Evaluation of Selected Medicinal, Timber and Ornamental Legume Species’ Seed Oils as Sources of Bioactive Lipophilic Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oil Yield and Fatty Acid Profile
2.2. Tocochromanols and Total Carotenoids
2.3. Sterols and Squalene
3. Materials and Methods
3.1. Plant Material
3.2. Solvents, Standards and Reagents
3.3. Oil Extraction Using Ultrasound-Assisted Extraction
3.4. Fatty Acid Analysis
3.5. Total Carotenoid Analysis
3.6. Tocochromanol (Tocopherol and Tocotrienol) Analysis
3.7. Sterol and Squalene Analysis
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Akter, R.; Hasan, M.K.; Kabir, K.H.; Darr, D.; Roshni, N.A. Agroforestry Systems and Their Impact on Livelihood Improvement of Tribal Farmers in a Tropical Moist Deciduous Forest in Bangladesh. Trees For. People 2022, 9, 100315. [Google Scholar] [CrossRef]
- Wolz, K.J.; DeLucia, E.H. Alley Cropping: Global Patterns of Species Composition and Function. Agric. Ecosyst. Environ. 2018, 252, 61–68. [Google Scholar] [CrossRef]
- De Beenhouwer, M.; Geeraert, L.; Mertens, J.; Van Geel, M.; Aerts, R.; Vanderhaegen, K.; Honnay, O. Biodiversity and Carbon Storage Co-Benefits of Coffee Agroforestry across a Gradient of Increasing Management Intensity in the SW Ethiopian Highlands. Agric. Ecosyst. Environ. 2016, 222, 193–199. [Google Scholar] [CrossRef]
- Guterres, L.; Duarte, M.C.; Catarino, S.; Roxo, G.; Barnabé, J.; Sebastiana, M.; Monteiro, F.; Romeiras, M.M. Diversity of Legumes in the Cashew Agroforestry System in East Timor (Southeast Asia). Foods 2022, 11, 3503. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Fernandes, E.C.M.; Wambugu, P.N. Multipurpose Leguminous Trees and Shrubs for Agroforestry. Agrofor. Syst. 1984, 2, 145–163. [Google Scholar] [CrossRef]
- Rosenstock, T.; Tully, K.; Arias-Navarro, C.; Neufeldt, H.; Butterbach-Bahl, K.; Verchot, L. Agroforestry with N2-Fixing Trees: Sustainable Development’s Friend or Foe? Curr. Opin. Environ. Sustain. 2014, 6, 15–21. [Google Scholar] [CrossRef]
- Partey, S.T.; Zougmoré, R.B.; Ouédraogo, M.; Thevathasan, N.V. Why Promote Improved Fallows as a Climate-Smart Agroforestry Technology in Sub-Saharan Africa? Sustainability 2017, 9, 1887. [Google Scholar] [CrossRef]
- Sun, J.; Jia, Q.; Li, Y.; Zhang, T.; Chen, J.; Ren, Y.; Dong, K.; Xu, S.; Shi, N.-N.; Fu, S. Effects of Arbuscular Mycorrhizal Fungi and Biochar on Growth, Nutrient Absorption, and Physiological Properties of Maize (Zea Mays L.). J. Fungi 2022, 8, 1275. [Google Scholar] [CrossRef]
- Sundararaj, R.; Shanbhag, R.R.; Nagaveni, H.C.; Vijayalakshmi, G. Natural Durability of Timbers under Indian Environmental Conditions—An Overview. Int. Biodeterior. Biodegrad. 2015, 103, 196–214. [Google Scholar] [CrossRef]
