Carbene-Catalyzed Atroposelective Annulation for Quick Access to Axially Chiral Thiazine Derivatives
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Synthesis of Target Compounds 3 or 4
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3a), white solid, 54% yield, 27.5 mg, m.p. 134–136 °C; = +54.3 (c = 0.5 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.81–7.78 (m, 2H), 7.72–7.69 (m, 2H), 7.58–7.45 (m, 5H), 7.35–7.31 (m, 3H), 7.22 (td, J = 7.6, 1.6 Hz, 1H), 6.94 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.8, 160.4, 151.6, 141.4, 140.0, 135.0, 134.4, 133.1, 131.8, 130.13, 130.11, 129.7, 129.4, 129.1, 128.3, 126.8, 115.8, 98.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H15IN2O2SNa 532.9791, found 532.9786; UPLC analysis: 91:9 er (OD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 25.9 min, Rt (minor) = 33.1 min.
- (Z)-N-(3-(2-iodophenyl)-6-(4-methoxyphenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3b), white solid, 78% yield, 42.3 mg, m.p. 118–120 °C; = +52.5 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 8.0, 1.4 Hz, 1H), 7.82–7.79 (m, 2H), 7.69–7.65 (m, 2H), 7.55 (td, J = 7.6, 1.4 Hz, 1H), 7.49–7.45 (m, 1H), 7.35–7.31 (m, 3H), 7.21 (td, J = 7.6, 1.6 Hz, 1H), 7.03–7.0 (m, 2H), 6.88 (s, 1H), 3.88 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.6, 162.6, 162.0, 160.4, 150.9, 141.5, 139.8, 135.1, 133.0, 130.11, 130.05, 129.6, 129.2, 128.4, 128.3, 126.5, 114.8, 113.9, 98.1, 55.6; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O3SNa 562.9897, found 562.9892; HPLC analysis: 86:14 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 35.2 min, Rt (minor) = 42.3 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-(p-tolyl)-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3c), white solid, 76% yield, 40.0 mg, m.p. 156–158 °C; = +17.3 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.78–7.76 (m, 2H), 7.57 (td, J = 7.6, 1.4 Hz, 1H), 7.49–7.44 (m, 1H), 7.39–7.29 (m, 7H), 7.22 (td, J = 7.6, 1.6 Hz, 1H), 6.64 (s, 1H), 2.46 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.5, 153.0, 141.5, 139.9, 135.6, 135.0, 134.1, 133.1, 131.1, 130.6, 130.1, 129.7, 129.2, 128.6, 128.3, 126.4, 119.2, 98.0, 19.9; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O2SNa 546.9948, found 546.9941; HPLC analysis: 82:18 er (IB column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 24.4 min, Rt (minor) = 25.9 min.
- (Z)-N-(6-(4-fluorophenyl)-3-(2-iodophenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3d), white solid, 61% yield, 32.2 mg, m.p. 216–218 °C; = +24.0 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.81–7.78 (m, 2H), 7.73–7.68 (m, 2H), 7.56 (td, J = 7.6, 1.4 Hz, 1H), 7.50–7.46 (m, 1H), 7.35–7.31 (m, 3H), 7.24–7.19 (m, 3H), 6.89 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 164.8 (d, J = 255.3 Hz), 161.7, 160.0 150.4, 141.3, 139.9, 134.9, 133.2, 130.58, 130.6 (d, J = 3.1 Hz), 130.1, 129.7, 129.1 (d, J = 4.2 Hz), 129.0, 128.3, 116.7 (d, J = 22.4 Hz), 115.8, 98.0; 19F NMR (377 MHz, CDCl3) δ -107.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14FIN2O2SNa 550.9697, found 550.9698; HPLC analysis: 88:12 er (IA column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 45.6 min, Rt (minor) = 48.8 m.
- (Z)-N-(6-(4-chlorophenyl)-3-(2-iodophenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3e), white solid, 57% yield, 31.2 mg, m.p. 180–182 °C; = +22.6 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.80–7.78 (m, 2H), 7.66–7.63 (m, 2H), 7.56 (td, J = 7.8, 1.4 Hz, 1H), 7.51–7.46 (m, 3H), 7.35–7.31 (m, 3H), 7.22 (td, J = 7.8, 1.6 Hz, 1H), 6.91 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.6, 160.0, 150.3, 141.3, 139.9, 138.2, 134.9, 133.2, 132.8, 130.2, 130.1, 129.8, 129.7, 129.1, 128.3, 128.1, 116.0, 98.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14ClIN2O2SNa 566.9401, found 566.9391; HPLC analysis: 90:10 er (IB column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 36.7 min, Rt (minor) = 40.1 min.
- (Z)-N-(6-(4-bromophenyl)-3-(2-iodophenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3f), white solid, 48% yield, 28.2 mg, m.p. 94–96 °C; = +10.0 (c =1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.80–7.78 (m, 2H), 7.67–7.64 (m, 2H), 7.59–7.54 (m, 3H), 7.50–7.46 (m, 1H), 7.35–7.31 (m, 3H), 7.22 (td, J = 7.6, 1.6 Hz, 1H), 6.91 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.6, 160.0, 150.4, 141.3, 139.9, 134.9, 133.3, 133.2, 132.7, 130.2, 130.1, 129.7, 129.1, 128.3, 128.2, 126.6, 116.0, 98.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14BrIN2O2SNa 610.8896, found 610.8893; UPLC analysis: 92:8 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 46.2 min, Rt (minor) = 49.9 min.
