Encapsulation of Polyphenolic Compounds Based on Hemicelluloses to Enhance Treatment of Inflammatory Bowel Diseases and Colorectal Cancer
Abstract
:1. Introduction
2. Limitations of the Use of Polyphenols in IBD and CRC
2.1. Obtaining and Stability of Polyphenols
2.2. Impact of Digestive Processes and Intestinal Barrier
2.3. Disturbances of Gut Microbiota
2.4. Bioavailability and Bioaccessibility of Polyphenols
2.5. Appropriate Doses of Polyphenols and Side Effects Occurring after Their Usage
3. Encapsulations of Polyphenolic Compounds in IBD and CRC
3.1. IBD
3.2. CRC
4. Hemicelluloses as Compounds with Therapeutic Potential against IBD and CRC
4.1. Structure, Occurrence, Classes of Hemicelluloses
4.2. Activity of Xylans against IBD and CRC
4.3. Activity of Mannans against IBD and CRC
4.4. Activity of Glucans against IBD and CRC
5. Methods of the Hemicellulose Preparation for Creation of Encapsulates and Types of Formulation
6. Carriers and Encapsulates Based on Hemicelluloses
6.1. Xylan-Based Carriers and Encapsulates
6.2. Mannan-Based Carriers and Encapsulates
6.3. Glucan-Based Carriers and Encapsulates
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
5-ASA | 5-aminosalicylic acid |
AOM | azoxymethane |
CD | Crohn’s disease |
COX-2 | cyclooxygenase 2 |
CRC | colorectal cancer |
DSS | dextran sulphate sodium |
EGCG | epigallocatechin gallate |
IBD | inflammatory bowel diseases |
IL | interleukin |
iNOS | inducible nitric oxide synthase |
NF-κB | nuclear factor kappa B |
NO | nitric oxide |
Nrf2 | nuclear factor erythroid 2-related factor 2 |
ROS | reactive oxygen species |
SCFA | short chain fatty acids |
TNBS | 2,4,6-trinitrobenzene sulfonic acid |
UC | ulcerative colitis |
References
- Mak, W.Y.; Zhao, M.; Ng, S.C.; Burisch, J. The Epidemiology of Inflammatory Bowel Disease: East Meets West. J. Gastroenterol. Hepatol. 2020, 35, 380–389. [Google Scholar] [CrossRef]
- Agrawal, M.; Spencer, E.A.; Colombel, J.F.; Ungaro, R.C. Approach to the Management of Recently Diagnosed Inflammatory Bowel Disease Patients: A User’s Guide for Adult and Pediatric Gastroenterologists. Gastroenterology 2021, 161, 47–65. [Google Scholar] [CrossRef]
- Kaplan, G.G.; Windsor, J.W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Seyedian, S.S.; Nokhostin, F.; Malamir, M.D. A Review of the Diagnosis, Prevention, and Treatment Methods of Inflammatory Bowel Disease. J. Med. Life 2019, 12, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Eaden, J.A.; Abrams, K.R.; Mayberry, J.F.; Eaden, J.A.; Abrams, K.R.; Mayberry, J.F. The Risk of Colorectal Cancer in Ulcerative Colitis: A Meta-Analysis. Gut 2001, 48, 526–535. [Google Scholar] [CrossRef]
- Nadeem, M.S.; Kumar, V.; Al-Abbasi, F.A.; Kamal, M.A.; Anwar, F. Risk of Colorectal Cancer in Inflammatory Bowel Diseases. Semin. Cancer Biol. 2020, 64, 51–60. [Google Scholar] [CrossRef]
- Shah, S.C.; Itzkowitz, S.H. Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management. Gastroenterology 2022, 162, 715–730. [Google Scholar] [CrossRef]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal Cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Baidoun, F.; Elshiwy, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M.T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Curr. Drug Targets 2020, 22, 998–1009. [Google Scholar]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef]
- Brumatti, L.V.; Marcuzzi, A.; Tricarico, P.M.; Zanin, V.; Girardelli, M.; Bianco, A.M. Curcumin and Inflammatory Bowel Disease: Potential Andlimits of Innovative Treatments. Molecules 2014, 19, 21127–21153. [Google Scholar] [CrossRef] [PubMed]
- Park, K.T.; Ehrlich, O.G.; Allen, J.I.; Meadows, P.; Szigethy, E.M.; Henrichsen, K.; Kim, S.C.; Lawton, R.C.; Murphy, S.M.; Regueiro, M.; et al. The Cost of Inflammatory Bowel Disease: An Initiative from the Crohn’s & Colitis Foundation. Inflamm. Bowel Dis. 2020, 26, 1–10. [Google Scholar] [PubMed]
- Roberti, R.; Iannone, L.F.; Palleria, C.; De Sarro, C.; Spagnuolo, R.; Barbieri, M.A.; Vero, A.; Manti, A.; Pisana, V.; Fries, W.; et al. Safety Profiles of Biologic Agents for Inflammatory Bowel Diseases: A Prospective Pharmacovigilance Study in Southern Italy. Curr. Med. Res. Opin. 2020, 36, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Poturnajova, M.; Furielova, T.; Balintova, S.; Schmidtova, S.; Kucerova, L.; Matuskova, M. Molecular Features and Gene Expression Signature of Metastatic Colorectal Cancer (Review). Oncol. Rep. 2021, 45, 1–18. [Google Scholar] [CrossRef]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The Effects of Polyphenols and Other Bioactives on Human Health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef]
- Chojnacka, K.; Lewandowska, U. Chemopreventive Effects of Polyphenol-Rich Extracts against Cancer Invasiveness and Metastasis by Inhibition of Type IV Collagenases Expression and Activity. J. Funct. Foods 2018, 46, 295–311. [Google Scholar] [CrossRef]
- Caban, M.; Lewandowska, U. Polyphenols and the Potential Mechanisms of Their Therapeutic Benefits against Inflammatory Bowel Diseases. J. Funct. Foods 2022, 95, 105181. [Google Scholar] [CrossRef]
- Chojnacka, K.; Owczarek, K.; Caban, M.; Sosnowska, D.; Kajszczak, D.; Lewandowska, U. Chemopreventive Effects of Japanese Quince (Chaenomeles japonica L.) Phenol Leaf Extract on Colon Cancer Cells Through the Modulation of Extracellular Signal-Regulated Kinases/Akt Signaling Pathway. J. Physiol. Pharmacol. 2022, 73, 41–52. [Google Scholar]
- Owczarek, K.; Sosnowska, D.; Kajszczak, D.; Lewandowska, U. Evaluation of Phenolic Composition, Antioxidant and Cytotoxic Activity of Aronia Melanocarpa Leaf Extracts. J. Physiol. Pharmacol. 2022, 73, 233–243. [Google Scholar]
- Caban, M.; Owczarek, K.; Chojnacka, K.; Podsedek, A.; Sosnowska, D.; Lewandowska, U. Chemopreventive Properties of Spent Hops (Humulus lupulus L.) Extract Against Angiogenesis, Invasion and Migration of Colorectal Cancer Cells. J. Physiol. Pharmacol. 2022, 73, 431–442. [Google Scholar]
- Zhang, Y.; Peng, L.; Li, W.; Dai, T.; Nie, L.; Xie, J.; Ai, Y.; Li, L.; Tian, Y.; Sheng, J. Polyphenol Extract of Moringa Oleifera Leaves Alleviates Colonic Inflammation in Dextran Sulfate Sodium-Treated Mice. Evid.-Based Complement. Altern. Med. 2020, 2020, 62954020. [Google Scholar] [CrossRef] [PubMed]
- Marzo, F.; Milagro, F.I.; Barrenetxe, J.; Díaz, M.T.; Martínez, J.A. Azoxymethane-Induced Colorectal Cancer Mice Treated with a Polyphenol-Rich Apple Extract Show Less Neoplastic Lesions and Signs of Cachexia. Foods 2021, 10, 863. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Huang, S.; Li, T.; Li, N.; Han, D.; Zhang, B.; Xu, Z.Z.; Zhang, S.; Pang, J.; Wang, S.; et al. Gut Microbiota from Green Tea Polyphenol-Dosed Mice Improves Intestinal Epithelial Homeostasis and Ameliorates Experimental Colitis. Microbiome 2021, 9, 184. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xu, Y.; Geng, R.; Qiu, J.; He, X. Curcumin Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice Through Regulating Gut Microbiota. Mol. Nutr. Food Res. 2022, 66, 2100943. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, U.; Szewczyk, K.; Hrabec, E.; Janecka, A.; Gorlach, S. Overview of Metabolism and Bioavailability Enhancement of Polyphenols. J. Agric. Food Chem. 2013, 61, 12183–12199. [Google Scholar] [CrossRef]
- Yvonne, K.; Heikki, V.; Johanna, T.; Bjarne, H.; Jenni, B. Galactoglucomannan-Rich Hemicellulose Extract from Norway Spruce (Picea abies) Exerts Benefeffects on Chronic Prostatic Inflammation and Lower Urinary Tract Symptoms in Vivo. Int. J. Biol. Macromol. 2017, 101, 222–229. [Google Scholar]
- Badr El-Din, N.K.; Ali, D.A.; Othman, R.; French, S.W.; Ghoneum, M. Chemopreventive Role of Arabinoxylan Rice Bran, MGN-3/Biobran, on Liver Carcinogenesis in Rats. Biomed. Pharmacother. 2020, 126, 110064. [Google Scholar] [CrossRef]
- Luo, S.; He, L.; Zhang, H.; Li, Z.; Liu, C.; Chen, T. Arabinoxylan from Rice Bran Protects Mice against High-Fat Diet-Induced Obesity and Metabolic Inflammation by Modulating Gut Microbiota and Short-Chain Fatty Acids. Food Funct. 2022, 13, 7707–7719. [Google Scholar] [CrossRef]