- Larbi, A.; Smith, J.W.; Kurdi, I.O.; Adekunle, I.O.; Raji, A.M.; Ladipo, D.O. Chemical Composition, Rumen Degradation, and Gas Production Characteristics of Some Multipurpose Fodder Trees and Shrubs during Wet and Dry Seasons in the Humid Tropics. Anim. Feed. Sci. Technol. 1998, 72, 81–96. [Google Scholar] [CrossRef]
- Hossain, M.A.; Becker, K. Nutritive Value and Antinutritional Factors in Different Varieties of Sesbania Seeds and Their Morphological Fractions. Food Chem. 2001, 73, 421–431. [Google Scholar] [CrossRef]
- Rehr, S.S.; Arthur, E.; Janzent, D.H.; Feeny, P.P. Insecticidal Amino Acids in Legume Seeds; Pergamon Press: Oxford, UK, 1973; Volume 1, pp. 63–67. [Google Scholar]
- Carvalho, A.F.U.; Farias, D.F.; da Rocha-Bezerra, L.C.B.; de Sousa, N.M.; Cavalheiro, M.G.; Fernandes, G.S.; Brasil, I.C.F.; Maia, A.A.B.; de Sousa, D.O.B.; Vasconcelos, I.M.; et al. Preliminary Assessment of the Nutritional Composition of Underexploited Wild Legumes from Semi-Arid Caatinga and Moist Forest Environments of Northeastern Brazil. J. Food Compos. Anal. 2011, 24, 487–493. [Google Scholar] [CrossRef]
- Abdullahi, B.M.; Garba, A.; Salihu, A.; Saliu, M.A. Effect of Degumming on Physicochemical Properties of Fatty Acid Ethyl Esters Obtained from Acacia Nilotica Seed Oil. Bioresour. Technol. Rep. 2021, 14, 100678. [Google Scholar] [CrossRef]
- Subramonia Pillai, N.; Kannan, P.S.; Vettivel, S.C.; Suresh, S. Optimization of Transesterification of Biodiesel Using Green Catalyst Derived from Albizia Lebbeck Pods by Mixture Design. Renew. Energy 2017, 104, 185–196. [Google Scholar] [CrossRef]
- Plat, J.; Baumgartner, S.; Vanmierlo, T.; Lütjohann, D.; Calkins, K.L.; Burrin, D.G.; Guthrie, G.; Thijs, C.; Te Velde, A.A.; ACE, V.; et al. Plant-Based Sterols and Stanols in Health & Disease: “Consequences of Human Development in a Plant-Based Environment?”. Prog. Lipid Res. 2019, 74, 87–102. [Google Scholar] [CrossRef]
- Witkowska, A.M.; Waśkiewicz, A.; Zujko, M.E.; Mirończuk-Chodakowska, I.; Cicha-Mikołajczyk, A.; Drygas, W. Assessment of Plant Sterols in the Diet of Adult Polish Population with the Use of a Newly Developed Database. Nutrients 2021, 13, 2722. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.; Jones, P.J.; Abumweis, S.S. Plant Sterols: Factors Affecting Their Efficacy and Safety as Functional Food Ingredients. Lipids Health Dis. 2004, 3, 5. [Google Scholar] [CrossRef]
- Normén, L.; Ellegård, L.; Brants, H.; Dutta, P.; Andersson, H. A Phytosterol Database: Fatty Foods Consumed in Sweden and the Netherlands. J. Food Compos. Anal. 2007, 20, 193–201. [Google Scholar] [CrossRef]
- Yang, R.; Xue, L.; Zhang, L.; Wang, X.; Qi, X.; Jiang, J.; Yu, L.; Wang, X.; Zhang, W.; Zhang, Q.; et al. Phytosterol Contents of Edible Oils and Their Contributions to Estimated Phytosterol Intake in the Chinese Diet. Foods 2019, 8, 334. [Google Scholar] [CrossRef] [PubMed]