- (Z)-N-(3-(2-iodophenyl)-6-(3-methoxyphenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3g), white solid, 66% yield, 35.8 mg, m.p. 118–120 °C; = +15.5 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.81–7.78 (m, 2H), 7.55 (dd, J = 7.8, 1.4 Hz, 1H), 7.50–7.45 (m, 1H), 7.42 (t, J = 8.0 Hz, 1H), 7.37–7.27 (m, 4H), 7.24–7.18 (m, 2H), 7.10–7.07 (m, 1H), 6.93 (s, 1H), 3.88 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.5, 161.8, 160.34, 160.25, 151.6, 141.4, 139.9 (2C), 135.7, 135.0, 133.1, 130.5, 130.1, 129.7, 129.1, 128.3, 119.2, 117.7, 115.9, 111.9, 98.0, 55.6; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O3SNa 562.9897, found 562.9886; HPLC analysis: 87:13 er (IB column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 27.0 min, Rt (minor) = 32.6 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-(m-tolyl)-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3h), white solid, 53% yield, 27.8 mg, m.p. 206–208 °C; = +24.0 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.82–7.79 (m, 2H), 7.56 (td, J = 7.8, 1.4 Hz, 1H), 7.51–7.45 (m, 3H), 7.39–7.31 (m, 5H), 7.21 (td, J = 7.8, 1.6 Hz, 1H), 6.92 (s, 1H), 2.44 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.8, 160.5, 151.8, 141.5, 139.9, 139.4, 135.0, 134.3, 133.1, 132.6, 130.12, 130.09, 129.7, 129.3, 129.1, 128.3, 127.4, 123.9, 115.6, 98.1, 21.4; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O2SNa 546.9947, found 546.9944; HPLC analysis: 97:3 er (ODH column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 35.4 min, Rt (minor) = 38.5 min.
- (Z)-N-(6-(3-fluorophenyl)-3-(2-iodophenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3i), white solid, 65% yield, 34.4 mg, m.p. 162–164 °C; = +10.0 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.80–7.78 (m, 2H), 7.57 (td, J = 7.8, 1.4 Hz, 1H), 7.51–7.46 (m, 3H), 7.43–7.39 (m, 1H), 7.35–7.31 (m, 3H), 7.25–7.20 (m, 2H), 6.92 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 163.0 (d, J = 250.7, Hz), 161.5, 160.0, 150.2, 141.3, 139.9, 136.4 (d, J = 7.9 Hz), 134.9, 133.2, 131.2 (d, J = 4.2 Hz), 130.19, 130.15, 129.7, 129.1, 128.3, 122.6 (d, J = 3.0 Hz), 118.8 (d, J = 21.1 Hz), 116.5, 114.0 (d, J = 23.9 Hz), 98.0; 19F NMR (377 MHz, CDCl3) δ -110.3; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14FIN2O2SNa 550.9697, found 550.9687; HPLC analysis: 97:3 er (ODH column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 45.0 min, Rt (major) = 47.1 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-(o-tolyl)-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3j), white solid, 53% yield, 28.0 mg, m.p. 160–162 °C; = +19.3 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.78–7.76 (m, 2H), 7.57 (td, J = 7.4, 1.2 Hz, 1H), 7.49–7.44 (m, 1H), 7.38–7.31 (m, 7H), 7.22 (td, J = 7.8, 1.6 Hz, 1H), 6.64 (s, 1H), 2.46 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.5, 161.2, 153.0, 141.5, 139.9 (2C), 135.6, 135.0, 134.1, 133.1, 131.1, 130.6, 130.1, 129.7, 129.2, 128.6, 128.3, 126.4, 119.2, 98.0, 19.9; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O2SNa 546.9948, found 546.9941; UPLC analysis: 97:3 er (OD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 14.7 min, Rt (major) = 17.3 min.
- (Z)-N-(6-(2-fluorophenyl)-3-(2-iodophenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3k), white solid, 48% yield, 25.8 mg, m.p. 114–116 °C; = +10.2 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.79–7.77 (m, 2H), 7.63–7.45 (m, 4H), 7.36–7.29 (m, 4H), 7.25–7.20 (m, 2H), 6.95 (d, J = 1.0 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.4, 160.6, 159.4 (d, J = 258.5 Hz), 146.0, 141.4, 139.9, 134.9, 133.1, 133.0, 130.1, 129.7, 129.1, 128.3, 125.0 (d, J = 3.6 Hz), 124.2, 123.6, 122.4 (d, J = 6.55 Hz), 119.8 (d, J = 5.6 Hz), 117.0 (d, J = 21.9 Hz), 98.0; 19F NMR (377 MHz, CDCl3) δ -112.4; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14FIN2O2SNa 550.9697, found 550.9682; UPLC analysis: 91:9 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 35.4 min, Rt (major) = 47.6 min.
- (Z)-N-(6-(2-chlorophenyl)-3-(2-iodophenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3l), yellow solid, 42% yield, 23.0 mg, m.p. 168–170 °C; = +9.0 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.05 (dd, J = 8.0, 1.4 Hz, 1H), 7.78–7.75 (m, 2H), 7.60–7.30 (m, 9H), 7.23 (td, J = 7.8, 1.6 Hz, 1H), 6.77 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.4, 161.2, 150.0, 141.4, 139.9, 134.9, 133.3, 133.1, 132.4, 131.8, 130.7, 130.24, 130.16, 130.1, 129.7, 129.1, 128.3, 127.4, 120.5, 98.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14ClIN2O2SNa 566.9401, found 566.9395; HPLC analysis: 92:8 er (IB column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 18.4 min, Rt (major) = 21.1 min.
