Ionizable Lipids with Triazole Moiety from Click Reaction for LNP-Based mRNA Delivery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Triazole-Containing Ionizable Lipids
2.2. Biocompatibility of Triazole-Containing Ionizable Lipids
2.3. Preparation and Characterization of LNPs with Cp1-n as the Ionizable Lipids
2.4. Encapsulation Rates of mRNA in the Cp1-n-Based LNPs
2.5. mRNA Delivery by the Cp1-n-Based LNPs
3. Materials and Methods
3.1. General
3.2. LNP Formulation
3.3. LNP Size Distribution and Zeta Potential
3.4. mRNA Concentration and Encapsulation Efficiency
3.5. Cell Transfection and Luciferase Expression
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Barbier, A.J.; Jiang, A.Y.; Zhang, P.; Wooster, R.; Anderson, D.G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 2022, 40, 840–854. [Google Scholar] [CrossRef]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Y.; Dong, Y. Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications. Acc. Chem. Res. 2021, 54, 4283–4293. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Wang, Z.G.; Liu, S.L. Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy. Molecules 2022, 27, 5607. [Google Scholar] [CrossRef]
- Eygeris, Y.; Gupta, M.; Kim, J.; Sahay, G. Chemistry of Lipid Nanoparticles for RNA Delivery. Acc. Chem. Res. 2022, 55, 2–12. [Google Scholar] [CrossRef]
- Semple, S.C.; Akinc, A.; Chen, J.; Sandhu, A.P.; Mui, B.L.; Cho, C.K.; Sah, D.W.; Stebbing, D.; Crosley, E.J.; Yaworski, E.; et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010, 28, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Cheng, Q.; Yu, X.; Liu, S.; Johnson, L.T.; Siegwart, D.J. A Systematic Study of Unsaturation in Lipid Nanoparticles Leads to Improved mRNA Transfection In Vivo. Angew. Chem. Int. Ed. Engl. 2021, 60, 5848–5853. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Hatit, M.Z.C.; Zhao, K.; Loughrey, D.; Lokugamage, M.P.; Peck, H.E.; Cid, A.D.; Muralidharan, A.; Kim, Y.; Santangelo, P.J.; et al. Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo. Nat. Commun. 2022, 13, 4766. [Google Scholar] [CrossRef]
- Qiu, M.; Tang, Y.; Chen, J.; Muriph, R.; Ye, Z.; Huang, C.; Evans, J.; Henske, E.P.; Xu, Q. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl. Acad. Sci. USA 2022, 119, e2116271119. [Google Scholar] [CrossRef] [PubMed]
- Tilstra, G.; Couture-Senecal, J.; Lau, Y.M.A.; Manning, A.M.; Wong, D.S.M.; Janaeska, W.W.; Wuraola, T.A.; Pang, J.; Khan, O.F. Iterative Design of Ionizable Lipids for Intramuscular mRNA Delivery. J. Am. Chem. Soc. 2023, 145, 2294–2304. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, X.Q.; Ho, W.; Li, F.; Gao, M.; Bai, X.; Xu, X. Enzyme-Catalyzed One-Step Synthesis of Ionizable Cationic Lipids for Lipid Nanoparticle-Based mRNA COVID-19 Vaccines. ACS Nano 2022, 16, 18936–18950. [Google Scholar] [CrossRef]
- Prescher, J.A.; Bertozzi, C.R. Chemistry in living systems. Nat. Chem. Biol. 2005, 1, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Favalli, N.; Bassi, G.; Zanetti, T.; Scheuermann, J.; Neri, D. Screening of copper and palladium-mediated reactions compatible with DNA-encoded chemical libraries. Helv. Chim. Acta 2019, 102, e1900033. [Google Scholar] [CrossRef]
- Lewis, W.G.; Green, L.G.; Grynszpan, F.; Radic, Z.; Carlier, P.R.; Taylor, P.; Finn, M.G.; Sharpless, K.B. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. Int. Ed. Engl. 2002, 41, 1053–1057. [Google Scholar] [CrossRef]
- Hassett, K.J.; Benenato, K.E.; Jacquinet, E.; Lee, A.; Woods, A.; Yuzhakov, O.; Himansu, S.; Deterling, J.; Geilich, B.M.; Ketova, T.; et al. Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines. Mol. Ther. Nucleic Acids 2019, 15, 1–11. [Google Scholar] [CrossRef]