- Qiu, A.; Wang, Y.; Zhang, G.; Wang, H. Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes. Polymers 2022, 14, 3217. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Zeeshan, M.; Ali, H.; Khan, S.; Khan, S.A.; Weigmann, B. Advances in Orally-Delivered PH-Sensitive Nanocarrier Systems; an Optimistic Approach for the Treatment of Inflammatory Bowel Disease. Int. J. Pharm. 2019, 558, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Bassotti, G.; Antonelli, E.; Villanacci, V.; Nascimbeni, R.; Dore, M.P.; Pes, G.M.; Maconi, G. Abnormal Gut Motility in Inflammatory Bowel Disease: An Update. Tech. Coloproctol. 2020, 24, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Tie, S.; Tan, M. Current Advances in Multifunctional Nanocarriers Based on Marine Polysaccharides for Colon Delivery of Food Polyphenols. J. Agric. Food Chem. 2022, 70, 903–915. [Google Scholar] [CrossRef]
- Lin, J.C.; Wu, J.Q.; Wang, F.; Tang, F.Y.; Sun, J.; Xu, B.; Jiang, M.; Chu, Y.; Chen, D.; Li, X.; et al. QingBai Decoction Regulates Intestinal Permeability of Dextran Sulphate Sodium-Induced Colitis through the Modulation of Notch and NF-ΚB Signalling. Cell Prolif. 2019, 52, e12547. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lu, C.; Yang, Y.; Yu, C.; Rao, Y. Site-Specific Targeted Drug Delivery Systems for the Treatment of Inflammatory Bowel Disease. Biomed. Pharmacother. 2020, 129, 110486. [Google Scholar] [CrossRef]
- Zhu, L.; Shen, H.; Gu, P.; Liu, Y.; Zhang, L.; Cheng, J. Baicalin Alleviates TNBS-induced Colitis by Inhibiting PI3K/AKT Pathway Activation. Exp. Ther. Med. 2020, 20, 581–590. [Google Scholar] [CrossRef]
- Tena, N.; Martín, J.; Asuero, A.G. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef]
- Flynn, S.; Eisenstein, S. Inflammatory Bowel Disease Presentation and Diagnosis. Surg. Clin. N. Am. 2019, 99, 1051–1062. [Google Scholar] [CrossRef]
- Gan, R.Y.; Li, H.B.; Sui, Z.Q.; Corke, H. Absorption, Metabolism, Anti-Cancer Effect and Molecular Targets of Epigallocatechin Gallate (EGCG): An Updated Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 924–941. [Google Scholar] [CrossRef]
- Guan, Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019, 2019, 7247238. [Google Scholar] [CrossRef]
- Abdelhalim, K.A.; Uzel, A.; Gülşen Ünal, N. Virulence Determinants and Genetic Diversity of Adherent-Invasive Escherichia Coli (AIEC) Strains Isolated from Patients with Crohn’s Disease. Microb. Pathog. 2020, 145, 104233. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Bai, X.; Cao, X.; Yue, W.; Jiang, W.; Yu, Z. Changes in Intestinal Microbiota and Correlation with TLRs in Ulcerative Colitis in the Coastal Area of Northern China. Microb. Pathog. 2021, 150, 104707. [Google Scholar] [CrossRef] [PubMed]
- Miao, F. Hydroxytyrosol Alleviates Dextran Sodium Sulfate–Induced Colitis by Inhibiting NLRP3 Inflammasome Activation and Modulating Gut Microbiota in Vivo. Nutrition 2022, 97, 111579. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.H.; Yu, J. Gut Microbiota in Colorectal Cancer: Mechanisms of Action and Clinical Applications. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 690–704. [Google Scholar] [CrossRef] [PubMed]
- Alrafas, H.R.; Busbee, P.B.; Nagarkatti, M.; Nagarkatti, P.S. Resveratrol Modulates the Gut Microbiota to Prevent Murine Colitis Development through Induction of Tregs and Suppression of Th17 Cells. J. Leukoc. Biol. 2019, 106, 467–480. [Google Scholar] [CrossRef]
- Gómez-López, I.; Lobo-Rodrigo, G.; Portillo, M.P.; Cano, M.P. Characterization, Stability, and Bioaccessibility of Betalain and Phenolic Compounds from Opuntia Stricta Var. Dillenii Fruits and Products of Their Industrialization. Foods 2021, 10, 1593. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Gokarn, Y.; Mitragotri, S. Non-Invasive Delivery Strategies for Biologics. Nat. Rev. Drug Discov. 2018, 18, 19–40. [Google Scholar] [CrossRef]
- Ahadian, S.; Finbloom, J.A.; Mofidfar, M.; Diltemiz, S.E.; Nasrollahi, F.; Davoodi, E.; Hosseini, V.; Mylonaki, I.; Sangabathuni, S.; Montazerian, H.; et al. Micro and Nanoscale Technologies in Oral Drug Delivery. Adv. Drug Deliv. Rev. 2020, 157, 37–62. [Google Scholar] [CrossRef]
- Murakami, A. Dose-Dependent Functionality and Toxicity of Green Tea Polyphenols in Experimental Rodents. Arch. Biochem. Biophys. 2014, 557, 3–10. [Google Scholar] [CrossRef]
- Samba-Mondonga, M.; Constante, M.; Fragoso, G.; Calvé, A.; Santos, M.M. Curcumin Induces Mild Anemia in a DSS-Induced Colitis Mouse Model Maintained on an Iron-Sufficient Diet. PLoS ONE 2019, 14, e0208677. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.D.; Kennett, M.J.; Sang, S.; Reuhl, K.R.; Ju, J.; Yang, C.S. Hepatotoxicity of High Oral Dose (−)-Epigallocatechin-3-Gallate in Mice. Food Chem. Toxicol. 2010, 48, 409–416. [Google Scholar] [CrossRef]
- Inoue, H.; Akiyama, S.; Maeda-Yamamoto, M.; Nesumi, A.; Tanaka, T.; Murakami, A. High-Dose Green Tea Polyphenols Induce Nephrotoxicity in Dextran Sulfate Sodium-Induced Colitis Mice by down-Regulation of Antioxidant Enzymes and Heat-Shock Protein Expressions. Cell Stress Chaperones 2011, 16, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Murata, M.; Kawanishi, S.; Oikawa, S. Polyphenols with Anti-Amyloid β Aggregation Show Potential Risk of Toxicity via pro-Oxidant Properties. Int. J. Mol. Sci. 2020, 21, 3561. [Google Scholar] [CrossRef] [PubMed]
- Posadino, A.M.; Cossu, A.; Giordo, R.; Zinellu, A.; Sotgia, S.; Vardeu, A.; Hoa, P.T.; Van Nguyen, L.H.; Carru, C.; Pintus, G. Resveratrol Alters Human Endothelial Cells Redox State and Causes Mitochondrial-Dependent Cell Death. Food Chem. Toxicol. 2015, 78, 10–16. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Hu, X.; Chen, Z.; Liu, H.; Takeda, S.; Qing, Y. Multiple Repair Pathways Mediate Cellular Tolerance to Resveratrol-Induced DNA Damage. Toxicol. Vitr. 2017, 42, 130–138. [Google Scholar] [CrossRef]
- Chai, R.; Chen, Y.; Yuan, H.; Wang, X.; Guo, S.; Qi, J.; Zhang, H.; Zhan, Y.; An, H. Identification of Resveratrol, an Herbal Compound, as an Activator of the Calcium-Activated Chloride Channel, TMEM16A. J. Membr. Biol. 2017, 250, 483–492. [Google Scholar] [CrossRef]
- Inoue, H.; Maeda-Yamamoto, M.; Nesumi, A.; Tanaka, T.; Murakami, A. Low and Medium but Not High Doses of Green Tea Polyphenols Ameliorated Dextran Sodium Sulfate-Induced Hepatotoxicity and Nephrotoxicity. Biosci. Biotechnol. Biochem. 2013, 77, 1223–1228. [Google Scholar] [CrossRef]
- Gandhi, H.; Rathore, C.; Dua, K.; Vihal, S.; Tambuwala, M.M.; Negi, P. Efficacy of Resveratrol Encapsulated Microsponges Delivered by Pectin Based Matrix Tablets in Rats with Acetic Acid-Induced Ulcerative Colitis. Drug Dev. Ind. Pharm. 2020, 46, 365–375. [Google Scholar] [CrossRef]
- Lozano-Pérez, A.A.; Rodriguez-Nogales, A.; Ortiz-Cullera, V.; Algieri, F.; Garrido-Mesa, J.; Zorrilla, P.; Rodriguez-Cabezas, M.E.; Garrido-Mesa, N.; Pilar Utrilla, M.; de Matteis, L.; et al. Silk Fibroin Nanoparticles Constitute a Vector for Controlled Release of Resveratrol in an Experimental Model of Inflammatory Bowel Disease in Rats. Int. J. Nanomed. 2014, 9, 4507–4520. [Google Scholar]
- Pujara, N.; Wong, K.Y.; Qu, Z.; Wang, R.; Moniruzzaman, M.; Rewatkar, P.; Kumeria, T.; Ross, B.P.; McGuckin, M.; Popat, A. Oral Delivery of β-Lactoglobulin-Nanosphere-Encapsulated Resveratrol Alleviates Inflammation in Winnie Mice with Spontaneous Ulcerative Colitis. Mol. Pharm. 2021, 18, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, N.; Galbis, E.; Díaz-Blanco, M.J.; Lucas, R.; Benito, E.; De-Paz, M.V. Nanostructured Chitosan-Based Biomaterials for Sustained and Colon-Specific Resveratrol Release. Int. J. Mol. Sci. 2019, 20, 398. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Li, S.; Wu, Y.; Li, D.; Han, Y. Construction of Chitosan/Alginate Nano-Drug Delivery System for Improving Dextran Sodium Sulfate-Induced Colitis in Mice. Nanomaterials 2021, 11, 1884. [Google Scholar] [CrossRef] [PubMed]
- Abdin, A.A. Targeting Sphingosine Kinase 1 (SphK1) and Apoptosis by Colon-Specific Delivery Formula of Resveratrol in Treatment of Experimental Ulcerative Colitis in Rats. Eur. J. Pharmacol. 2013, 718, 145–153. [Google Scholar] [CrossRef]
- Chung, C.H.; Jung, W.; Keum, H.; Kim, T.W.; Jon, S. Nanoparticles Derived from the Natural Antioxidant Rosmarinic Acid Ameliorate Acute Inflammatory Bowel Disease. ACS Nano 2020, 14, 6887–6896. [Google Scholar] [CrossRef]
- Huguet-Casquero, A.; Xu, Y.; Gainza, E.; Pedraz, J.L.; Beloqui, A. Oral Delivery of Oleuropein-Loaded Lipid Nanocarriers Alleviates Inflammation and Oxidative Stress in Acute Colitis. Int. J. Pharm. 2020, 586, 119515. [Google Scholar] [CrossRef]