- Grygier, A.; Chakradhari, S.; Ratusz, K.; Rudzińska, M.; Patel, K.S.; Lazdiņa, D.; Górnaś, P. Seven Underutilized Species of the Fabaceae Family with High Potential for Industrial Application as Alternative Sources of Oil and Lipophilic Bioactive Compounds. Ind. Crops Prod. 2022, 186, 115251. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Wyss, A. Carotenoids in Human Nutrition and Health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef]
- Franke, S.; Fröhlich, K.; Werner, S.; Böhm, V.; Schöne, F. Analysis of Carotenoids and Vitamin E in Selected Oilseeds, Press Cakes and Oils. Eur. J. Lipid Sci. Technol. 2010, 112, 1122–1129. [Google Scholar] [CrossRef]
- Padhi, E.M.T.; Liu, R.; Hernandez, M.; Tsao, R.; Ramdath, D.D. Total Polyphenol Content, Carotenoid, Tocopherol and Fatty Acid Composition of Commonly Consumed Canadian Pulses and Their Contribution to Antioxidant Activity. J. Funct. Foods 2017, 38, 602–611. [Google Scholar] [CrossRef]
- Kan, L.; Nie, S.; Hu, J.; Wang, S.; Bai, Z.; Wang, J.; Zhou, Y.; Jiang, J.; Zeng, Q.; Song, K. Comparative Study on the Chemical Composition, Anthocyanins, Tocopherols and Carotenoids of Selected Legumes. Food Chem. 2018, 260, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, H.; Ollilainen, V.; Piironen, V.; Lampi, A.M. Tocopherol, Tocotrienol and Plant Sterol Contents of Vegetable Oils and Industrial Fats. J. Food Compos. Anal. 2008, 21, 152–161. [Google Scholar] [CrossRef]
- Siger, A.; Górnaś, P. Free Tocopherols and Tocotrienols in 82 Plant Species’ Oil: Chemotaxonomic Relation as Demonstrated by PCA and HCA. Food Res. Int. 2023, 164, 112386. [Google Scholar] [CrossRef] [PubMed]
- Sipeniece, E.; Mišina, I.; Qian, Y.; Grygier, A.; Sobieszczańska, N.; Sahu, P.K.; Rudzińska, M.; Patel, K.S.; Górnaś, P. Fatty Acid Profile and Squalene, Tocopherol, Carotenoid, Sterol Content of Seven Selected Consumed Legumes. Plant. Foods Hum. Nutr. 2021, 76, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Górnaś, P.; Czubinski, J.; Rudzińska, M.; Grygier, A.; Ying, Q.; Chakradhari, S.; Sahu, P.K.; Mišina, I.; Urvaka, E.; Patel, K.S. Selected Uncommon Legumes as a Source of Essential Fatty Acids, Tocopherols, Tocotrienols, Sterols, Carotenoids, and Squalene. Plant. Foods Hum. Nutr. 2019, 74, 91–98. [Google Scholar] [CrossRef]
- Adewuyi, A.; Oderinde, R.A.; Rao, B.V.S.K.; Prasad, R.B.N.; Anjaneyulu, B. Chemical Component and Fatty Acid Distribution of Delonix Regia and Peltophorum Pterocarpum Seed Oils. Food Sci. Technol. Res. 2010, 16, 565–570. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Usman, M.; Farooq, S.; Alghamdi, S.S.; Siddique, K.H.M. Impact of Abiotic Stresses on Grain Composition and Quality in Food Legumes. J. Agric. Food Chem. 2018, 66, 8887–8897. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Gu, Z.; Zhu, Z.; Yi, J.; Ohm, J.-B.; Chen, B.; Rao, J. Impact of Defatting Treatment and Oat Varieties on Structural, Functional Properties, and Aromatic Profile of Oat Protein. Food Hydrocoll. 2021, 112, 106368. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Yang, X.; Wang, W.; Liu, X.; Wang, H.; Zhang, H. Enhancing the Fermentation Performance of Frozen Dough by Ultrasonication: Effect of Starch Hierarchical Structures. J. Cereal Sci. 2022, 106, 103500. [Google Scholar] [CrossRef]
