira, A.; Contreras, A.; Vullev, V.I. Electrochemical Oxidation of Ferrocene: A Strong Dependence on the Concentration of the Supporting Electrolyte for Nonpolar Solvents. J. Phys. Chem. A 2009, 113, 1259–1267. [Google Scholar] [CrossRef]
- Bao, D.; Ramu, S.; Contreras, A.; Upadhyayula, S.; Vasquez, J.M.; Beran, G.; Vullev, V.I. Electrochemical Reduction of Quinones: Interfacing Experiment and Theory for Defining Effective Radii of Redox Moieties. J. Phys. Chem. B 2010, 114, 14467–14479. [Google Scholar] [CrossRef] [PubMed]
- Asaki, M.L.T.; Redondo, A.; Zawodzinski, T.A.; Taylor, A.J. Dielectric relaxation of electrolyte solutions using terahertz transmission spectroscopy. J. Chem. Phys. 2002, 116, 8469–8482. [Google Scholar] [CrossRef]
- Gavish, N.; Promislow, K. Dependence of the dielectric constant of electrolyte solutions on ionic concentration: A microfield approach. Phys. Rev. E 2016, 94, 012611. [Google Scholar] [CrossRef]
- Paljk, Š.; Klofutar, C.; Lubej, M. Dielectric studies of some tri-n-alkylammonium nitrates and perchlorates in benzene solutions at 298.15 K. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1984, 80, 1957–1964. [Google Scholar] [CrossRef]
- Gestblom, B.; Svorstol, I.; Songstad, J. Dielectric-Properties of Solutions of Some Onium Salts in Dichloromethane. J. Phys. Chem. 1986, 90, 4684–4686. [Google Scholar] [CrossRef]
- Wang, P.M.; Anderko, A. Computation of dielectric constants of solvent mixtures and electrolyte solutions. Fluid Phase Equilibria 2001, 186, 103–122. [Google Scholar] [CrossRef]
- Sigvartsen, T.; Songstad, J.; Gestblom, B.; Noreland, E. Dielectric-Properties of Solutions of Tetra-Iso-Pentylammonium Nitrate in Dioxane-Water Mixtures. J. Solut. Chem. 1991, 20, 565–582. [Google Scholar] [CrossRef]
- Sigvartsen, T.; Gestblom, B.; Noreland, E.; Songstad, J. Conductometric and Dielectric Behavior of Solutions of Tetrabutylammonium Perchlorate in Solvents of Low and Medium Permittivity. Acta Chem. Scand. 1989, 43, 103–115. [Google Scholar] [CrossRef]
- Cachet, H. From the bulk electrolyte solution to the electrochemical interface. Condens. Matter Phys. 2017, 20, 33701. [Google Scholar] [CrossRef]
- Breitung, E.M.; Vaughan, W.E.; McMahon, R.J. Measurement of solute dipole moments in dilute solution: A simple three-terminal cell. Rev. Sci. Instrum. 2000, 71, 224–227. [Google Scholar] [CrossRef]
- Hu, J.; Xia, B.; Bao, D.; Ferreira, A.; Wan, J.; Jones, G.; Vullev, V.I. Long-Lived Photogenerated States of α-Oligothiophene-Acridinium Dyads Have Triplet Character. J. Phys. Chem. A 2009, 113, 3096–3107. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Bao, D.; Penchev, M.; Ghazinejad, M.; Vullev, V.I.; Ozkan, C.S.; Ozkan, M. Pyridine-coated lead sulfide quantum dots for polymer hybrid photovoltaic devices. Adv. Sci. Lett. 2010, 3, 101–109. [Google Scholar] [CrossRef]
- Onsager, L. Electric moments of molecules in liquids. J. Am. Chem. Soc. 1936, 58, 1486–1493. [Google Scholar] [CrossRef]
- Lippert, E. Dipole moment and electronic structure of excited molecules. Z. Naturforsch. 1955, 10, 541–545. [Google Scholar] [CrossRef]