- Marinho, S.; Illanes, M.; Ávila-Román, J.; Motilva, V.; Talero, E. Anti-Inflammatory Effects of Rosmarinic Acid-Loaded Nanovesicles in Acute Colitis through Modulation of NLRP3 Inflammasome. Biomolecules 2021, 11, 162. [Google Scholar] [CrossRef]
- Nguyen, T.H.T.; Trinh, N.T.; Tran, H.N.; Tran, H.T.; Le, P.Q.; Ngo, D.N.; Tran-Van, H.; Van Vo, T.; Vong, L.B.; Nagasaki, Y. Improving Silymarin Oral Bioavailability Using Silica-Installed Redox Nanoparticle to Suppress Inflammatory Bowel Disease. J. Control. Release 2021, 331, 515–524. [Google Scholar] [CrossRef]
- Ohno, M.; Nishida, A.; Sugitani, Y.; Nishino, K.; Inatomi, O.; Sugimoto, M.; Kawahara, M.; Andoh, A. Nanoparticle Curcumin Ameliorates Experimental Colitis via Modulation of Gut Microbiota and Induction of Regulatory T Cells. PLoS ONE 2017, 12, e0185999. [Google Scholar] [CrossRef]
- Arafat, E.A.; Marzouk, R.E.; Mostafa, S.A.; Hamed, W.H.E. Identification of the Molecular Basis of Nanocurcumin-Induced Telocyte Preservation within the Colon of Ulcerative Colitis Rat Model. Mediat. Inflamm. 2021, 2021, 7–9. [Google Scholar] [CrossRef]
- Huang, Y.; Canup, B.S.B.; Gou, S.; Chen, N.; Dai, F.; Xiao, B.; Li, C. Oral Nanotherapeutics with Enhanced Mucus Penetration and ROS-Responsive Drug Release Capacities for Delivery of Curcumin to Colitis Tissues. J. Mater. Chem. B 2021, 9, 1604–1615. [Google Scholar] [CrossRef] [PubMed]
- Masoodi, M.; Mahdiabadi, M.A.; Mokhtare, M.; Agah, S.; Kashani, A.H.F.; Rezadoost, A.M.; Sabzikarian, M.; Talebi, A.; Sahebkar, A. The Efficacy of Curcuminoids in Improvement of Ulcerative Colitis Symptoms and Patients’ Self-Reported Well-Being: A Randomized Double-Blind Controlled Trial. J. Cell. Biochem. 2018, 119, 9552–9559. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Yu, S.; Shi, C.; Gu, J.; Shao, Y.; Chen, Q.; Li, Y.; Mezzenga, R. Amyloid-Polyphenol Hybrid Nanofilaments Mitigate Colitis and Regulate Gut Microbial Dysbiosis. ACS Nano 2020, 14, 2760–2776. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yan, J.; Wang, L.; Pan, D.; Xu, Y.; Wang, F.; Sheng, J.; Li, X.; Yang, M. Oral Delivery of Anti-TNF Antibody Shielded by Natural Polyphenol-Mediated Supramolecular Assembly for Inflammatory Bowel Disease Therapy. Theranostics 2020, 10, 10808–10822. [Google Scholar] [CrossRef]
- Le, Z.; He, Z.; Liu, H.; Ke, J.; Liu, L.; Liu, Z.; Chen, Y. Orally Administrable Polyphenol-Based Nanoparticles Achieve Anti-Inflammation and Antitumor Treatment of Colon Diseases. Biomater. Sci. 2022, 10, 4156–4169. [Google Scholar] [CrossRef]
- Slika, L.; Moubarak, A.; Borjac, J.; Baydoun, E.; Patra, D. Preparation of Curcumin-Poly (Allyl Amine) Hydrochloride Based Nanocapsules: Piperine in Nanocapsules Accelerates Encapsulation and Release of Curcumin and Effectiveness against Colon Cancer Cells. Mater. Sci. Eng. C 2020, 109, 110550. [Google Scholar] [CrossRef]
- Han, Z.; Song, B.; Yang, J.; Wang, B.; Ma, Z.; Yu, L.; Li, Y.; Xu, H.; Qiao, M. Curcumin-Encapsulated Fusion Protein-Based Nanocarrier Demonstrated Highly Efficient Epidermal Growth Factor Receptor-Targeted Treatment of Colorectal Cancer. J. Agric. Food Chem. 2022, 70, 15464–15473. [Google Scholar] [CrossRef] [PubMed]
- Summerlin, N.; Qu, Z.; Pujara, N.; Sheng, Y.; Jambhrunkar, S.; McGuckin, M.; Popat, A. Colloidal Mesoporous Silica Nanoparticles Enhance the Biological Activity of Resveratrol. Colloids Surf. B Biointerfaces 2016, 144, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Soo, E.; Thakur, S.; Qu, Z.; Jambhrunkar, S.; Parekh, H.S.; Popat, A. Enhancing Delivery and Cytotoxicity of Resveratrol through a Dual Nanoencapsulation Approach. J. Colloid Interface Sci. 2016, 462, 368–374. [Google Scholar] [CrossRef]
- Feng, M.; Zhong, L.X.; Zhan, Z.Y.; Huang, Z.H.; Xiong, J.P. Enhanced Antitumor Efficacy of Resveratrol-Loaded Nanocapsules in Colon Cancer Cells: Physicochemical and Biological Characterization. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 375–382. [Google Scholar]
- Khayat, M.T.; Zarka, M.A.; El-Telbany, D.F.A.; El-Halawany, A.M.; Kutbi, H.I.; Elkhatib, W.F.; Noreddin, A.M.; Khayyat, A.N.; El-Telbany, R.F.A.; Hammad, S.F.; et al. Intensification of Resveratrol Cytotoxicity, pro-Apoptosis, Oxidant Potentials in Human Colorectal Carcinoma HCT-116 Cells Using Zein Nanoparticles. Sci. Rep. 2022, 12, 15235. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, J.; Qiu, T.; Tang, M.; Zhang, X.; Dong, W. In Vitro and in Vivo Combinatorial Anticancer Effects of Oxaliplatin- and Resveratrol-Loaded N,O-Carboxymethyl Chitosan Nanoparticles against Colorectal Cancer. Eur. J. Pharm. Sci. 2021, 163, 105864. [Google Scholar] [CrossRef] [PubMed]
- Senthil Kumar, C.; Thangam, R.; Mary, S.A.; Kannan, P.R.; Arun, G.; Madhan, B. Targeted Delivery and Apoptosis Induction of Trans-Resveratrol-Ferulic Acid Loaded Chitosan Coated Folic Acid Conjugate Solid Lipid Nanoparticles in Colon Cancer Cells. Carbohydr. Polym. 2020, 231, 115682. [Google Scholar] [CrossRef]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef] [PubMed]
- Madrid Liwanag, A.J.; Ebert, B.; Verhertbruggen, Y.; Rennie, E.A.; Rautengarten, C.; Oikawa, A.; Andersen, M.C.F.; Clausen, M.H.; Scheller, H.V. Pectin Biosynthesis: GALS1 in Arabidopsis Thaliana Is a β-1,4-Galactan β-1,4-Galactosyltransferase. Plant Cell 2013, 24, 5024–5036. [Google Scholar] [CrossRef] [PubMed]
- Pauly, M.; Gille, S.; Liu, L.; Mansoori, N.; de Souza, A.; Schultink, A.; Xiong, G. Hemicellulose Biosynthesis. Planta 2013, 238, 627–642. [Google Scholar] [CrossRef]
- Wyman, C.E.; Decker, S.R.; Himmel, M.E.; Brady, J.W.; Skopec, C.; Viikari, L. Hydrolysis of cellulose and hemicellulose. In Polysaccharides: Structural Diversity and Functional Versatility; Dumitriu, S., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2005; pp. 995–1033. [Google Scholar]
- Cartaxo da Costa Urtiga, S.; Rodrigues Marcelino, H.; Sócrates Tabosa do Egito, E.; Eleamen Oliveira, E. Xylan in Drug Delivery: A Review of Its Engineered Structures and Biomedical Applications. Eur. J. Pharm. Biopharm. 2020, 151, 199–208. [Google Scholar] [CrossRef]
- Kishani, S.; Escalante, A.; Toriz, G.; Vilaplana, F.; Gatenholm, P.; Hansson, P.; Wagberg, L. Experimental and Theoretical Evaluation of the Solubility/Insolubility of Spruce Xylan (Arabino Glucuronoxylan). Biomacromolecules 2019, 20, 1263–1270. [Google Scholar] [CrossRef]
- Palasingh, C.; Nakayama, K.; Abik, F.; Mikkonen, K.S.; Evenäs, L.; Ström, A.; Nypelö, T. Modification of Xylan via an Oxidation–Reduction Reaction. Carbohydr. Polym. 2022, 292, 119660. [Google Scholar] [CrossRef]
- Kostalova, Z.; Hromádková, Z.; Paulsen Berit, S.; Ebringerová, A. Bioactive Hemicelluloses Alkali-Extracted from Fallopia Sachalinensis Leaves. Carbohydr. Res. 2014, 398, 19–24. [Google Scholar] [CrossRef]
- Arumugam, N.; Biely, P.; Puchart, V.; Gerrano, A.S.; De Mukherjee, K.; Singh, S.; Pillai, S. Xylan from Bambara and Cowpea Biomass and Their Structural Elucidation. Int. J. Biol. Macromol. 2019, 132, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Chaves, P.F.P.; de Almeida, S.H.P.; Dallazen, J.L.; de Paula Werner, M.F.; Iacomini, M.; Andreatini, R.; Cordeiro, L.M.C. Chamomile Tea: Source of a Glucuronoxylan with Antinociceptive, Sedative and Anxiolytic-like Effects. Int. J. Biol. Macromol. 2020, 164, 1675–1682. [Google Scholar] [CrossRef] [PubMed]
- Voiniciuc, C. Modern Mannan: A Hemicellulose’s Journey. New Phytol. 2022, 234, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Yamabhai, M.; Sak-Ubol, S.; Srila, W.; Haltrich, D. Mannan Biotechnology: From Biofuels to Health. Crit. Rev. Biotechnol. 2016, 36, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Bulmer, G.S.; de Andrade, P.; Field, R.A.; van Munster, J.M. Recent Advances in Enzymatic Synthesis of β-Glucan and Cellulose. Carbohydr. Res. 2021, 508, 108411. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, J.; Zhang, X.; Liu, S.; Zhao, C. Antitumor Effect of Soluble β-Glucan as an Immune Stimulant. Int. J. Biol. Macromol. 2021, 179, 116–124. [Google Scholar] [CrossRef]
- Dutta, P.; Giri, S.; Giri, T.K. Xyloglucan as Green Renewable Biopolymer Used in Drug Delivery and Tissue Engineering. Int. J. Biol. Macromol. 2020, 160, 55–68. [Google Scholar] [CrossRef]