- Gani, A.; ul Ashraf, Z.; Noor, N.; Ahmed Wani, I. Ultrasonication as an Innovative Approach to Tailor the Apple Seed Proteins into Nanosize: Effect on Protein Structural and Functional Properties. Ultrason. Sonochem. 2022, 86, 106010. [Google Scholar] [CrossRef] [PubMed]
- Rajput, C.V.; Mukherjee, R.B.; Sastry, N.V.; Chikhaliya, N.P. Extraction, Characterization and Epoxidation of Cassia Fistula (Indian Laburnum) Seed Oil: A Bio-Based Material. Ind. Crops Prod. 2022, 187, 115496. [Google Scholar] [CrossRef]
- Banerji, R.; Chowdhury, A.R.; Misra, G.; Nigam, S.K. Chemical Composition of Acacia Seeds. J. Am. Oil Chem. Soc. 1988, 65, 1959–1960. [Google Scholar] [CrossRef]
- Caprioli, G.; Giusti, F.; Ballini, R.; Sagratini, G.; Vila-Donat, P.; Vittori, S.; Fiorini, D. Lipid Nutritional Value of Legumes: Evaluation of Different Extraction Methods and Determination of Fatty Acid Composition. Food Chem. 2016, 192, 965–971. [Google Scholar] [CrossRef]
- Kim, S.-L.; Berhow, M.A.; Kim, J.-T.; Chi, H.-Y.; Lee, S.-J.; Chung, I.-M. Evaluation of Soyasaponin, Isoflavone, Protein, Lipid, and Free Sugar Accumulation in Developing Soybean Seeds. J. Agric. Food Chem. 2006, 54, 10003–10010. [Google Scholar] [CrossRef]
- Kandlakunta, B.; Rajendran, A.; Thingnganing, L. Carotene Content of Some Common (Cereals, Pulses, Vegetables, Spices and Condiments) and Unconventional Sources of Plant Origin. Food Chem. 2008, 106, 85–89. [Google Scholar] [CrossRef]
- Li, M.; Xia, Q.; Lv, S.; Tong, J.; Wang, Z.; Nie, Q.; Yang, J. Enhanced CO2 Capture for Photosynthetic Lycopene Production in Engineered Rhodopseudomonas Palustris, a Purple Nonsulfur Bacterium. Green. Chem. 2022, 24, 7500–7518. [Google Scholar] [CrossRef]
- Serra, J.L.; Rodrigues, A.M.d.C.; de Freitas, R.A.; Meirelles, A.J.d.A.; Darnet, S.H.; da Silva, L.H.M. Alternative Sources of Oils and Fats from Amazonian Plants: Fatty Acids, Methyl Tocols, Total Carotenoids and Chemical Composition. Food Res. Int. 2019, 116, 12–19. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Ahmad, S.; Qayum, M.; Ercişli, S. Compositional Studies and Antioxidant Potential of Albizia Lebbeck (L.) Benth. Pods and Seeds. Turk. J. Biol. 2013, 37, 25–32. [Google Scholar] [CrossRef]
- Solaberrieta, I.; Mellinas, A.C.; Espagnol, J.; Hamzaoui, M.; Jiménez, A.; Garrigós, M.C. Valorization of Tomato Seed By-Products as a Source of Fatty Acids and Bioactive Compounds by Using Advanced Extraction Techniques. Foods 2022, 11, 2408. [Google Scholar] [CrossRef]