- (Z)-N-(3-(2-iodophenyl)-6-(naphthalen-1-yl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3m), white solid, 57% yield, 32.0 mg, m.p. 185–187 °C; = +24.0 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.14–8.12 (m, 1H), 8.07 (dd, J = 8.0, 1.4 Hz, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.95–7.93 (m, 1H), 7.78–7.76 (m, 2H), 7.66–7.54 (m, 5H), 7.48–7.41 (m, 2H), 7.32 (t, J = 7.8 Hz, 2H), 7.23 (dd, J = 7.8, 1.6 Hz, 1H), 6.87 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.5, 161.3, 151.8, 141.5, 139.9, 135.0, 133.8, 133.1, 132.0, 131.3, 130.1(2C), 130.0, 129.7, 129.2, 128.8, 128.3, 127.7, 127.0, 126.9, 125.1, 124.5, 120.2, 98.1; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C27H17IN2O2SNa 582.9948, found 582.9943; HPLC analysis: 97:3 er (ODH column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 35.4 min, Rt (minor) = 38.5 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-(thiophen-2-yl)-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3n), white solid, 80% yield, 41.8 mg, m.p. 144–146 °C; = +7.6 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 8.0, 1.4 Hz, 1H), 7.81–7.78 (m, 2H), 7.64 (dd, J = 3.8, 1.2 Hz, 1H), 7.60–7.53 (m, 2H), 7.50–7.46 (m, 1H), 7.35–7.31 (m, 3H), 7.23–7.18 (m, 2H), 6.93 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.6, 160.0, 144.1, 141.5, 139.8, 136.9, 134.9, 133.1, 130.6, 130.13, 130.10, 129.6, 129.1, 128.9, 128.3, 113.2, 98.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C21H13IN2O2S2Na 538.9355, found 538.9376; HPLC analysis: 99:1 er (ODH column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 40.9 min, Rt (major) = 46.7 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)-4-methylbenzamide (4a), yellow solid, 45% yield, 23.4 mg, m.p. 156–158 °C; = +16.1 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 8.0, 1.4 Hz, 1H), 7.71–7.68 (m, 4H), 7.57–7.49 (m, 4H), 7.33 (dd, J = 8.0, 1.6 Hz, 1H), 7.20 (td, J = 7.8, 1.6 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 6.92 (s, 1H), 2.36 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.9, 159.9, 151.7, 144.0, 141.4, 139.8, 134.4, 132.4, 131.8, 130.2, 130.1, 129.7, 129.4, 129.1, 126.8, 115.7, 98.1, 21.8; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O2SNa 546.9948, found 546.9949; UPLC analysis: 93:7 er (OD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 24.1 min, Rt (minor) = 32.6 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)-3-methylbenzamide (4b), white solid, 41% yield, 21.7 mg, m.p. 128–130 °C; = +17.5 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.71–7.69 (m, 2H), 7.62–7.49 (m, 6H), 7.35 (dd, J = 8.0, 1.4 Hz, 1H), 7.30–7.28 (m, 1H), 7.24–7.19 (m, 2H), 6.93 (s, 1H), 2.30 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.7, 161.8, 159.7, 151.5, 141.5, 139.8, 138.0, 134.9, 134.4, 133.9, 131.8, 130.9, 130.0, 129.7, 129.4, 129.2, 129.1, 128.2, 127.2, 126.8, 115.7, 98.1, 21.3; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O2SNa 546.9948, found 546.9941; UPLC analysis: 90:10 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 32.5 min, Rt (minor) = 36.2 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)-3-methoxybenzamide (4c), white solid, 49% yield, 26.6 mg, m.p. 131–133 °C; = +14.3 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 8.0, 1.4 Hz, 1H), 7.73–7.70 (m, 2H), 7.59–7.50 (m, 4H), 7.45 (dt, J = 7.6, 1.2 Hz, 1H), 7.35 (dd, J = 8.0, 1.6 Hz, 1H), 7.29–7.28 (m, 1H), 7.24–7.18 (m, 2H), 7.04–7.01 (m, 1H), 6.94 (s, 1H), 3.70 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.4, 161.8, 160.8, 159.4, 151.7, 141.6, 139.8, 136.4, 134.3, 131.9, 130.0, 129.7, 129.5, 129.4, 129.1, 126.8, 122.6, 120.7, 115.8, 113.4, 98.1, 55.3; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O3SNa 562.9897, found 562.9893; UPLC analysis: 90:10 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 34.3 min, Rt (major) = 43.5 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)-2-methylbenzamide (4d), light yellow solid, 42% yield, 22.1 mg, m.p. 139–141 °C; = +10.7 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.01 (dd, J = 8.0, 1.4 Hz, 1H), 7.72–7.69 (m, 2H), 7.62 (dd, J = 8.0, 1.5 Hz, 1H), 7.58–7.49 (m, 4H), 7.34–7.30 (m, 2H), 7.20–7.15 (m, 2H), 7.09 (td, J = 7.6, 1.4 Hz, 1H), 6.92 (s, 1H), 2.50 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 177.2, 161.9, 159.5, 151.7, 141.5, 141.2, 139.9, 134.5, 133.7, 132.3, 132.2, 131.9, 131.8, 130.1, 129.7, 129.4, 129.1, 126.9, 125.6, 115.8, 98.2, 22.3; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O2SNa 546.9948, found 546.9937; UPLC analysis: 87:13 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 17.4 min, Rt (major) = 25.5 min.