- Bahl, K.; Senn, J.J.; Yuzhakov, O.; Bulychev, A.; Brito, L.A.; Hassett, K.J.; Laska, M.E.; Smith, M.; Almarsson, O.; Thompson, J.; et al. Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Mol. Ther. 2017, 25, 1316–1327. [Google Scholar] [CrossRef] [PubMed]
- Belliveau, N.M.; Huft, J.; Lin, P.J.C.; Chen, S.; Leung, A.K.K.; Leaver, T.J.; Wild, A.W.; Lee, J.B.; Taylor, R.J.; Tam, Y.K.; et al. Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA. Mol. Ther.-Nucleic Acids 2012, 1, e37. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Love, K.T.; Chen, Y.; Eltoukhy, A.A.; Kastrup, C.; Sahay, G.; Jeon, A.; Dong, Y.; Whitehead, K.A.; Anderson, D.G. Rapid Discovery of Potent siRNA-Containing Lipid Nanoparticles Enabled by Controlled Microfluidic Formulation. J. Am. Chem. Soc. 2012, 134, 6948–6951. [Google Scholar] [CrossRef] [PubMed]
- Terada, T.; Kulkarni, J.A.; Huynh, A.; Chen, S.; van der Meel, R.; Tam, Y.Y.C.; Cullis, P.R. Characterization of Lipid Nanoparticles Containing Ionizable Cationic Lipids Using Design-of-Experiments Approach. Langmuir 2021, 37, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.K.; Mattern-Schain, S.I.; Best, M.D.; Kirkpatrick, S.S.; Freeman, M.B.; Grandas, O.H.; Mountain, D.J.H. Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. J. Surg. Res. 2017, 219, 136–144. [Google Scholar] [CrossRef]
- Yezhelyev, M.V.; Qi, L.; O’Regan, R.M.; Nie, S.; Gao, X. Proton-Sponge Coated Quantum Dots for siRNA Delivery and Intracellular Imaging. J. Am. Chem. Soc. 2008, 130, 9006–9012. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.M.; Barman, S.; Basu, A.; Ghatak, T.; Pore, S.K.; Ghosh, S.K.; Mukherjee, R.; Maity, A.R. Amine as a bottom-line functionality on DDS surface for efficient endosomal escape and further subcellular targets. J. Drug. Deliv. Sci. Technol. 2022, 71, 103303. [Google Scholar] [CrossRef]
- Wolbers, F.; ter Braak, P.; Le Gac, S.; Luttge, R.; Andersson, H.; Vermes, I.; van den Berg, A. Viability study of HL60 cells in contact with commonly used microchip materials. Electrophoresis 2006, 27, 5073–5080. [Google Scholar] [CrossRef] [PubMed]
Lipid | SM-102 | Cp1-1 | Cp1-2 | Cp1-3 | Cp1-4 | Cp1-5 | Cp1-6 | Cp1-7 |
Zeta Potential of LNPs (mV) | + 15.77 ± 1.25 | + 16.68 ± 1.88 | + 14.90 ± 0.44 | + 10.64 ± 0.67 | + 14.63 ± 0.68 | + 15.28 ± 1.24 | + 13.45 ± 2.58 | + 11.79 ± 0.71 |
Lipid | Cp1-8 | Cp1-9 | Cp1-10 | Cp1-11 | Cp1-12 | Cp1-13 | Cp1-14 | |
Zeta Potential of LNPs (mV) | + 18.71 ± 1.54 | + 25.41 ± 0.90 | + 19.26 ± 2.06 | + 11.46 ± 2.40 | + 25.04 ± 0.86 | + 8.64 ± 0.97 | + 13.45 ± 1.69 |
Lipid | Encapsulation Rate (%) | Lipid | Encapsulation Rate (%) |
---|---|---|---|
SM-102 | 89.98 ± 0.78 | Cp1-8 | 88.86 ± 1.53 |
Cp1-1 | 88.20 ± 4.61 | Cp1-9 | 88.01 ± 3.44 |
Cp1-2 | 91.64 ± 4.59 | Cp1-10 | 84.52 ± 6.04 |
Cp1-3 | 89.28 ± 2.42 | Cp1-11 | 84.10 ± 1.00 |
Cp1-4 | 89.55 ± 1.92 | Cp1-12 | 88.24 ± 3.83 |
Cp1-5 | 91.53 ± 0.68 | Cp1-13 | 85.87 ± 4.44 |
Cp1-6 | 91.92 ± 3.09 | Cp1-14 | 89.28 ± 2.40 |
Cp1-7 | 91.53 ± 3.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Si, X.; Feng, Y.; Feng, D.; Xu, X.; Zhang, Y. Ionizable Lipids with Triazole Moiety from Click Reaction for LNP-Based mRNA Delivery. Molecules 2023, 28, 4046. https://doi.org/10.3390/molecules28104046
Wang Y, Si X, Feng Y, Feng D, Xu X, Zhang Y. Ionizable Lipids with Triazole Moiety from Click Reaction for LNP-Based mRNA Delivery. Molecules. 2023; 28(10):4046. https://doi.org/10.3390/molecules28104046
Chicago/Turabian StyleWang, Yixiang, Xiao Si, Yi Feng, Dan Feng, Xiaoyu Xu, and Yan Zhang. 2023. "Ionizable Lipids with Triazole Moiety from Click Reaction for LNP-Based mRNA Delivery" Molecules 28, no. 10: 4046. https://doi.org/10.3390/molecules28104046
APA StyleWang, Y., Si, X., Feng, Y., Feng, D., Xu, X., & Zhang, Y. (2023). Ionizable Lipids with Triazole Moiety from Click Reaction for LNP-Based mRNA Delivery. Molecules, 28(10), 4046. https://doi.org/10.3390/molecules28104046