- Phuong, D.L.; Thuy, N.T.; Long, P.Q.; Kuo, P.-C.; Thang, T.D. Composition of Fatty Acids, Tocopherols, Sterols, Total Phenolics, and Antioxidant Activity of Seed Oils of Afzelia Xylocarpa and Cassia Fistula. Chem. Nat. Compd. 2019, 55, 242–246. [Google Scholar] [CrossRef]
- Sundarraj, S.; Thangam, R.; Sreevani, V.; Kaveri, K.; Gunasekaran, P.; Achiraman, S.; Kannan, S. γ-Sitosterol from Acacia Nilotica L. Induces G2/M Cell Cycle Arrest and Apoptosis through c-Myc Suppression in MCF-7 and A549 Cells. J. Ethnopharmacol. 2012, 141, 803–809. [Google Scholar] [CrossRef]
- Khare, C.P. Indian. Medicinal Plants: An. Illustrated Dictionary, 1st ed.; Springer International Publishing: New York, NY, USA, 2008; ISBN 978-0-387-70637-5. [Google Scholar]
- Drabo, M.S.; Shumoy, H.; Savadogo, A.; Raes, K. Inventory of Human-Edible Products from Native Acacia Sensu Lato in Africa, America, and Asia: Spotlight on Senegalia Seeds, Overlooked Wild Legumes in the Arid Tropics. Food Res. Int. 2022, 159, 111596. [Google Scholar] [CrossRef]
- Kankanamalage, T.N.M.; Dharmadasa, R.M.; Abeysinghe, D.C.; Wijesekara, R.G.S. A Survey on Medicinal Materials Used in Traditional Systems of Medicine in Sri Lanka. J. Ethnopharmacol. 2014, 155, 679–691. [Google Scholar] [CrossRef]
- He, Y.; Wang, Q.; Ye, Y.; Liu, Z.; Sun, H. The Ethnopharmacology, Phytochemistry, Pharmacology and Toxicology of Genus Albizia: A Review. J. Ethnopharmacol. 2020, 257, 112677. [Google Scholar] [CrossRef]
- Prabhu, S.; Vijayakumar, S.; Ramasubbu, R.; Praseetha, P.K.; Karthikeyan, K.; Thiyagarajan, G.; Sureshkumar, J.; Prakash, N. Traditional Uses, Phytochemistry and Pharmacology of Bauhinia Racemosa Lam.: A Comprehensive Review. Future J. Pharm. Sci. 2021, 7, 101. [Google Scholar] [CrossRef]
- Yang, J.; Chen, W.-Y.; Fu, Y.; Yang, T.; Luo, X.-D.; Wang, Y.-H.; Wang, Y.-H. Medicinal and Edible Plants Used by the Lhoba People in Medog County, Tibet, China. J. Ethnopharmacol. 2020, 249, 112430. [Google Scholar] [CrossRef]
- Islam, A.T.M.R.; Hasan, M.M.; Islam, M.T.; Tanaka, N. Ethnobotanical Study of Plants Used by the Munda Ethnic Group Living around the Sundarbans, the World’s Largest Mangrove Forest in Southwestern Bangladesh. J. Ethnopharmacol. 2022, 285, 114853. [Google Scholar] [CrossRef]
- Suroowan, S.; Pynee, K.B.; Mahomoodally, M.F. A Comprehensive Review of Ethnopharmacologically Important Medicinal Plant Species from Mauritius. S. Afr. J. Bot. 2019, 122, 189–213. [Google Scholar] [CrossRef]
- Bandara, W.A.R.T.W.; Dissanayake, C.T.M. Most Tolerant Roadside Tree Species for Urban Settings in Humid Tropics Based on Air Pollution Tolerance Index. Urban Clim. 2021, 37, 100848. [Google Scholar] [CrossRef]
- CABI. CABI Albizia Odoratissima (Black Siris); CABI Compendium 4016; CABI: Wallingford, UK, 2019. [Google Scholar] [CrossRef]
- Cravotto, G.; Boffa, L.; Mantegna, S.; Perego, P.; Avogadro, M.; Cintas, P. Improved Extraction of Vegetable Oils under High-Intensity Ultrasound and/or Microwaves. Ultrason. Sonochem. 2008, 15, 898–902. [Google Scholar] [CrossRef]