- (Z)-4-fluoro-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4e), yellow solid, 49% yield, 26.1 mg, m.p. 147–149 °C; = +17.0 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.82–7.77 (m, 2H), 7.72–7.69 (m, 2H), 7.59–7.50 (m, 4H), 7.33 (dd, J = 8.0, 1.6 Hz, 1H), 7.22 (td, J = 7.8, 1.6 Hz, 1H), 7.02–6.96 (m, 2H), 6.94 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.4, 165.9 (d, J = 255.4 Hz), 161.7, 161.0, 151.6, 141.4, 139.9, 134.3, 132.7 (d, J = 9.5 Hz), 131.9, 131.4 (d, J = 2.6 Hz), 130.2, 129.7, 129.5, 129.0, 126.8, 115.8, 115. 4 (d, J = 21.9 Hz), 98.0; 19F NMR (377 MHz, CDCl3) δ -105.5; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14FIN2O2SNa 550.9697, found 550.9694; UPLC analysis: 93:7 er (OD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 21.3 min, Rt (minor) = 33.9 min.
- (Z)-4-chloro-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4f), white solid, 63% yield, 34.3 mg, m.p. 160–163 °C; = +17.4 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 8.0, 1.4 Hz, 1H), 7.72–7.69 (m, 4H), 7.59–7.50 (m, 5H), 7.34–7.28 (m, 3H), 7.22 (td, J = 7.8, 1.6 Hz, 1H), 6.95 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.5, 161.6, 161.2, 151.6, 141.4, 139.9, 139.5, 134.3, 133.6, 131.9, 131.5, 130.6, 129.7, 129.5, 129.1, 128.6, 126.8, 115.9, 97.9; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14ClIN2O2SNa 566.9401, found 566.9392; UPLC analysis: 90:10 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 36.2 min, Rt (minor) = 56.0 min.
- (Z)-4-bromo-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4g), white solid, 48% yield, 28.3 mg, m.p. 166–168 °C; = +20.4 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 8.0, 1.4 Hz, 1H), 7.72–7.69 (m, 2H), 7.64–7.61 (m, 2H), 7.59–7.49 (m, 4H), 7.48–7.45 (m, 2H), 7.32 (dd, J = 8.0, 1.6 Hz, 1H), 7.21 (td, J = 7.8, 1.6 Hz, 1H), 6.94 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.7, 161.6, 161.3, 151.6, 141.4, 139.9, 134.3, 134.0, 131.9, 131.63, 131.59, 130.2, 129.7, 129.5, 129.1, 128.3, 126.8, 115.9, 97.9; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14BrIN2O2SNa 610.8896, found 610.8890; HPLC analysis: 90:10 er (IA column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 37.0 min, Rt (minor) = 48.5 min.
- (Z)-3-fluoro-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4h), white solid, 51% yield, 26.7 mg, m.p. 132–134 °C; = +23.6 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.05 (dd, J = 8.0, 1.4 Hz, 1H), 7.72–7.69 (m, 2H), 7.60–7.50 (m, 5H), 7.43–7.39 (m, 1H), 7.34–7.27 (m, 2H), 7.25–7.14 (m, 2H), 6.95 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.3, 162.7 (d, J = 247.9 Hz), 161.6, 161.5, 151.6, 141.3, 139.9, 137.4 (d, J = 7.3 Hz), 134.3, 131.9, 130.2, 129.9 (d, J = 7.9 Hz), 129.7, 129.5, 129.0, 126.8, 125.7 (d, J = 2.9 Hz), 120.0 (d, J = 21.8 Hz), 116.8 (d, J = 23.1 Hz), 115.9, 97.9; 19F NMR (377 MHz, CDCl3) δ -112.6; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14FIN2O2SNa 550.9697, found 550.9694; UPLC analysis: 90:10 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 29.5 min, Rt (major) = 33.9 min.
- (Z)-3-chloro-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4i), white solid, 70% yield, 38.5 mg, m.p. 124–126 °C; = +32.7 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.05 (dd, J =7.6, 1.2 Hz, 1H), 7.71–7.66 (m, 4H), 7.60–7.49 (m, 4H), 7.44–7.41 (m, 1H), 7.33 (dd, J = 7.6, 1.6 Hz, 1H), 7.27 (d, J = 7.8 Hz, 1H), 7.25–7.21 (m, 1H), 6.95 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.1, 161.6, 161.4, 151.5, 141.3, 139.9, 136.9, 134.4, 134.3, 132.9, 131.9, 130.4, 130.2, 129.7, 129.6, 129.5, 129.0, 128.0, 126.8, 115.9, 97.9; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14ClIN2O2SNa 566.9401, found 566.9395; HPLC analysis: 88:12 er (IB column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 27.6 min, Rt (minor) = 38.8 min.
- (Z)-3-bromo-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4j), white solid, 48% yield, 28.5 mg, m.p. 126–128 °C; = +25.1 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.06 (dd, J = 8.0, 1.4 Hz, 1H), 7.85 (t, J = 1.8 Hz, 1H), 7.75–7.69 (m, 3H), 7.60–7.50 (m, 5H), 7.33 (dd, J = 7.8, 1.4 Hz, 1H), 7.24–7.19 (m, 2H), 6.96 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.0, 161.6, 161.5, 151.5, 141.3, 140.0, 137.0, 135.8, 134.2, 133.4, 132.0, 130.3, 129.9, 129.8, 129.5, 129.0, 128.4, 126.8, 122.5, 116.0, 97.9; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14BrIN2O2SNa 610.8896, found 610.8890; UPLC analysis: 89:11 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 31.0 min, Rt (major) = 35.4 min.