- Sarma, S.M.; Singh, D.P.; Singh, P.; Khare, P.; Mangal, P.; Singh, S.; Bijalwan, V.; Kaur, J.; Mantri, S.; Boparai, R.K.; et al. Finger Millet Arabinoxylan Protects Mice from High-Fat Diet Induced Lipid Derangements, Inflammation, Endotoxemia and Gut Bacterial Dysbiosis. Int. J. Biol. Macromol. 2018, 106, 994–1003. [Google Scholar] [CrossRef]
- Zhao, Z.; Cheng, W.; Qu, W.; Wang, K. Arabinoxylan Rice Bran (MGN-3/Biobran) Alleviates Radiation-Induced Intestinal Barrier Dysfunction of Mice in a Mitochondrion-Dependent Manner. Biomed. Pharmacother. 2020, 124, 109855. [Google Scholar] [CrossRef]
- Ghoneum, M.H.; El Sayed, N.S. Protective Effect of Biobran/MGN-3 against Sporadic Alzheimer’s Disease Mouse Model: Possible Role of Oxidative Stress and Apoptotic Pathways. Oxid. Med. Cell. Longev. 2021, 2021, 8845064. [Google Scholar] [CrossRef]
- Piotrowska, M.; Swierczynski, M.; Fichna, J.; Piechota-Polanczyk, A. The Nrf2 in the Pathophysiology of the Intestine: Molecular Mechanisms and Therapeutic Implications for Inflammatory Bowel Diseases. Pharmacol. Res. 2021, 163, 105243. [Google Scholar] [CrossRef]
- Neyrinck, A.M.; Possemiers, S.; Druart, C.; van de Wiele, T.; de Backer, F.; Cani, P.D.; Larondelle, Y.; Delzenne, N.M. Prebiotic Effects of Wheat Arabinoxylan Related to the Increase in Bifidobacteria, Roseburia and Bacteroides/Prevotella in Diet-Induced Obese Mice. PLoS ONE 2011, 6, e20944. [Google Scholar] [CrossRef]
- Yacoubi, N.; Saulnier, L.; Bonnin, E.; Devillard, E.; Eeckhaut, V.; Rhayat, L.; Ducatelle, R.; Van Immerseel, F. Short-Chain Arabinoxylans Prepared from Enzymatically Treated Wheat Grain Exert Prebiotic Effects during the Broiler Starter Period. Poult. Sci. 2018, 97, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Govers, C.; Tang, Y.; Stolte, E.H.; Wichers, H.J.; Mes, J.J. Wheat-Derived Arabinoxylans Reduced M2-Macrophage Functional Activity, but Enhanced Monocyte-Recruitment Capacity. Food Funct. 2020, 11, 7073–7083. [Google Scholar] [CrossRef] [PubMed]
- Soufli, I.; Toumi, R.; Rafa, H.; Touil-Boukoffa, C. Overview of Cytokines and Nitric Oxide Involvement in Immuno-Pathogenesis of Inflammatory Bowel Diseases. World J. Gastrointest. Pharmacol. Ther. 2016, 7, 353. [Google Scholar] [CrossRef]
- Mendis, M.; Leclerc, E.; Simsek, S. Arabinoxylan Hydrolyzates as Immunomodulators in Lipopolysaccharide-Induced RAW264.7 Macrophages. Food Funct. 2016, 7, 3039–3045. [Google Scholar] [CrossRef]
- Zha, Z.; Lv, Y.; Tang, H.; Li, T.; Miao, Y.; Cheng, J.; Wang, G.; Tan, Y.; Zhu, Y.; Xing, X.; et al. An Orally Administered Butyrate-Releasing Xylan Derivative Reduces Inflammation in Dextran Sulphate Sodium-Induced Murine Colitis. Int. J. Biol. Macromol. 2020, 156, 1217–1233. [Google Scholar] [CrossRef] [PubMed]
- Owczarek, K.; Lewandowska, U. The Impact of Dietary Polyphenols on COX-2 Expression in Colorectal Cancer. Nutr. Cancer 2017, 69, 1105–1118. [Google Scholar] [CrossRef]
- Badr El-Din, N.K.; Abdel Fattah, S.M.; Pan, D.; Tolentino, L.; Ghoneum, M. Chemopreventive Activity of MGN-3/Biobran Against Chemical Induction of Glandular Stomach Carcinogenesis in Rats and Its Apoptotic Effect in Gastric Cancer Cells. Integr. Cancer Ther. 2016, 15, NP26–NP34. [Google Scholar] [CrossRef]
- Ooi, S.L.; McMullen, D.; Golombick, T.; Pak, S.C. Evidence-Based Review of BioBran/MGN-3 Arabinoxylan Compound as a Complementary Therapy for Conventional Cancer Treatment. Integr. Cancer Ther. 2018, 17, 165–178. [Google Scholar] [CrossRef]
- Golombick, T.; Diamond, T.H.; Manoharan, A.; Ramakrishna, R. Addition of Rice Bran Arabinoxylan to Curcumin Therapy May Be of Benefit to Patients with Early-Stage B-Cell Lymphoid Malignancies (Monoclonal Gammopathy of Undetermined Significance, Smoldering Multiple Myeloma, or Stage 0/1 Chronic Lymphocytic Leukemia): A Preliminary Clinical Study. Integr. Cancer Ther. 2016, 15, 183–189. [Google Scholar] [PubMed]
- Mendis, M.; Leclerc, E.; Simsek, S. Arabinoxylan Hydrolyzates as Immunomodulators in Caco-2 and HT-29 Colon Cancer Cell Lines. Food Funct. 2017, 8, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Paesani, C.; Degano, A.L.; Ines, Z.; Zalosnik, M.I.; Fabi, J.P.; Pérez, G.T. Enzymatic Modification of Arabinoxylans from Soft and Hard Argentinian Wheat Inhibits the Viability of HCT-116 Cells. Food Res. Int. 2021, 147, 110466. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jia, Q.; Liu, Y.; Chen, D.; Fang, Z.; Liu, Y.; Li, S.; Hu, B.; Wang, C.; Chen, H. Different Structures of Arabinoxylan Hydrolysates Alleviated Caco-2 Cell Barrier Damage by Regulating the TLRs/MyD88/NF-ΚB Pathway. Foods 2022, 11, 3535. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, I.d.L.; Caillot, A.R.C.; Palhares, L.C.G.F.; Santana-Filho, A.P.; Chavante, S.F.; Sassaki, G.L. Structural Characterization of Polysaccharides from Cabernet Franc, Cabernet Sauvignon and Sauvignon Blanc Wines: Anti-Inflammatory Activity in LPS Stimulated RAW 264.7 Cells. Carbohydr. Polym. 2018, 186, 91–99. [Google Scholar] [CrossRef]
- Gu, Q.; Li, Y.; Zhen, L.; Zhao, T.; Luo, L.; Zhang, J.; Deng, T.; Wu, M.; Cheng, G.; Hu, J. The structures of two glucomannans from Bletilla formosana and their protective effect on inflammation via inhibiting NF-κB pathway. Carbohydr. Polym. 2022, 292, 119694. [Google Scholar] [CrossRef]
- Badia, R.; Brufau, M.T.; Guerrero-Zamora, A.M.; Lizardo, R.; Dobrescu, I.; Martin-Venegas, R.; Ferrer, R.; Salmon, H.; Martínez, P.; Brufau, J. β-Galactomannan and Saccharomyces Cerevisiae Var. Boulardii Modulate the Immune Response against Salmonella Enterica Serovar Typhimurium in Porcine Intestinal Epithelial and Dendritic Cells. Clin. Vaccine Immunol. 2012, 19, 368–376. [Google Scholar] [CrossRef]
- Guo, W.; Gu, X.; Tong, Y.; Wang, X.; Wu, J.; Chang, C. Protective Effects of Mannan/β-Glucans from Yeast Cell Wall on the Deoxyniyalenol-Induced Oxidative Stress and Autophagy in IPEC-J2 Cells. Int. J. Biol. Macromol. 2019, 135, 619–629. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, W.; Gu, X.; Chang, C.; Wu, J. Repression of Deoxynivalenol-Triggered Cytotoxicity and Apoptosis by Mannan/β-Glucans from Yeast Cell Wall: Involvement of Autophagy and PI3K-AKT-MTOR Signaling Pathway. Int. J. Biol. Macromol. 2020, 164, 1413–1421. [Google Scholar] [CrossRef]
- Song, Y.; Shen, H.; Liu, T.; Pan, B.; De Alwis, S.; Zhang, W.; Luo, X.; Li, Z.; Wang, N.; Ma, W.; et al. Effects of Three Different Mannans on Obesity and Gut Microbiota in High-Fat Diet-Fed C57BL/6J Mice. Food Funct. 2021, 12, 4606–4620. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, C.; Huo, K.; Cai, D.; Zhao, G. Antioxidant Activity of Yeast Mannans and Their Growth-Promoting Effect on Lactobacillus Strains. Food Funct. 2021, 12, 10423–10431. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhu, C.; Bian, X.; Jia, X.; Tang, N.; Cheng, Y. An Antioxidative Galactomannan Extracted from Chinese: Sesbania Cannabina Enhances Immune Activation of Macrophage Cells. Food Funct. 2020, 11, 10635–10644. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Wang, T.; Huang, C.; Lai, C.; Ling, Z.; Yong, Q. Effects of Seleno-Sesbania Canabina Galactomannan on Anti-Oxidative and Immune Function of Macrophage. Carbohydr. Polym. 2021, 261, 117833. [Google Scholar] [CrossRef]
- Castro, B.; Palomares, T.; Azcoitia, I.; Bastida, F.; del Olmo, M.; Soldevilla, J.J.; Alonso-Varona, A. Development and Preclinical Evaluation of a New Galactomannan-Based Dressing with Antioxidant Properties for Wound Healing. Histol. Histopathol. 2015, 30, 1499–1512. [Google Scholar]
- Lima, I.C.; Castro, R.R.; Adjafre, B.L.; Sousa, S.H.A.F.; de Paula, D.S.; Alves, A.P.N.N.; Silva, P.G.B.; Assreuy, A.M.S.; Mota, M.R.L. Galactomannan of Delonix Regia Seeds Modulates Cytokine Expression and Oxidative Stress Eliciting Anti-Inflammatory and Healing Effects in Mice Cutaneous Wound. Int. J. Biol. Macromol. 2022, 203, 342–349. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, X.; Liu, L.; Guo, M.; Huang, T.; Zhou, W.; Geng, F.; Cui, S.W.; Nie, S. Glucomannan From Aloe Vera Gel Promotes Intestinal Stem Cell-Mediated Epithelial Regeneration via the Wnt/β-Catenin Pathway. J. Agric. Food Chem. 2021, 69, 10581–10591. [Google Scholar] [CrossRef]