- Mataga, N.; Kaifu, Y.; Koizumi, M. Solvent Effects Upon Fluorescence Spectra and the Dipolemoments of Excited Molecules. Bull. Chem. Soc. Jpn. 1956, 29, 465–470. [Google Scholar] [CrossRef]
- Kakitani, T.; Mataga, N. New Energy-Gap Laws for the Charge Separation Process in the Fluorescence Quenching Reaction and the Charge Recombination Process of Ion-Pairs Produced in Polar-Solvents. J. Phys. Chem. 1985, 89, 8–10. [Google Scholar] [CrossRef]
- Ooshika, Y. Absorption Spectra of Dyes in Solution. J. Phys. Soc. Jpn. 1954, 9, 594–602. [Google Scholar] [CrossRef]
- Varghese, A.; Akshaya, K.B. Application of Fluorescence in Solvatochromic Studies of Organic Compounds. In Reviews in Fluorescence 2017; Geddes, C.D., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 99–121. [Google Scholar] [CrossRef]
- Poronik, Y.M.; Baryshnikov, G.V.; Deperasinska, I.; Espinoza, E.M.; Clark, J.A.; Agren, H.; Gryko, D.T.; Vullev, V.I. Deciphering the unusual fluorescence in weakly coupled bis-nitro-pyrrolo[3,2-b]pyrroles. Commun. Chem. 2020, 3, 190. [Google Scholar] [CrossRef] [PubMed]
- Derr, J.B.; Tamayo, J.; Espinoza, E.M.; Clark, J.A.; Vullev, V.I. Dipole-induced effects on charge transfer and charge transport. Why do molecular electrets matter? Can. J. Chem. 2018, 96, 843–858. [Google Scholar] [CrossRef]
- Mayther, M.F.; O’Mari, O.; Flacke, P.; Bhatt, D.; Andrews, S.; Vullev, V.I. How Do Liquid-Junction Potentials and Medium Polarity at Electrode Surfaces Affect Electrochemical Analyses for Charge-Transfer Systems? J. Phys. Chem. B 2023, 127, 1443–1458. [Google Scholar] [CrossRef] [PubMed]
- Upadhyayula, S.; Bao, D.; Millare, B.; Sylvia, S.S.; Habib, K.M.M.; Ashraf, K.; Ferreira, A.; Bishop, S.; Bonderer, R.; Baqai, S.; et al. Permanent Electric Dipole Moments of Carboxyamides in Condensed Media: What Are the Limitations of Theory and Experiment? J. Phys. Chem. B 2011, 115, 9473–9490. [Google Scholar] [CrossRef]
- Rehm, D.; Weller, A. Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Israel J. Chem. 1970, 8, 259–271. [Google Scholar] [CrossRef]
- Pekar, S.I. Local quantum states of the electron in an ideal ionic crystal. Zh. Eksp. Teor. Fiz. 1946, 16, 341–348. [Google Scholar]
- Vlassiouk, I.; Smirnov, S. Electric Polarization of Dilute Polar Solutions: Revised Treatment for Arbitrary Shaped Molecules. J. Phys. Chem. A 2003, 107, 7561–7566. [Google Scholar] [CrossRef]
- Kirkwood, J.G. The Dielectric Polarization of Polar Liquids. J. Chem. Phys. 2004, 7, 911–919. [Google Scholar] [CrossRef]
- Song, H.; Wang, K.; Kuang, Z.; Zhao, Y.S.; Guo, Q.; Xia, A. Solvent modulated excited state processes of push–pull molecule with hybridized local excitation and intramolecular charge transfer character. Phys. Chem. Chem. Phys. 2019, 21, 3894–3902. [Google Scholar] [CrossRef]
- Szakacs, Z.; Rousseva, S.; Bojtar, M.; Hessz, D.; Bitter, I.; Kallay, M.; Hilbers, M.; Zhang, H.; Kubinyi, M. Experimental evidence of TICT state in 4-piperidinyl-1,8-naphthalimide—A kinetic and mechanistic study. Phys. Chem. Chem. Phys. 2018, 20, 10155–10164. [Google Scholar] [CrossRef] [PubMed]