- (Z)-2-fluoro-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4k), yellow solid, 56% yield, 29.6 mg, m.p. 131–133 °C; = +8.4 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.02 (dd, J = 8.0, 1.4 Hz, 1H), 7.72–7.69 (m, 2H), 7.59–7.49 (m, 5H), 7.46–7.40 (m, 1H), 7.32 (dd, J = 8.0, 1.4 Hz, 1H), 7.20 (td, J = 7.8, 1.6 Hz, 1H), 7.08–7.00 (m, 2H), 6.95 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 173.2, 162.8 (d, J = 263.2 Hz), 161.7, 160.9, 151.7, 141.3, 139.8, 134.7 (d, J = 9.4 Hz), 134.3, 133.0, 131.9, 130.1, 129.7, 129.5, 129.1, 126.8, 123.7 (d, J = 4.3 Hz), 123.2 (d, J = 6.9 Hz), 117.0 (d, J = 22.2 Hz), 115.8, 98.0; 19F NMR (377 MHz, CDCl3) δ -110.2; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14FIN2O2SNa 550.9697, found 550.9692; UPLC analysis: 88:12 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 28.8 min, Rt (major) = 51.5 min.
- (Z)-2-chloro-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4l), yellow solid, 40% yield, 21.6 mg, m.p. 141–143 °C; = +7.1 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.00 (dd, J = 8.0, 1.4 Hz, 1H), 7.73–7.70 (m, 2H), 7.59–7.50 (m, 5H), 7.39–7.29 (m, 3H), 7.20–7.12 (m, 2H), 6.95 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.5, 161.7, 161.2, 151.7, 141.4, 139.8, 134.7, 134.3, 133.4, 133.0, 132.7, 132.0, 131.4, 130.1, 129.6, 129.5, 129.1, 126.9, 126.4, 115.9, 98.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14ClIN2O2SNa 566.9401, found 566.9392; HPLC analysis: 84:16 er (IB column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 28.2 min, Rt (major) = 31.9 min.
- (Z)-2-bromo-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4m), yellow solid, 37% yield, 21.7 mg, m.p. 138–140 °C; = +10.2 (c = 0.8 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.00 (dd, J = 8.0, 1.4 Hz, 1H), 7.73–7.70 (m, 2H), 7.61–7.50 (m, 6H), 7.31 (dd, J = 8.0, 1.6 Hz, 1H), 7.25–7.15 (m, 3H), 6.95 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.9, 161.7, 161.3, 151.7, 141.3, 139.8, 135.1, 134.8, 134.3, 133.1, 132.7, 131.9, 130.1, 129.7, 129.5, 129.2, 127.0, 126.9, 122.7, 115.9, 98.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14BrIN2O2SNa 610.8896, found 610.8890; UPLC analysis: 85:15 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 25.2 min, Rt (major) = 47.3 min.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- De Pestel, D.D.; Benninger, M.S.; Danziger, L.; LaPlante, K.L.; May, C.; Luskin, A.; Pichichero, M.; Hadley, J.A. Cephalosporin use in treatment of patients with penicillin allergies. J. Am. Pharm. Assoc. 2008, 48, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Lam, A.; Schweizer, F.; Thomson, K.; Walkty, A.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; Noreddin, A.M.; Karlowsky, J.A. Ceftobiprole: A review of a broad-spectrum and anti-MRSA cephalosporin. Am. J. Clin. Dermatol. 2008, 9, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Silakari, O.; Singh, P.K. Key updates on the chemistry and biological roles of thiazine scaffold: A review. Mini-Rev. Med. Chem. 2018, 18, 1452–1478. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.I.A.; Khan, R.; Arfan, M.; Wadood, A.; Ghufran, M. Synthesis, in vitro urease inhibitory activity and molecular docking of 3,5-disubstituted thiadiazine-2-thiones. J. Heterocycl. Chem. 2019, 56, 3073–3080. [Google Scholar] [CrossRef]
- Asif, M.; Imran, M.; Abida. Antimicrobial activities of various thiazine based heterocyclic compounds: A mini-review. Mini-Rev. Org. Chem. 2022, 19, 166–172. [Google Scholar] [CrossRef]
- Salarian, A.A.; Mollamahale, Y.B.; Hami, Z.; Soltani-Rezaee-Rad, M. Cephalexin nanoparticles: Synthesis, cytotoxicity and their synergistic antibacterial study in combination with silver nanoparticles. Mater. Chem. Phys. 2017, 198, 125–130. [Google Scholar] [CrossRef]
- Hartwig, J.; Sommer, H.; Mueller, F. Nematicides. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley Online Library: New York, NY, USA, 2001; pp. 17–125. [Google Scholar]
- Mansour, R.; Belzunces, L.P.; Suma, P.; Zappalà, L.; Mazzeo, G.; Grissa-Lebdi, K.; Russo, A.; Biondi, A. Vine and citrus mealybug pest control based on synthetic chemicals. A review. Agron. Sustain. Dev. 2018, 38, 37. [Google Scholar] [CrossRef]