- Górnaś, P.; Siger, A.; Rudzińska, M.; Grygier, A.; Marszałkiewicz, S.; Ying, Q.; Sobieszczańska, N.; Segliņa, D. Impact of the Extraction Technique and Genotype on the Oil Yield and Composition of Lipophilic Compounds in the Oil Recovered from Japanese Quince (Chaenomeles Japonica) Seeds. Eur. J. Lipid Sci. Technol. 2019, 121, 1800262. [Google Scholar] [CrossRef]
- AOCS. AOCS Official Method Ce 1h-05: Determination of Cis-, Trans-, Saturated, Monounsaturated and Polyunsaturated Fatty Acids in Vegetable or Non-Ruminant Animal Oils and Fats by Capillary GLC. Official Methods and Recommended Practices of the American Oil Chemists’ Society. In Official Methods and Recommended Practices of the American Oil Chemists’ Society; American Oil Chemists’ Society: Urbana, IL, USA, 2005. [Google Scholar]
- Górnaś, P.; Rudzińska, M.; Raczyk, M.; Mišina, I.; Soliven, A.; Segliņa, D. Composition of Bioactive Compounds in Kernel Oils Recovered from Sour Cherry (Prunus Cerasus L.) by-Products: Impact of the Cultivar on Potential Applications. Ind. Crops Prod. 2016, 82, 44–50. [Google Scholar] [CrossRef]
- Górnaś, P.; Rudzińska, M.; Raczyk, M.; Mišina, I.; Soliven, A.; Lācis, G.; Segliņa, D. Impact of Species and Variety on Concentrations of Minor Lipophilic Bioactive Compounds in Oils Recovered from Plum Kernels. J. Agric. Food Chem. 2016, 64, 898–905. [Google Scholar] [CrossRef]
- Górnaś, P. Unique Variability of Tocopherol Composition in Various Seed Oils Recovered from By-Products of Apple Industry: Rapid and Simple Determination of All Four Homologues (α, β, γ and δ) by RP-HPLC/FLD. Food Chem. 2015, 172, 129–134. [Google Scholar] [CrossRef]
- Górnaś, P.; Siger, A.; Czubinski, J.; Dwiecki, K.; Segliņa, D.; Nogala-Kalucka, M. An Alternative RP-HPLC Method for the Separation and Determination of Tocopherol and Tocotrienol Homologues as Butter Authenticity Markers: A Comparative Study between Two European Countries. Eur. J. Lipid Sci. Technol. 2014, 116, 895–903. [Google Scholar] [CrossRef]
- AOCS. AOCS Official Method Ch 6-91: Determination of the Composition of the Sterol Fraction of Animal and Vegetable Oils and Fats by TLC and Capillary GLC. In Official Methods and Recommended Practices of the American Oil Chemists’ Society; American Oil Chemists’ Society: Urbana, IL, USA, 1997. [Google Scholar]
Species | Fatty Acid | |||||
---|---|---|---|---|---|---|
C14:0 | C16:0 | C18:0 | C20:0 | C22:0 | C24:0 | |
A. auriculiformis | nd | 12.67 ± 0.55 e | 1.10 ± 0.08 a | 0.81 ± 0.08 b | 3.72 ± 0.18 e | 0.64 ± 0.04 b |
A. concinna | 0.04 ± 0.01 a | 9.27 ± 0.10 c | 1.06 ± 0.04 a | 0.84 ± 0.06 b | 0.12 ± 0.02 a | nd |
A. lebbeck | 0.09 ± 0.01 b | 14.03 ± 0.44 f | 5.90 ± 0.12 e | 4.44 ± 0.13 f | 5.09 ± 0.20 f | 0.43 ± 0.02 a |
A. odoratissima | nd | 11.95 ± 0.41 de | 3.78 ± 0.02 d | 1.65 ± 0.13 de | 3.95 ± 0.10 e | nd |