- Duke, R.M.; Veale, E.B.; Pfeffer, F.M.; Kruger, P.E.; Gunnlaugsson, T. Colorimetric and fluorescent anion sensors: An overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem. Soc. Rev. 2010, 39, 3936–3953. [Google Scholar] [CrossRef]
- Saha, S.; Samanta, A. Influence of the structure of the amino group and polarity of the medium on the photophysical behavior of 4-amino-1,8-naphthalimide derivatives. J. Phys. Chem. A 2002, 106, 4763–4771. [Google Scholar] [CrossRef]
- Kumari, R.; Sunil, D.; Ningthoujam, R.S. Naphthalimides in fluorescent imaging of tumor hypoxia—An up-to-date review. Bioorg. Chem. 2019, 88, 102979. [Google Scholar] [CrossRef] [PubMed]
- Angulo, G.; Grampp, G.; Rosspeintner, A. Recalling the appropriate representation of electronic spectra. Spectrochim. Acta A 2006, 65, 727–731. [Google Scholar] [CrossRef]
- Whittingham, M.S. Special Editorial Perspective: Beyond Li-Ion Battery Chemistry. Chem. Rev. 2020, 120, 6328–6330. [Google Scholar] [CrossRef]
- O’Kane, S.E.J.; Campbell, I.D.; Marzook, M.W.J.; Offer, G.J.; Marinescu, M. Physical Origin of the Differential Voltage Minimum Associated with Lithium Plating in Li-Ion Batteries. J. Electrochem. Soc. 2020, 167, 090540. [Google Scholar] [CrossRef]
- Zhang, A.K.; Yang, X.L.; Yang, F.; Zhang, C.M.; Zhang, Q.X.; Duan, G.G.; Jiang, S.H. Research Progress of the Ion Activity Coefficient of Polyelectrolytes: A Review. Molecules 2023, 28, 2042. [Google Scholar] [CrossRef]
- Lee, M. Millimetre-scale thin-film batteries on a charge. Nat. Electron. 2019, 2, 550. [Google Scholar] [CrossRef]
- Yu, J.J.; Liu, S.W.; Duan, G.G.; Fang, H.; Hou, H.Q. Dense and thin coating of gel polymer electrolyte on sulfur cathode toward high performance Li-sulfur battery. Compos. Commun. 2020, 19, 239–245. [Google Scholar] [CrossRef]
- Daniels, I.N.; Wang, Z.X.; Laird, B.B. Dielectric Properties of Organic Solvents in an Electric Field. J. Phys. Chem. C 2017, 121, 1025–1031. [Google Scholar] [CrossRef]
Solvent | fO(ε, n2) a | |μ0|/D b | |μ*|/D b | α/deg c | Δμ/D d | |Δμ|/D e | |μ0|/D b |
---|---|---|---|---|---|---|---|
CHCl3 | 0.29 | 6.67 | 9.97 | 2.7 | 3.30 | 3.32 | 0.29 |
CH2Cl2 | 0.43 | 7.07 | 10.41 | 2.7 | 3.34 | 3.36 | 0.43 |
(CH2Cl)2 | 0.44 | 7.11 | 10.49 | 2.7 | 3.38 | 3.40 | 0.44 |
C6H5CN | 0.47 | 7.29 | 10.87 | 2.7 | 3.58 | 3.60 | 0.47 |
DMF | 0.55 | 7.33 | 10.95 | 2.7 | 3.62 | 3.64 | 0.55 |
CH3CN | 0.61 | 7.33 | 10.93 | 2.7 | 3.60 | 3.62 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Mari, O.; Vullev, V.I. Optical Window to Polarity of Electrolyte Solutions. Molecules 2023, 28, 4360. https://doi.org/10.3390/molecules28114360
O’Mari O, Vullev VI. Optical Window to Polarity of Electrolyte Solutions. Molecules. 2023; 28(11):4360. https://doi.org/10.3390/molecules28114360
Chicago/Turabian StyleO’Mari, Omar, and Valentine I. Vullev. 2023. "Optical Window to Polarity of Electrolyte Solutions" Molecules 28, no. 11: 4360. https://doi.org/10.3390/molecules28114360
APA StyleO’Mari, O., & Vullev, V. I. (2023). Optical Window to Polarity of Electrolyte Solutions. Molecules, 28(11), 4360. https://doi.org/10.3390/molecules28114360