- Behalo, M.S. Synthesis of some novel thiazolo[3,2-a]pyrimidine and pyrimido[2,1-b][1,3]thiazine derivatives and their antimicrobial evaluation. J. Heterocycl. Chem. 2015, 55, 1391–1397. [Google Scholar] [CrossRef]
- Ishak, E.A. Microwave-assisted green synthesis of 1,3-thiazines as potential antifungal agents using lemon juice. J. Mater. Environ. Sci. 2019, 10, 54–59. [Google Scholar]
- Chen, Y.; Li, T.; Jin, Z.; Chi, Y.R. New axially chiral molecular scaffolds with antibacterial activities against Xanthomonas oryzae pv. oryzae for protection of rice. J. Agric. Food Chem. 2022, 70, 6050–6058. [Google Scholar] [CrossRef]
- Mizutani, N.; Chiou, W.-H.; Ojima, I. New and efficient synthesis of azabicyclo[4.4.0]alkane amino acids by Rh-catalyzed cyclohydrocarbonylation. Org. Lett. 2002, 4, 4575–4578. [Google Scholar] [CrossRef]
- Evans, D.A.; Fandrick, K.R.; Song, H.-J.; Scheidt, K.A.; Xu, R. Enantioselective Friedel-Crafts alkylations catalyzed by bis(oxazolinyl)pyridine-scandium(III) triflate complexes. J. Am. Chem. Soc. 2007, 129, 10029–10041. [Google Scholar] [CrossRef]
- La-Venia, A.; Ventosa-Andrés, P.; Hradilová, L.; Krchňák, V. From amino acids to nature-inspired molecular scaffolds: Incorporation of medium-sized bridged heterocycles into a peptide backbone. J. Org. Chem. 2014, 79, 10378–10389. [Google Scholar] [CrossRef]
- Unsworth, W.P.; Coulthard, G.; Kitsiou, C.; Taylor, R.J.K. Direct imine acylation for molecular diversity in heterocyclic synthesis. J. Org. Chem. 2014, 79, 1368–1376. [Google Scholar] [CrossRef]
- Xiong, J.; Zhong, G.; Liu, Y. Domino reactions initiated by copper-catalyzed aryl-I bond thiolation for the switchable synthesis of 2,3-dihydrobenzothiazinones and benzoisothiazolones. Adv. Synth. Catal. 2019, 361, 550–555. [Google Scholar] [CrossRef]
- Nosova, E.V.; Lipunova, G.N.; Charushin, V.N.; Chupakhin, O.N. Synthesis and biological activity of 2-amino- and 2-aryl (heteryl) substituted 1,3-benzothiazin-4-ones. Mini-Rev. Med. Chem. 2019, 19, 999–1014. [Google Scholar] [CrossRef]
- Luo, Z.; Bhavanarushi, S.; Sreenivas, A.; Reddy, N.S.; Valeru, A.; Khan, I.; Xu, Y.; Liu, B.; Xie, J. Trifluoroborane catalyzed chemoselective synthesis of highly functionalized 1,3-thiazin-2-ylidenes. J. Heterocycl. Chem. 2020, 57, 3334–3341. [Google Scholar] [CrossRef]
- Wang, H.; Gu, S.; Yan, Q.; Ding, L.; Chen, F.-E. Asymmetric catalysis in synthetic strategies for chiral benzothiazepines. Green Synth. Catal. 2020, 1, 12–25. [Google Scholar] [CrossRef]
- Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto, R. Low-loading asymmetric organocatalysis. Chem. Soc. Rev. 2012, 41, 2406–2447. [Google Scholar] [CrossRef]
- Akiyama, T.; Mori, K. Stronger brønsted acids: Recent progress. Chem. Rev. 2015, 115, 9277–9306. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem. Rev. 2003, 103, 3029–3070. [Google Scholar] [CrossRef] [PubMed]
- Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived brønsted acid and metal catalysis: History and classification by mode of activation; brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev. 2014, 114, 9047–9153. [Google Scholar] [CrossRef] [PubMed]
- LaPlante, S.R.; Fader, L.D.; Fandrick, K.R.; Fandrick, D.R.; Hucke, O.; Kemper, R.; Miller, S.P.F.; Edwards, P.J. Assessing atropisomer axial chirality in drug discovery and development. J. Med. Chem. 2011, 54, 7005–7022. [Google Scholar] [CrossRef] [PubMed]
- LaPlante, S.R.; Edwards, P.J.; Fader, L.D.; Jakalian, A.; Hucke, O. Revealing atropisomer axial chirality in drug discovery. ChemMedChem 2011, 6, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Enders, D.; Niemeier, O.; Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 2007, 107, 5606–5655. [Google Scholar] [CrossRef]
- Biju, A.T.; Kuhl, N.; Glorius, F. Extending NHC-catalysis: Coupling aldehydes with unconventional reaction partners. Acc. Chem. Res. 2011, 44, 1182–1195. [Google Scholar] [CrossRef]
- Bugaut, X.; Glorius, F. Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chem. Soc. Rev. 2012, 41, 3511–3522. [Google Scholar] [CrossRef]
- Cohen, D.T.; Scheidt, K.A. Cooperative Lewis acid/N-heterocyclic carbene catalysis. Chem. Sci. 2012, 3, 53–57. [Google Scholar] [CrossRef]