- Lemieszek, M.K.; Nunes, F.M.; Rzeski, W. Branched Mannans from the Mushroom: Cantharellus Cibarius Enhance the Anticancer Activity of Natural Killer Cells against Human Cancers of Lung and Colon. Food Funct. 2019, 10, 5816–5826. [Google Scholar] [CrossRef]
- Lemieszek, M.K.; Nunes, F.M.; Marques, G.; Rzeski, W. Cantharellus Cibarius Branched Mannans Inhibits Colon Cancer Cells Growth by Interfering with Signals Transduction in NF-ĸB Pathway. Int. J. Biol. Macromol. 2019, 134, 770–780. [Google Scholar] [CrossRef]
- Tong, X.; Lao, C.; Li, D.; Du, J.; Chen, J.; Xu, W.; Li, L.; Ye, H.; Guo, X.; Li, J. An Acetylated Mannan Isolated from Aloe Vera Induce Colorectal Cancer Cells Apoptosis via Mitochondrial Pathway. Carbohydr. Polym. 2022, 291, 119464. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, D.; Wang, J.; Wang, Y.; Hu, J.; Zhou, Y.; Zhou, X.; Nie, S.; Xie, M. Aloe gel glucomannan induced colon cancer cell death via mitochondrial damage-driven PINK1/Parkin mitophagy pathway. Carbohydr. Polym. 2022, 295, 119841. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.D.; Jiang, Z. The application of fungal β-glucans for the treatment of colon cancer. Anticancer Agents Med. Chem. 2013, 13, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran, M.; Chen, J.; Chung, S.S.M.; Xu, B. A Critical Review on the Impacts of β-Glucans on Gut Microbiota and Human Health. J. Nutr. Biochem. 2018, 61, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Kopiasz, Ł.; Dziendzikowska, K.; Gajewska, M.; Wilczak, J.; Harasym, J.; Żyła, E.; Kamola, D.; Oczkowski, M.; Królikowski, T.; Gromadzka-Ostrowska, J. Time-Dependent Indirect Antioxidative Effects of Oat Beta-Glucans on Peripheral Blood Parameters in the Animal Model of Colon Inflammation. Antioxidants 2020, 9, 375. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.B.; Gudi, R.; Brown, R.; Vasu, C. Dynamics of Structural and Functional Changes in Gut Microbiota during Treatment with a Microalgal β-Glucan, Paramylon and the Impact on Gut Inflammation. Nutrients 2020, 12, 2193. [Google Scholar] [CrossRef]
- Bai, J.; Zhao, J.; Al-Ansi, W.; Wang, J.; Xue, L.; Liu, J.; Wang, Y.; Fan, M.; Qian, H.; Li, Y.; et al. Oat β-Glucan Alleviates DSS-Induced Colitis: Via Regulating Gut Microbiota Metabolism in Mice. Food Funct. 2021, 12, 8976–8993. [Google Scholar] [CrossRef]
- Kopiasz, Ł.; Dziendzikowska, K.; Gromadzka-ostrowska, J. Colon Expression of Chemokines and Their Receptors Depending on the Stage of Colitis and Oat Beta-Glucan Dietary Intervention—Crohn’s Disease Model Study. Int. J. Mol. Sci. 2022, 23, 1406. [Google Scholar] [CrossRef]
- Safwat El-Deeb, O.; El-Esawy, R.O.; Al-Shenawy, H.A.; Ghanem, H.B. Modulating Gut Dysbiosis and Mitochondrial Dysfunction in Oxazolone-Induced Ulcerative Colitis: The Restorative Effects of β-Glucan and/or Celastrol. Redox Rep. 2022, 27, 60–69. [Google Scholar] [CrossRef]
- Fahlquist-Hagert, C.; Sareila, O.; Rosendahl, S.; Holmdahl, R. Variants of Beta-Glucan Polysaccharides Downregulate Autoimmune Inflammation. Commun. Biol. 2022, 5, 449. [Google Scholar] [CrossRef]
- Silva, N.A.; Pereira, B.G.; Santos, J.A.; Guarnier, F.A.; Barbosa-Dekker, A.M.; Dekker, R.F.H.; Kassuya, C.A.L.; Bernardes, S.S. Oral Administration of Botryosphaeran [(1 → 3)(1 → 6)-β-d-Glucan] Reduces Inflammation through Modulation of Leukocytes and Has Limited Effect on Inflammatory Nociception. Cell Biochem. Funct. 2022, 40, 578–588. [Google Scholar] [CrossRef]
- Bahú, J.O.; de Andrade, L.R.M.; de Melo Barbosa, R.; Crivellin, S.; da Silva, A.P.; Souza, S.D.A.; Cárdenas Concha, V.O.; Severino, P.; Souto, E.B. Plant Polysaccharides in Engineered Pharmaceutical Gels. Bioengineering 2022, 9, 376. [Google Scholar] [CrossRef]
- Wang, X.; He, J.; Pang, S.; Yao, S.; Zhu, C.; Zhao, J.; Liu, Y.; Liang, C.; Qin, C. High-Efficiency and High-Quality Extraction of Hemicellulose of Bamboo by Freeze-Thaw Assisted Two-Step Alkali Treatment. Int. J. Mol. Sci. 2022, 23, 8612. [Google Scholar] [CrossRef] [PubMed]
- Sarker, T.R.; Pattnaik, F.; Nanda, S.; Dalai, A.K.; Meda, V.; Naik, S. Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere 2021, 284, 131372. [Google Scholar] [CrossRef] [PubMed]
- Carvalheiro, F.; Duarte, L.C.; Gírio, F.M. Hemicellulose biorefineries: A review on biomass pretreatments. J. Sci. Ind. Res. 2008, 67, 849–864. [Google Scholar]
- Yao, S.Q.; Nie, S.X.; Yuan, Y.; Wang, S.F.; Qin, C.R. Efficient extraction of bagasse hemicelluloses and characterization of solid remainder. Bioresour. Technol. 2015, 185, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, X.; Zhang, R.; Xiao, L.; Yuan, T.; Shi, Q.; Sun, R. Evaluation of xylooligosaccharide production from residual hemicelluloses of dissolving pulp by acid and enzymatic hydrolysis. RSC Adv. 2018, 8, 35211–35217. [Google Scholar] [CrossRef]
- Yuan, Q.; Liu, S.; Ma, M.-G.; Ji, X.-X.; Choi, S.-E.; Si, C. The Kinetics Studies on Hydrolysis of Hemicellulose. Front. Chem. 2021, 9, 781291. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhang, C.H.; Lin, Q.X.; Cheng, B.G.; Kong, F.G.; Li, H.L.; Ren, J.L. Solid acid-induced hydrothermal treatment of bagasse for production of furfural and levulinic acid by a two-step process. Ind. Crop. Prod. 2018, 123, 118–127. [Google Scholar] [CrossRef]
- Rehman, A.; Jafari, S.M.; Tong, Q.; Riaz, T.; Assadpour, E.; Aadil, R.M.; Niazi, S.; Khan, I.M.; Shehzad, Q.; Ali, A.; et al. Drug nanodelivery systems based on natural polysaccharides against different diseases. Adv. Colloid Interface Sci. 2020, 284, 102251. [Google Scholar] [CrossRef]
- Wijaya, C.J.; Ismadji, S.; Gunawan, S. A Review of Lignocellulosic-Derived Nanoparticles for Drug Delivery Applications: Lignin Nanoparticles, Xylan Nanoparticles, and Cellulose Nanocrystals. Molecules 2021, 26, 676. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, G.S. Applications of Mannose-Binding Lectins and Mannan Glycoconjugates in Nanomedicine; Springer: Dordrecht, The Netherlands, 2022; Volume 24. [Google Scholar]
- Siemińska-Kuczer, A.; Szymańska-Chargot, M.; Zdunek, A. Recent Advances in Interactions between Polyphenols and Plant Cell Wall Polysaccharides as Studied Using an Adsorption Technique. Food Chem. 2022, 373, 131487. [Google Scholar] [CrossRef]
- Loke, Y.L.; Chew, M.T.; Ngeow, Y.F.; Lim, W.W.D.; Peh, S.C. Colon Carcinogenesis: The Interplay Between Diet and Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 603086. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Negi, Y.S. Corn Cob Xylan-Based Nanoparticles: Ester Prodrug of 5-Aminosalicylic Acid for Possible Targeted Delivery of Drug. J. Pharm. Sci. Res. 2012, 4, 1995–2003. [Google Scholar]
- Fu, G.Q.; Su, L.Y.; Yue, P.P.; Huang, Y.H.; Bian, J.; Li, M.F.; Peng, F.; Sun, R.C. Syntheses of Xylan Stearate Nanoparticles with Loading Function from By-Products of Viscose Fiber Mills. Cellulose 2019, 26, 7195–7206. [Google Scholar] [CrossRef]
- Sauraj; Kumar, S.U.; Gopinath, P.; Negi, Y.S. Synthesis and Bio-Evaluation of Xylan-5-Fluorouracil-1-Acetic Acid Conjugates as Prodrugs for Colon Cancer Treatment. Carbohydr. Polym. 2017, 157, 1442–1450. [Google Scholar] [CrossRef]
- Urtiga, S.C.d.C.; Alves, V.M.O.; Melo, C. de O.; Lima, M.N. de; Souza, E.; Cunha, A.P.; Ricardo, N.M.P.S.; Oliveira, E.E.; Egito, E.S.T. do. Xylan Microparticles for Controlled Release of Mesalamine: Production and Physicochemical Characterization. Carbohydr. Polym. 2020, 250, 116929. [Google Scholar] [CrossRef]
- Sauraj; Kumar, V.; Kumar, B.; Deeba, F.; Bano, S.; Kulshreshtha, A.; Gopinath, P.; Negi, Y.S. Lipophilic 5-Fluorouracil Prodrug Encapsulated Xylan-Stearic Acid Conjugates Nanoparticles for Colon Cancer Therapy. Int. J. Biol. Macromol. 2019, 128, 204–213. [Google Scholar] [CrossRef]
- Kowalska, G.; Rosicka-Kaczmarek, J.; Miśkiewicz, K.; Wiktorska, M.; Gumul, D.; Orczykowska, M.; Dędek, K. Influence of Rye Bran Heteropolysaccharides on the Physicochemical and Antioxidant Properties of Honeydew Honey Microcapsules. Food Bioprod. Process. 2021, 130, 171–181. [Google Scholar] [CrossRef]
- Kowalska, G.; Rosicka-Kaczmarek, J.; Miśkiewicz, K.; Zakłos-Szyda, M.; Rohn, S.; Kanzler, C.; Wiktorska, M.; Niewiarowska, J. Arabinoxylan-Based Microcapsules Being Loaded with Bee Products as Bioactive Food Components Are Able to Modulate the Cell Migration and Inflammatory Response—In Vitro Study. Nutrients 2022, 14, 2529. [Google Scholar] [CrossRef]