B. racemosa | nd | 8.98 ± 0.18 bc | 1.04 ± 0.09 a | 0.87 ± 0.02 b | 0.16 ± 0.01 a | nd |
C. fistula | 0.04 ± 0.01 a | 8.51 ± 0.27 b | 0.93 ± 0.02 a | 0.75 ± 0.03 ab | 0.17 ± 0.02 a | nd |
D. latifolia | 0.40 ± 0.02 c | 15.34 ± 0.52 g | 6.28 ± 0.20 e | 1.89 ± 0.06 e | 1.34 ± 0.05 d | 1.77 ± 0.07 d |
D. regia | nd | 16.07 ± 0.24 g | 10.17 ± 0.23 g | 0.89 ± 0.03 bc | 0.37 ± 0.02 b | nd |
E. phaseoloides | 0.03 ± 0.01 a | 8.23 ± 0.34 b | 4.08 ± 0.18 d | 1.27 ± 0.08 d | 0.69 ± 0.03 c | 0.61 ± 0.05 b |
H. binata | nd | 5.14 ± 0.20 a | 1.87 ± 0.07 b | 1.98 ± 0.08 e | 15.70 ± 0.58 g | 11.38 ± 0.30 e |
P. pterocarpum | nd | 23.04 ± 0.41 i | 9.16 ± 0.28 f | 0.64 ± 0.04 a | 0.21 ± 0.02 a | nd |
S. catechu | 0.10 ± 0.01 b | 17.97 ± 0.49 h | 2.70 ± 0.11 c | 1.29 ± 0.06 d | 1.28 ± 0.05 d | 0.96 ± 0.04 c |
S. sesban | 0.07 ± 0.02 ab | 8.56 ± 0.17 b | 1.01 ± 0.22 a | 0.84 ± 0.03 b | 0.14 ± 0.02 a | nd |
V. nilotica | 0.10 ± 0.02 b | 11.72 ± 0.28 d | 6.42 ± 0.21 e | 0.93 ± 0.04 c | 0.99 ± 0.04 d | nd |
Species | Fatty Acid | |||||
---|---|---|---|---|---|---|
C16:1 | C18:1 | C18:2 | C18:3 n-3 | C20:1 | C20:2 | |
A. auriculiformis | 0.41 ± 0.02 b | 23.89 ± 0.42 cd | 55.09 de ± 1.28 | 0.38 ± 0.08 ab | 0.36 ± 0.05 a | 0.12 ± 0.02 b |
A. concinna | 0.05 ± 0.02 a | 32.58 ± 0.33 e | 55.20 d ± 0.38 | 0.41 ± 0.03 b | 0.35 ± 0.02 a | 0.07 ± 0.01 a |
A. lebbeck | 0.34 ± 0.01 b | 22.12 ± 0.14 c | 46.26 b ± 1.03 | 0.53 c ± 0.02 | 0.48 ± 0.02 b | 0.07 ± 0.00 a |
A. odoratissima | 0.76 ± 0.02 d | 13.62 ± 0.23 a | 62.28 g ± 0.62 | 2.01 ± 0.03 e | nd | nd |
B. racemosa | 0.08 ± 0.01 a | 34.30 ± 0.28 f | 53.71 c ± 0.50 | 0.35 ± 0.01 b | 0.45 ± 0.04 ab | 0.06 ± 0.01 a |
C. fistula | 0.06 ± 0.01 a | 34.21 ± 0.94 ef | 54.51 cd ± 0.69 | 0.30 ± 0.03 ab | 0.46 ± 0.02 ab | 0.06 ± 0.01 a |
D. latifolia | 0.11 ± 0.01 a | 22.44 ± 0.81 c | 47.35 b ± 1.23 | 2.35 ± 0.09 e | 0.29 ± 0.03 a | nd |
D. regia | 0.34 ± 0.03 b | 14.57 ± 0.32 a | 56.99 e ± 0.71 | 0.61 ± 0.02 c | nd | nd |
E. phaseoloides | 0.06 ± 0.01 a | 24.93 ± 0.36 d | 59.18 f ± 0.91 | 0.57 ± 0.14 bc | 0.34 ± 0.06 a | nd |
H. binata | nd | 19.28 ± 0.31 b | 40.78 a ± 1.43 | 0.21 ± 0.12 a | 2.41 ± 0.05 c | 0.34 ± 0.02 c |
P. pterocarpum | 0.61 ± 0.03 c | 19.37 ± 0.43 b | 46.75 b ± 0.91 | 0.22 ± 0.04 a | nd | nd |
S. catechu | 0.54 ± 0.02 c | 32.04 ± 0.35 e | 42.34 a ± 1.16 | 0.25 ± 0.01 a | 0.35 ± 0.01 a | nd |
S. sesban | 0.06 ± 0.02 a | 32.89 ± 0.53 e | 54.60 cd ± 0.62 | 0.44 ± 0.03 b | 0.35 ± 0.02 a | 0.06 ± 0.01 a |
V. nilotica | nd | 26.20 ± 0.49 d | 52.39 c ± 0.51 | 1.02 ± 0.03 d | 0.25 ± 0.02 a | nd |
Species | Total Carotenoids | Tocohromanols | |||||||
---|---|---|---|---|---|---|---|---|---|
α-T | β-T | γ-T | δ-T | α-T3 | γ-T3 | δ-T3 | Total | ||
A. auriculiformis | 23.74 ± 1.39 f | 82.46 ± 2.80 e | 5.98 ± 0.24 b | 16.41 ± 0.70 a | 2.11 ± 0.30 b | 0.79 ± 0.04 b | 1.13 ± 0.05 b | 0.47± 0.03 a | 109.36 ± 4.17 a |