- André Grossmann, D.-C.; Enders, D. N-heterocyclic carbene catalyzed domino reactions. Angew. Chem. Int. Ed. 2012, 51, 314–325. [Google Scholar] [CrossRef]
- Ryan, S.J.; Candisha, L.; Lupton, D.W. Acyl anion free N-heterocyclic carbene organocatalysis. Chem. Soc. Rev. 2013, 42, 4906–4917. [Google Scholar] [CrossRef]
- Connon, S.J. Diaminocyclopropenylidene organocatalysts: Beyond N-heterocyclic carbenes. Angew. Chem. Int. Ed. 2014, 53, 1203–1205. [Google Scholar] [CrossRef]
- Hopkinson, M.N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature 2014, 510, 485–496. [Google Scholar] [CrossRef]
- Mahatthananchai, J.; Bode, J.W. On the mechanism of N-heterocyclic carbene-catalyzed reactions involving acyl azoliums. Acc. Chem. Res. 2014, 47, 696–707. [Google Scholar] [CrossRef]
- Flanigan, D.M.; Romanov-Michailidis, F.; White, N.A.; Rovis, T. Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem. Rev. 2015, 115, 9307–9387. [Google Scholar] [CrossRef]
- Menon, R.S.; Biju, A.T.; Nair, V. Recent advances in employing homoenolates generated by N-heterocyclic carbene (NHC) catalysis in carbon–carbon bond-forming reactions. Chem. Soc. Rev. 2015, 44, 5040–5052. [Google Scholar] [CrossRef]
- Wang, M.H.; Scheidt, K.A. Cooperative catalysis and activation with N-heterocyclic carbenes. Angew. Chem. Int. Ed. 2016, 55, 14912–14922. [Google Scholar] [CrossRef]
- Zhang, C.; Hooper, J.F.; Lupton, D.W. N-heterocyclic carbene catalysis via the α,β-unsaturated acyl azolium. ACS Catal. 2017, 7, 2583–2596. [Google Scholar] [CrossRef]
- Murauski, K.J.R.; Jaworskia, A.A.; Scheidt, K.A. A continuing challenge: N-heterocyclic carbene-catalyzed syntheses of γ-butyrolactones. Chem. Soc. Rev. 2018, 47, 1773–1782. [Google Scholar] [CrossRef]
- Smith, C.A.; Narouz, M.R.; Lummis, P.A.; Singh, I.; Nazemi, A.; Li, C.-H.; Crudden, C.M. N-Heterocyclic carbenes in materials chemistry. Chem. Rev. 2019, 119, 4986–5056. [Google Scholar] [CrossRef]
- Biju, A.T. N-Heterocyclic Carbenes in Organocatalysis; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Kim, Y.; Li, C.-J. Perspectives on green synthesis and catalysis. Green Synth. Catal. 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Jin, Z.; Chi, Y.R. N-heterocyclic carbene organocatalysis: Activation modes and typical reactive intermediates. Chin. J. Chem. 2020, 38, 1167–1202. [Google Scholar] [CrossRef]
- Zhao, C.; Blaszczyk, S.A.; Wang, J. Asymmetric reactions of N-heterocyclic carbene (NHC)-based chiral acyl azoliums and azolium enolates. Green Synth. Catal. 2021, 2, 198–215. [Google Scholar] [CrossRef]
- Bellotti, P.; Koy, M.; Glorius, F.; Hopkinson, M.N. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 2021, 5, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, H.; Jin, Z.; Chi, Y.R. Development of green and low-cost chiral oxidants for asymmetric catalytic hydroxylation of enals. Green Synth. Catal. 2021, 2, 295–298. [Google Scholar] [CrossRef]
- Li, T.; Jin, Z.; Chi, Y.R. N-heterocyclic carbene-catalyzed arene formation reactions. Sci. China Chem. 2022, 65, 210–223. [Google Scholar] [CrossRef]
- Wang, K.; Fan, R.; Wei, X.; Fang, W. Palladacyclic N-heterocyclic carbene precatalysts for transition metal catalysis. Green Synth. Catal. 2022, 3, 327–338. [Google Scholar] [CrossRef]
- Risi, C.D.; Brandolese, A.; Carmine, G.D.; Ragno, D.; Massi, A.; Bortolini, O. Oxidative N-heterocyclic carbene catalysis. Chem. Eur. J. 2023, 29, e202202467. [Google Scholar]
- Zhang, C.; Gao, Y.; Wang, H.-Y.; Zhou, B.-A.; Ye, S. Enantioselective synthesis of axially chiral benzothiophene/benzofuran-fused biaryls by N-heterocyclic carbene catalyzed arene formation. Angew. Chem. Int. Ed. 2021, 60, 13918–13922. [Google Scholar] [CrossRef]
- Feng, J.; Du, D. Asymmetric synthesis of atropisomers enabled by N-heterocyclic carbene catalysis. Tetrahedron 2021, 100, 132456. [Google Scholar] [CrossRef]
- Barik, S.; Das, R.C.; Balanna, K.; Biju, A.T. Kinetic resolution approach to the synthesis of C–N axially chiral N-aryl aminomaleimides via NHC-catalyzed [3 + 3] annulation. Org. Lett. 2022, 24, 5456–5461. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Liao, G.; Shi, B.-F. Stereoselective construction of atropisomers featuring a C-N chiral axis. Green Synth. Catal. 2022, 3, 117–136. [Google Scholar] [CrossRef]