- Zhou, X.; Li, W.; Wang, S.; Zhang, P.; Wang, Q.; Xiao, J.; Zhang, C.; Zheng, X.; Xu, X.; Xue, S.; et al. YAP Aggravates Inflammatory Bowel Disease by Regulating M1/M2 Macrophage Polarization and Gut Microbial Homeostasis. Cell Rep. 2019, 27, 1176–1189.e5. [Google Scholar] [CrossRef]
- Sauraj; Kumar, S.U.; Kumar, V.; Priyadarshi, R.; Gopinath, P.; Negi, Y.S. PH-Responsive Prodrug Nanoparticles Based on Xylan-Curcumin Conjugate for the Efficient Delivery of Curcumin in Cancer Therapy. Carbohydr. Polym. 2018, 18, 252–259. [Google Scholar] [CrossRef]
- Sauraj; Kumar, V.; Kumar, B.; Priyadarshi, R.; Deeba, F.; Kulshreshtha, A.; Kumar, A.; Agrawal, G.; Gopinath, P.; Negi, Y.S. Redox Responsive Xylan-SS-Curcumin Prodrug Nanoparticles for Dual Drug Delivery in Cancer Therapy. Mater. Sci. Eng. C 2020, 107, 110356. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Li, H.; Su, Y.; Tian, K.; Zou, Z.; Wang, W. Synthesis and Anticancer Activity of Bagasse Xylan/Resveratrol Graft-Esterified Composite Nanoderivative. Materials 2022, 15, 5166. [Google Scholar] [CrossRef] [PubMed]
- Gami, P.; Kundu, D.; Seera, S.D.K.; Banerjee, T. Chemically Crosslinked Xylan–β-Cyclodextrin Hydrogel for the in Vitro Delivery of Curcumin and 5-Fluorouracil. Int. J. Biol. Macromol. 2020, 158, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Chimphango, A.F.A.; Matavire, T.O. Performance and Structural Comparison of Hydrogels Made from Wheat Bran Arabinoxylan Using Enzymatic and Coacervation Methods as Micro-and Nano- Encapsulation and Delivery Devices. Biomed. Microdevices 2019, 21, 97. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Encinas, M.A.; Carvajal-Millan, E.; Rascón-Chu, A.; Astiazarán-Garcia, H.; Valencia-Rivera, D.E.; Brown-Bojorquez, F.; Alday, E.; Velazquez, C. Arabinoxylan-Based Particles: In Vitro Antioxidant Capacity and Cytotoxicity on a Human Colon Cell Line. Medicina 2019, 55, 349. [Google Scholar] [CrossRef]
- Bouramtane, S.; Bretin, L.; Pinon, A.; Leger, D.; Liagre, B.; Richard, L.; Brégier, F.; Sol, V.; Chaleix, V. Porphyrin-Xylan-Coated Silica Nanoparticles for Anticancer Photodynamic Therapy. Carbohydr. Polym. 2019, 213, 168–175. [Google Scholar] [CrossRef]
- Bretin, L.; Pinon, A.; Bouramtane, S.; Ouk, C.; Richard, L.; Perrin, M.; Chaunavel, A.; Carrion, C. Photodynamic Therapy Activity of New Human Colorectal Cancer. Cancers 2019, 11, 1474. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, S.; Li, H.; Zhao, B.; Tian, K.; Zou, Z. Dimethylaminoethyl Methacrylate/Diethylene Glycol Dimethacrylate Grafted onto Folate-Esterified Bagasse Xylan/Andrographolide Composite Nanoderivative: Synthesis, Molecular Docking and Biological Activity. Molecules 2022, 27, 5970. [Google Scholar] [CrossRef]
- Tian, K.; Li, H.; Zhao, B.; Su, Y.; Zou, Z.; Wang, W. Synthesis, Characterization and Bioactivity Evaluation of a Novel Nano Bagasse Xylan/Andrographolide Grafted and Esterified Derivative. Polymers 2022, 14, 3432. [Google Scholar] [CrossRef]
- da Costa Urtiga, S.C.; de Lucena Gabi, C.A.A.; de Araújo Eleamen, G.R.; Santos Souza, B.; de Luna Freire Pessôa, H.; Marcelino, H.R.; de Moura Mendonça, E.A.; do Egito, E.S.T.; Oliveira, E.E. Preparation and Characterization of Safe Microparticles Based on Xylan. Drug Dev. Ind. Pharm. 2017, 43, 1601–1609. [Google Scholar] [CrossRef]
- Santos, M.B.; Garcia-Rojas, E.E. Recent Advances in the Encapsulation of Bioactive Ingredients Using Galactomannans-Based as Delivery Systems. Food Hydrocoll. 2021, 118, 106815. [Google Scholar] [CrossRef]
- Meng, F.B.; Zhang, Q.; Li, Y.C.; Li, J.J.; Liu, D.Y.; Peng, L.X. Konjac Glucomannan Octenyl Succinate as a Novel Encapsulation Wall Material to Improve Curcumin Stability and Bioavailability. Carbohydr. Polym. 2020, 238, 116193. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.H.; Xiao, J.X.; Li, X.D.; Huang, G.Q. Carboxymethyl Konjac Glucomannan Coating on Multilayered Emulsions for Improved Bioavailability and Targeted Delivery of Curcumin. Food Funct. 2021, 12, 5429–5439. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Sun, J.; Jiang, H.; Li, Y.; Pang, J. Construction of Carboxymethyl Konjac Glucomannan/Chitosan Complex Nanogels as Potential Delivery Vehicles for Curcumin. Food Chem. 2021, 362, 130242. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Dang, T.T.; Nguyen, T.V.L.; Nguyen, T.T.D.; Nguyen, N.N. Microencapsulation of Roselle (Hibiscus sabdariffa L.) Anthocyanins: Effects of Different Carriers on Selected Physicochemical Properties and Antioxidant Activities of Spray-Dried and Freeze-Dried Powder. Int. J. Food Prop. 2022, 25, 359–374. [Google Scholar] [CrossRef]
- de Almeida Paula, D.; Mota Ramos, A.; Basílio de Oliveira, E.; Maurício Furtado Martins, E.; Augusto Ribeiro de Barros, F.; Cristina Teixeira Ribeiro Vidigal, M.; de Almeida Costa, N.; Tatagiba da Rocha, C. Increased Thermal Stability of Anthocyanins at PH 4.0 by Guar Gum in Aqueous Dispersions and in Double Emulsions W/O/W. Int. J. Biol. Macromol. 2018, 117, 665–672. [Google Scholar] [CrossRef]
- Kuck, L.S.; Noreña, C.P.Z. Microencapsulation of Grape (Vitis Labrusca Var. Bordo) Skin Phenolic Extract Using Gum Arabic, Polydextrose, and Partially Hydrolyzed Guar Gum as Encapsulating Agents. Food Chem. 2016, 194, 569–576. [Google Scholar] [CrossRef]
- Pieczykolan, E.; Kurek, M.A. Use of Guar Gum, Gum Arabic, Pectin, Beta-Glucan and Inulin for Microencapsulation of Anthocyanins from Chokeberry. Int. J. Biol. Macromol. 2019, 129, 665–671. [Google Scholar] [CrossRef]
- Samborska, K.; Boostani, S.; Geranpour, M.; Hosseini, H.; Dima, C.; Khoshnoudi-Nia, S.; Rostamabadi, H.; Falsafi, S.R.; Shaddel, R.; Akbari-Alavijeh, S.; et al. Green Biopolymers from By-Products as Wall Materials for Spray Drying Microencapsulation of Phytochemicals. Trends Food Sci. Technol. 2021, 108, 297–325. [Google Scholar] [CrossRef]
- Liu, J.; Chen, F.; Tian, W.; Ma, Y.; Li, J.; Zhao, G. Optimization and Characterization of Curcumin Loaded in Octenylsuccinate Oat β-Glucan Micelles with an Emphasis on Degree of Substitution and Molecular Weight. J. Agric. Food Chem. 2014, 62, 7532–7540. [Google Scholar] [CrossRef]
- Liu, J.; Lei, L.; Ye, F.; Zhou, Y.; Younis, H.G.R.; Zhao, G. Aggregates of Octenylsuccinate Oat β-Glucan as Novel Capsules to Stabilize Curcumin over Food Processing, Storage and Digestive Fluids and to Enhance Its Bioavailability. Food Funct. 2018, 9, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Plavcová, Z.; Šalamúnová, P.; Saloň, I.; Štěpánek, F.; Hanuš, J.; Hošek, J. Curcumin Encapsulation in Yeast Glucan Particles Promotes Its Anti-Inflammatory Potential in Vitro. Int. J. Pharm. 2019, 568, 118532. [Google Scholar] [CrossRef] [PubMed]
- Rotrekl, D.; Šalamúnová, P.; Paráková, L.; Baďo, O.; Saloň, I.; Štěpánek, F.; Hanuš, J.; Hošek, J. Composites of Yeast Glucan Particles and Curcumin Lead to Improvement of Dextran Sulfate Sodium-Induced Acute Bowel Inflammation in Rats. Carbohydr. Polym. 2021, 252, 117142. [Google Scholar] [CrossRef]
- Singh, A.; Lavkush; Kureel, A.K.; Dutta, P.K.; Kumar, S.; Rai, A.K. Curcumin Loaded Chitin-Glucan Quercetin Conjugate: Synthesis, Characterization, Antioxidant, in Vitro Release Study, and Anticancer Activity. Int. J. Biol. Macromol. 2018, 110, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Šalamúnová, P.; Cupalová, L.; Majerská, M.; Treml, J.; Ruphuy, G.; Šmejkal, K.; Štěpánek, F.; Hanuš, J.; Hošek, J. Incorporating Natural Anti-Inflammatory Compounds into Yeast Glucan Particles Increases Their Bioactivity in Vitro. Int. J. Biol. Macromol. 2021, 169, 443–451. [Google Scholar] [CrossRef]
- Feng, X.; Xie, Q.; Xu, H.; Zhang, T.; Li, X.; Tian, Y.; Lan, H.; Kong, L.; Zhang, Z. Yeast Microcapsule Mediated Natural Products Delivery for Treating Ulcerative Colitis through Anti-Inflammatory and Regulation of Macrophage Polarization. ACS Appl. Mater. Interfaces 2022, 14, 31085–31098. [Google Scholar] [CrossRef]
- Ahmad, M.; Ashraf, B.; Gani, A.; Gani, A. Microencapsulation of Saffron Anthocyanins Using β Glucan and β Cyclodextrin: Microcapsule Characterization, Release Behaviour & Antioxidant Potential during in-Vitro Digestion. Int. J. Biol. Macromol. 2018, 109, 435–442. [Google Scholar]
Polyphenol | Study Model | Dose/Duration | Biological Effects/Findings | Ref. |
---|---|---|---|---|
IBD | ||||
Curcumin | DSS-induced BALB/c mice | Normal rodent diet containing 0.2% curcumin nanoparticles for 7 days before DSS administration | ↓ IL-1β, IL-6, TNF-α, CXCL1, CXCL2 mRNA ↓ neutrophil infiltration ↓ histopathological score ↓ disease activity index ↓ colon weight/length ratio ↑ body weight | [69] |
Curcumin | Acetic acid-induced Wistar rats | 100 mg/kg curcumin nanoparticles orally through a gastric tube daily for 2 weeks | ↑ goblet cells ↑ crypts ↓ inflammatory cells infiltration ↓ IL-6, TNF-α, TGF-β mRNA | [70] |
Curcumin | DSS-induced FVB male mice | nanoparticles containing curcumin and catalase with poly(lactic-co-glycolic acid)-based surface functionalized with pluronic F127—5 mg/kg daily as equivalent of curcumin for 7 days | ↓ IL-6, IL-12, TNF-α protein ↑ IL-10 protein ↓ MPO activity ↑ colon length ↑ body weight | [71] |
Curcuminoids | randomized double-blind controlled trial; Fifty-six patients with the diagnosis of mild to moderate UC; treatment group (n = 28) or placebo group (n = 28) | curcuminoids nanomicelles (80 mg, three times daily, orally) plus mesalamine (3 g/24 h, orally)—the treatment group placebo plus mesalamine—the control group for 4 weeks | ↓ symptoms ↓ disease activity | [72] |
EGCG | DSS-induced C57BL/6J mice | EGCG hydrogels daily by oral gavage for 7 days (150 mg/kg/day—dose of EGCG) | ↓ serum IL-1β, IL-6, TNF-α, IFN-γ protein ↓ colonic IL-1β, IL-6, TNF-α, IFN-γ mRNA ↑ ZO-1, Claudin-1, Occludin protein ↑ cecal SCFAs level ↓ disease activity index ↑ colon length ↑ body weight | [73] |
Oleuropein | DSS-induced C57BL/6 mice | 1.7 g of oleuropein loaded into nanostructured lipid carries by oral gavage for 5 days | ↓ IL-6, TNF-α protein ↓ MPO activity ↓ ROS level | [66] |
Resveratrol | Acetic acid-induced Wistar rats | 25 mg/kg resveratrol-loaded microsponges orally for 7 days | ↓ microscopic colon damage | [59] |
TNBS-induced Wistar rats | 1 mg in 8 mg nanoparticles intrarectally for 7 days | ↓ IL-1β, IL-6, IL-12, TNF-α, MCP-1, ICAM-1 mRNA ↑ Muc-2, Muc-3, villin mRNA ↓ MPO activity ↑ GSH content ↓ colon weight/length ratio | [60] | |
Winnie mice | Resveratrol-loaded nanoparticles daily by oral gavage for 14 days | ↓ IL-17 mRNA ↑ IL-10 mRNA ↓ histopathological score ↓ disease activity index ↑ body weight | [61] | |
DSS-induced C57BL/6J mice | 40, 80 mg/kg nanoparticles with resveratrol and poly (D,L-lactide-co-glycolide) deposited with chitosan and alginate daily for 3 days | ↑ colon length ↓ disease activity index ↑ body weight | [63] | |
Oxazolone-induced Wistar rats | 10 mg/kg by oral gavage for 14 days | ↓ MPO activity ↓ caspase-3 activity ↓ disease activity index ↓ histopathological score | [64] | |
Rosmarinic acid | DSS-induced C57BL/6 mice | Intravenous (retro-orbital) injection of 10, 20, 30 mg/kg nanoparticles with rosmarinic acid every other day for 10 days | ↓ IL-1β, IL-6, IL-12, TNF-α, IFN-γ protein ↓ MPO activity ↓ histopathological score ↑ colon length ↓ disease activity index ↑ body weight | [65] |
DSS-induced C57BL/6 mice | 5, 10, 20 mg/kg rosmarinic acid-loaded nanovesicles orally as pretreatment from three days prior to colitis induction and during days 1, 3, 5, and 7 of DSS administration | ↓ TNF-α protein ↓ MPO activity ↓ NLRP3, cas-1, ASC protein ↑ Nrf2, HO-1 protein ↓ histopathological score ↓ disease activity index ↓ colon weight/length ratio ↑ body weight | [67] | |
Silymarin | DSS-induced ICR mice | 30 mg/kg silica-installed redox nanoparticles with silymarin daily orally for 7 days | ↓ histopathological score ↓ disease activity index ↑ colon length ↑ body weight | [68] |
CRC | ||||
Curcumin | Caco-2 cells | 20, 25, 30, 35 µM curcumin-poly (allyl amine) hydrochloride based nanocapsules for 24, 48 h | ↓ cell viability | [76] |
DMH-stimulated Balb/c mice | curcumin-poly (allyl amine) hydrochloride based nanocapsules (1:2 curcumin: poly (allyl amine) hydrochloride) for 6 weeks (5 days/week) | ↓ COX-2 protein ↓ iNOS activity | ||
Curcumin | HCT-116, SW-620 cells | 0–25 µg/mL curcumin-encapsulated fusion protein-based nanocarrier for 24 h | ↓ cell viability | [77] |
Ferulic acid andResveratrol | HT-29 cells | 0–30 µg/mL trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles (equivalent to 2 mg resveratrol and ferulic acid) for 24, 48 h | ↑ apoptosis ↑ Bax, cytochrome-C, p53 protein ↓ Cyclin B, Cyclin D1, Cyclin E, Cdk-2, -4, -6 protein | [83] |
Resveratrol | HT-29 cells | 50, 100, 200 µM resveratrol loaded liposomes for 24 h | ↓ cell viability | [79] |
Resveratrol | HT-29 cells | resveratrol loaded nanocapsules for 24, 48 h | ↑ apoptosis | [80] |
Resveratrol | HT-29, LS147T, LPS-stimulated RAW264.7 cells | encapsulated resveratrol in colloidal mesoporous silica nanoparticles (resveratrol at concentrations of 100, 200, 400 µM) for 6, 48 h | ↓ cell viability ↓ NF-κB | [78] |
Resveratrol | SW-480, CT-26 cells | 5–160 µg/mL oxaliplatin- and resveratrol-loaded N,O-carboxymethyl chitosan nanoparticles for 24, 48 h | ↓ cell viability | [82] |
BALB/c mice with subcutaneously injected CT-26 cells | oxaliplatin- and resveratrol-loaded N,O-carboxymethyl chitosan nanoparticles (equivalent of 8 and 30 mg/kg of oxaliplatin and resveratrol, respectively) once every 2 days for a total of 10 treatment via a tail vein injection | ↓ tumor weight ↓ tumor volume ↑ apoptosis ↓ α-SMA, CUGBP1 protein | ||
Resveratrol | HCT-116, HT-29, Caco-2 cells | Zein resveratrol nanoparticles for 2, 4, 24, 48 h | ↓ cell viability ↑ ROS activity ↑ eNOS level ↑ apoptosis ↓ NF-κB mRNA ↑ caspase-3, cleaved caspase-3 mRNA | [81] |
Tannic acid | LPS-stimulated RAW264.7 cells; HT-29 cells | tannic acid containing nanoparticles at an equal tannic acid concentration of 10 µg/mL for 0.5, 1, 2, 24 h for cells | ↓ ROS level ↓ IL-6, TNF-α protein | [75] |
AOM/DSS-induced C57/BL6 mice | tannic acid containing nanoparticles at an equal tannic acid concentration of 25 mg/kg by oral gavage once a day for two seven day-cycles | ↓ histopathological score ↓ disease activity index ↓ tumor size ↑ colon length ↑ body weight |
Hemicellulose | Encapsulate/Carrier Type | Characteristic Encapsulation/Carrier | Testing Method/Study Model | Biological Effects | Ref. |
---|---|---|---|---|---|
CARRIERS | |||||
Arabinoxylan from dried distillers’ grains with solubles | Gels prepared by coaxial electrospraying | Mean diameter 533 ± 136 μm; rheological parameters: storage (G’) moduli 293 Pa and loss moduli (G”) 0.31 Pa | In vitro characterization; CCD 841 CoN cells | ↔ cell proliferation | [167] |
Xylan | Porphyrin-xylan-coated silica nanoparticles | Spherical shape nanoparticles with an average diameter of 80 nm; the hydrodynamic diameter of 78.43 ± 19.92 nm with a 0.062 polydispersity index; zeta potential—the presence of negative charges on the surface | In vitro characterization; HCT-116, HT-29 cells | ↓ cell viability | [168] |
Xylan | Porphyrin-xylan-coated silica nanoparticles | as above | HT-29 tumor-bearing Balb/c nude mice | ↓ tumour volume | [169] |
Baggase xylan | Xylan/andrographolide folate-g-dimethylaminoethyl methacrylate/diethylene glycol dimethacrylate nanoparticles prepared by the nanoprecipitation method | Spherical morphology nanoparticles with size of 100–200 nm; the estimated free energy of binding ranges from −0.62 kcal/mol to −4.12 kcal/mol; final intermolecular energy −14.56 to −11.06 kcal/mol | In vitro characterization; BEL-7407, NCI-H460, MGC80-3B, BEAS-2B cells | ↓ cell viability | [170] |
Baggase xylan | Xylan/andrographolide grafted and esterified derivative nanoparticles | Spherical morphology nanoparticles with size of about 100 nm; the degree of esterification substitution of 0.43; the grafting rate of the product of 42%; the estimated free energy of binding ranges from −8.94 kcal/mol to −14.68 kcal/mol; final intermolecular energy −18.85 to −13.11 kcal/mol | In vitro characterization; BEL-7407, MDA-MB-231, MGC80-3B, LO2 cells | ↓ cell viability | [171] |
Xylan from corn cobs | Xylan-based microparticles prepared by crosslinking polymerization using sodium trimetaphosphate | Narrow monodisperse size distributions with mean sizes being between 3.5 and 12.5 μm in dried state | In vitro characterization | NA | [172] |
ENCAPSULATES | |||||
Water-extractable arabinoxylans from rye bran | Honey polyphenol-loaded microcapsules prepared by spray drying | Spherical and homogeneous surfaces; the water activity of the microcapsules ranged from 0.115 to 0.218; the obtained microcapsules had average inner cell dimensions of approximately 1.92–11.16 μm | In vitro characterization | NA | [159] |