- Li, T.; Mou, C.; Qi, P.; Peng, X.; Jiang, S.; Hao, G.; Xue, W.; Yang, S.; Hao, L.; Chi, Y.R.; et al. N-heterocyclic carbene-catalyzed atroposelective annulation for access to thiazine derivatives with C-N axial chirality. Angew. Chem. Int. Ed. 2021, 60, 9362–9367. [Google Scholar] [CrossRef]
- Kerr, M.S.; Read de Alaniz, J.; Rovis, T. A highly enantioselective catalytic intramolecular Stetter reaction. J. Am. Chem. Soc. 2002, 124, 10298–10299. [Google Scholar] [CrossRef]
- He, M.; Struble, J.R.; Bode, J.W. Highly enantioselective azadiene Diels−Alder reactions catalyzed by chiral N-heterocyclic carbenes. J. Am. Chem. Soc. 2006, 128, 8418–8420. [Google Scholar] [CrossRef]
- Cardinal-David, B.; Raup, D.E.A.; Scheidt, K.A. Cooperative N-heterocyclic carbene/Lewis acid catalysis for highly stereoselective annulation reactions with homoenolates. J. Am. Chem. Soc. 2010, 132, 5345–5347. [Google Scholar] [CrossRef]
- Kerr, M.S.; Rovis, T. Enantioselective synthesis of quaternary stereocenters via a catalytic asymmetric Stetter reaction. J. Am. Chem. Soc. 2004, 126, 8876–8877. [Google Scholar] [CrossRef]
- Zhao, C.; Li, F.; Wang, J. N-heterocyclic carbene catalyzed dynamic kinetic resolution of pyranones. Angew. Chem. Int. Ed. 2016, 55, 1852–1856. [Google Scholar] [CrossRef]
- Kuwano, S.; Harada, S.; Kang, B.; Oriez, R.; Yamaoka, Y.; Takasu, K.; Yamada, K. Enhanced rate and selectivity by carboxylate salt as a basic cocatalyst in chiral N-heterocyclic carbene-catalyzed asymmetric acylation of secondary alcohols. J. Am. Chem. Soc. 2013, 135, 11485–11488. [Google Scholar] [CrossRef]
- Mew, T.W. Focus on bacterial blight of rice. Plant Pathol. 1993, 77, 5–12. [Google Scholar] [CrossRef]
- Rodl, C.B.; Vogt, D.; Kretschmer, S.B.; Ihlefeld, K.; Barzen, S.; Bruggerhoff, A.; Achenbach, J.; Proschak, E.; Steinhilber, D.; Stark, H.; et al. Multi-dimensional target profiling of N,4-diaryl-1,3-thiazole-2-amines as potent inhibitors of eicosanoid metabolism. Eur. J. Med. Chem. 2014, 84, 302–311. [Google Scholar] [CrossRef]
Entry | NHC | Base | Solvent | Yield [b] [%] | E.r. [c] |
---|---|---|---|---|---|
1 | A | DMAP | furan | 30 | 81:19 |
2 | B | DMAP | furan | 29 | 56:44 |
3 | C | DMAP | furan | <5 | - |
4 | D | DMAP | furan | 27 | 86:14 |
5 | E | DMAP | furan | 27 | 84:16 |
6 | D | Et3N | furan | 12 | 88:12 |
7 | D | Cs2CO3 | furan | 13 | 86:14 |
8 | D | DABCO | THF | <5 | - |
9 | D | DMAP | THF | 54 | 91:9 |
10 | D | DMAP | EtOAc | 34 | 89:11 |
11 | D | DMAP | DCM | 22 | 77:23 |
Compounds | Xanthomonas oryzae pv. oryzae (Xoo) Inhibition Ratio (%) [a] | |
---|---|---|
100 μg/mL | 50 μg/mL | |
3a | 95.4 ± 2.2 | 54.5 ± 0.8 |
3d | 90.1 ± 1.2 | 50.5 ± 0.8 |
3g | 94.9 ± 0.3 | 89.6 ± 0.5 |
3h | 89.6 ± 0.6 | 48.6 ± 0.9 |
3j | 88.3 ± 1.8 | 23.9 ± 2.3 |
4b | 94.7 ± 0.2 | 87.6 ± 0.2 |
4c | 92.2 ± 2.3 | 88.6 ± 1.3 |
4d | 87.7 ± 1.5 | 35.2 ± 1.1 |
4f | 87.2 ± 0.5 | 37.4 ± 2.6 |
4k | 98.3 ± 0.4 | 46.4 ± 0.1 |
4m | 83.7 ± 1.1 | 73.3 ± 2.1 |
Thiodiazole copper | 78.2 ± 1.7 | 56.5 ± 1.3 |
Bismerthiazol | 95.4 ± 0.3 | 72.3 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, T.; Chen, J.; Huang, Y.; Shen, T.; Li, S.; Jin, Z.; Ren, S.-C. Carbene-Catalyzed Atroposelective Annulation for Quick Access to Axially Chiral Thiazine Derivatives. Molecules 2023, 28, 4052. https://doi.org/10.3390/molecules28104052
Yang X, Li T, Chen J, Huang Y, Shen T, Li S, Jin Z, Ren S-C. Carbene-Catalyzed Atroposelective Annulation for Quick Access to Axially Chiral Thiazine Derivatives. Molecules. 2023; 28(10):4052. https://doi.org/10.3390/molecules28104052
Chicago/Turabian StyleYang, Xiaoqun, Tingting Li, Jinli Chen, Yixian Huang, Tingwei Shen, Shiguang Li, Zhichao Jin, and Shi-Chao Ren. 2023. "Carbene-Catalyzed Atroposelective Annulation for Quick Access to Axially Chiral Thiazine Derivatives" Molecules 28, no. 10: 4052. https://doi.org/10.3390/molecules28104052
APA StyleYang, X., Li, T., Chen, J., Huang, Y., Shen, T., Li, S., Jin, Z., & Ren, S.-C. (2023). Carbene-Catalyzed Atroposelective Annulation for Quick Access to Axially Chiral Thiazine Derivatives. Molecules, 28(10), 4052. https://doi.org/10.3390/molecules28104052