Water-extractable arabinoxylans from rye bran | Honey polyphenol-loaded microcapsules prepared by spray drying | As above; the ratio of core material to the carrier was 1:4 | LPS-stimulated RAW264.7 cells; NIH-3T3 cells | ↓ IL-6, TNF-α protein ↓ NO level ↓ cell migration | [160] |
Xylan from corn cobs | Xylan-curcumin conjugate nanoparticles | The average particle size 253 nm; the zeta potential of −18.76 mV; the yield of nanoparticles was 87% | In vitro characterization; HT-29, HCT-115 cells | ↓ cell viability | [162] |
Xylan from agro waste corn-cob | Xylan-curcumin conjugate nanoparticles synthesized via covalent conjugation of curcumin to xylan through a disulphide (-S-S-) linkage with (I) or without (II) assembled lipophilic 5-fluorouracil-stearic acid through dialysis membrane method | The appropriate size (~217 ± 2.52 nm); high drug loading of curcumin (~31.4 wt%); zeta potential value −17.33 ± 0.88 mV (for II) and −17.12 ± 1.12 mV (for I) | In vitro characterization; HT-29, HCT-115 cells | ↓ cell viability | [163] |
Bagasse xylan | Bagasse xylan/resveratrol graft-esterified composite nanoparticles | Spherical structure with an average particle size of about 100 nm; the estimated free energy of binding ranges from −3.24 kcal/mol to −6.3 kcal/mol; | In vitro characterization; BEL-7407, NGEC, MGC80-3, NCI-H460 cells | ↓ cell viability | [164] |
Xylan from corn | Chemically crosslinked xylan–β-Cyclodextrin hydrogel loaded into curcumin and 5-FU synthesized using ethylene glycol diglycidyl ether as a crosslinker in alkaline medium at different molar ratio | The loading of 98% of 5-FU and 26% of curcumin; the cumulative release of 56% 5-FU and 37% curcumin after 24 h | In vitro characterization | NA | [165] |
Wheat bran arabinoxylan | Microhydrogels with gallic acid prepared by enzymatic and coacervation | The particle size ranges of 469–678 nm; enzymatically produced hydrogels attained higher zeta potential (−8.8 mV) and released gallic acid with anti-oxidant capacity of 91% | In vitro characterization | NA | [166] |
Konjac glucomannan | Konjac glucomannan octenyl succinate nanoemulsions loaded into curcumin | Spherical structure with a rough matte edge morphology; the size was 94.2 ± 4.1 nm; The polydispersity index was 0.258 ± 0.010; loading capacity (1.25 ± 0.03 mg/mL); the zeta potential −11.5 ± 1.7 mV; | In vitro and in vivo characterization | NA | [174] |
Konjac glucomannan | Multilayered emulsions with coating carboxymethyl konjac glucomannan and loaded curcumin | The size ranges about from 180 to 1100 nm; the zeta potential ranges about from −27 to −12 mV; the encapsulation efficiency was about 90% | In vitro and in vivo characterization | NA | [175] |
Konjac glucomannan | Carboxymethyl konjac glucomannan/chitosan complex nanogels with loaded curcumin | Uncrosslinked nanogels: size- 259.2–987.26 nm, the polydispersity index: 0.24–0.36; swelling capacity: 31.51–77.67 (depending on pH); crosslinked nanogels: size- 233.54–883.47 nm; the polydispersity index: 0.25–0.31; swelling capacity: 25.24–68.14 (depending on pH); | In vitro characterization | NA | [176] |
Konjac glucomannan | Microcapsules with anthocyanins from hibiscus prepared by spray drying and freeze drying techniques | The encapsulation efficiency 43.6% | In vitro characterization | NA | [177] |
Guar gum | Double emulsions W/O/W with anthocyanins | The encapsulation efficiency 90.6%; thermal degradation constant—0.04–0.0805 (depending on the concentration of guar gum); the spectral characteristics of dispersions—λmax 534–568 (depending on the concentration of guar gum) | In vitro characterization | NA | [178] |
Guar gum | Microcapsules prepared using partially hydrolyzed guar gum by spray-drying and freeze-drying with grape (Vitis labrusca var. Bordo) skin phenolic extract | Average diameter 8.48–684.85 μm, particle size distribution (Span) 1.94–5.99, total phenolics 21.37–23.39 mg GAE/g dry basis, total anthocyanins 17.07–21.05 mg malvidin-3,5-diglucoside/g dry basis, DPPH capacity 50.82–73.42, HRSA 82.2–84.4% (depending on the concentration of guar gum and encapsulation method); | In vitro characterization | NA | [179] |
Guar gum | Microcapsules containing anthocyanins from chokeberry with guar gum as wall material | Encapsulation efficiency 92.98 ± 0.87%; water solubility 90.7 ± 0.1; moisture content 1.66 ± 0.002%; particle size 16.29 ± 0.02 μm; % of degradation during 7 storage—5.81% | In vitro characterization | NA | [180] |
Oat β-glucan | Curcumin loaded in octenylsuccinate oat β-glucan micelles | Elliptical in shape; the maximum curcumin loading capacity value of the micelle was obtained as 4.21 μg/mg; the average size 308 nm; the zeta potential −10.8 mV | In vitro characterization | NA | [182] |
Oat β-glucan | Self-aggregates of octenylsuccinate oat β-glucan-based nanocapsules with loaded into curcumin | The size—214.3–509.6 nm; the polydispersity index—0.185–0.477; the curcumin retention—38.2–100.0 (depending on heating time, temperature, light, freeze–thaw cycle) | In vitro characterization | NA | [183] |
Yeast β-1,3-glucan | Particles with loaded into curcumin | Various shapes; however, often they have asymmetric rod-like shape; the mean size (diameter)—5.8 ± 3 μm | In vitro characterization; LPS-stimulated THP-1-XBlue™- MD2-CD14 cells; THP-1 cells | ↓ IL-1β, TNF-α protein ↓ NF-κB/AP-1 activity | [184] |
Yeast β-1,3/1,6-glucans | Glucan particles with incorporated curcumin; incorporation was performed by the slurry evaporation method | The real mass fraction of curcumin in the composites was found to be 20.47% ± 0.65% | In vitro characterization; DSS-induced Wistar rats | ↓ IL-1β, IL-6, TNF-α protein ↔ IL-10, IL-17, SOD-2 protein ↔ MMP-9 production ↔ MPO activity | [185] |
Glucan from Agaricus bisporous | Curcumin loaded into chitin–glucan quercetin conjugate | Flaky nature after grafting quercetin surface become change; the entrapment efficiency 77.32%; DPPH 74.26 mg/mL, ABTS 82.86 mg/mL | In vitro characterization; J774 cells | ↓ cell viability | [186] |
Yeast glucan | Glucan particles with incorporated trans-resveratrol/EGCG by slurry rotary evaporation and spray drying | EGCG—composites (w/w): 51.5% (rotary evaporation), 61.8% (spray drying); resveratrol—composites (w/w): 114.7% (rotary evaporation), 138.2% (spray drying); | In vitro characterization; LPS-stimulated THP-1-XBlue™- MD2-CD14 cells | ↓ TNF-α protein ↓ NF-κB/AP-1 activity | [187] |
Yeast β-1,3-D-glucan | Glucan microcapsules with loaded into EGCG and berberine | The elliptical structure with pores; the particle size 3117.8 ± 220.6 nm; the encapsulation efficiency for EGCG 92.74 ± 0.1% | In vitro characterization; DSS-induced C57BL/6 mice | ↓ IL-1β, TNF-α protein ↓ H2O2 concentration ↓ MDA level ↓ histological score ↑ body weight ↑ colon length | [188] |
β-glucan from barley | Glucan microcapsules with loaded into saffron anthocyanins by spray drying | The powder yield 45.33%; the encapsulation efficiency 45.00 ± 1.2%; bulk density 0.419 ± 0.11; tapped density 0.543 ± 0.31; the 90% of microparticles had size less than 391.31 μm | In vitro characterization | NA | [189] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caban, M.; Lewandowska, U. Encapsulation of Polyphenolic Compounds Based on Hemicelluloses to Enhance Treatment of Inflammatory Bowel Diseases and Colorectal Cancer. Molecules 2023, 28, 4189. https://doi.org/10.3390/molecules28104189
Caban M, Lewandowska U. Encapsulation of Polyphenolic Compounds Based on Hemicelluloses to Enhance Treatment of Inflammatory Bowel Diseases and Colorectal Cancer. Molecules. 2023; 28(10):4189. https://doi.org/10.3390/molecules28104189
Chicago/Turabian StyleCaban, Miłosz, and Urszula Lewandowska. 2023. "Encapsulation of Polyphenolic Compounds Based on Hemicelluloses to Enhance Treatment of Inflammatory Bowel Diseases and Colorectal Cancer" Molecules 28, no. 10: 4189. https://doi.org/10.3390/molecules28104189
APA StyleCaban, M., & Lewandowska, U. (2023). Encapsulation of Polyphenolic Compounds Based on Hemicelluloses to Enhance Treatment of Inflammatory Bowel Diseases and Colorectal Cancer. Molecules, 28(10), 4189. https://doi.org/10.3390/molecules28104189