A. concinna | 3.03 ± 0.11 b | 98.76 ± 7.0 f | 2.62 ± 0.27 a | 24.58 ± 2.64 b | 0.83 ± 0.09 a | nd | nd | 0.77 ± 0.10 ab | 127.57 ± 9.26 b |
A. lebbeck | 18.55 ± 1.09 e | 101.59 ± 6.67 f | 0.97 ± 0.10 a | 68.84 ± 3.41 d | 1.95 ± 0.14 b | nd | nd | nd | 173.34 ± 10.31 d |
A. odoratissima | 20.37 ± 1.07 e | 142.60 ± 6.44 g | 2.40 ± 0.14 a | 141.87 ± 5.52 g | 5.87 ± 0.25 d | 0.10 ± 0.02 a | 0.34 a ± 0.05 | nd | 293.18 ± 1.68 g |
B. racemosa | 6.80 ± 0.28 c | 125.02 ± 7.19 g | 1.50 ± 0.31 a | 30.28 ± 2.21 b | 0.61 ± 0.06 a | nd | nd | nd | 157.41 ± 9.11 c |
C. fistula | 8.57 ± 0.53 c | 173.66 ± 7.87 h | 9.84 ± 0.45 c | 44.74 ± 2.32 c | 18.62 ± 0.37 e | nd | nd | 0.77 ± 0.05 ab | 247.63 ± 8.30 f |
D. latifolia | 3.92 ± 0.24 b | 2.24 ± 0.14 a | nd | 278.74 ± 12.33 h | 2.66 ± 0.13 c | nd | nd | nd | 283.64 ± 12.60 g |
D. regia | 13.29 ± 0.86 d | 209.27 ± 11.71 i | 17.53 ± 0.92 d | 113.83 ± 7.68 f | 5.81 ± 0.32 d | 4.93 ± 0.15 c | 14.27 ± 0.36 c | 1.33 ± 0.07 b | 367.51 ± 3.42 h |
E. phaseoloides | 0.72 ± 0.05 a | 9.90 ± 0.34 b | nd | 87.87 ± 3.57 e | nd | 0.51 ± 0.05 b | 1.53 ± 0.06 b | 0.43 ± 0.03 a | 100.32 ± 4.08 a |
H. binata | 3.99 ± 0.26 b | 171.98 ± 6.94 h | 4.96 ± 0.20 b | 64.77 ± 2.57 d | 5.60 ± 0.22 d | nd | nd | nd | 247.31 ± 9.93 f |
P. pterocarpum | 12.04 ± 0.49 d | 160.18 ± 6.34 h | 1.04 ± 0.06 a | 84.66 ± 0.68 e | 2.50 ± 0.06 c | nd | nd | nd | 248.39 ± 6.73 f |
S. catechu | 12.57 ± 0.89 d | 94.78 ± 1.86 f | 0.68 ± 0.05 a | 38.98 ± 1.81 c | 0.91 ± 0.03 a | 0.63 ± 0.04 b | 1.08 ± 0.10 b | 0.30 ± 0.03 a | 137.36 ± 3.93 b |
S. sesban | 23.57 ± 1.78 f | 65.91 ± 3.26 d | 0.52 ± 0.13 a | 142.13 ± 3.95 g | 3.02 ± 0.12 c | nd | 0.46 ± 0.05 a | nd | 212.04 ± 7.01 e |
V. nilotica | 3.28 ± 0.28 b | 43.98 ± 1.84 c | 2.14 ± 0.32 a | 76.46 ± 3.13 de | 3.86 ± 0.28 cd | nd | 0.39 ± 0.08 a | nd | 126.82 ± 5.12 b |
Species | Sterols | Squalene | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cholesterol | Campesterol | Campestanol | Δ5-Stigmasterol | β-Sitosterol | Sitostanol | Δ5-Avenasterol | Cycloartenol | Cycloeucalenol | 24Methyl-zymosterol | Δ7-Avenasterol | Δ7-Stigmasterol | 24-Methylene-cycloarterol | ||
A. auriculiformis | nd | nd | nd | 8 ± 0 a | 211 ± 9 b | nd | 6 ± 0 a | 25 ± 1 b | nd | 88 ± 3 b | nd | nd | nd | nd |
A. concinna | nd | 70 ± 4 c | 6 ± 2 a | 59 ± 8 b | 1306 ± 156 g | nd | 313 ± 13 d | 207 ± 6 f | 136 ± 7 d | nd | nd | 446 ± 15 d | nd | nd |
A. lebbeck | nd | 14 ± 1 a | 11 ± 1 b | 13 ± 2 a | 295 ± 10 c | 7 ± 1 a | 27 ± 1 b | 26 ± 2 b | nd | nd | 7 ± 0 a | nd | nd | nd |
A. odoratissima | nd | 35 ± 3 b | 5 ± 1 a | 23 ± 1 a | 380 ± 13 d | nd | 32 ± 3 b | 24 ± 1 b | nd | nd | nd | nd | nd | nd |
B. racemosa | nd | 69 ± 2 c | nd | 155 ± 9 c | 520 ± 18 e | nd | nd | 6 ± 0 a | 4 ± 0 a | nd | 44 ± 4 c | 50 ± 5 b | 7 ± 1 a | 31 ± 2 a |
C. fistula | nd | 86 ± 4 d | nd | 249 ± 18 e | 854 ± 24 f | 6 ± 1 a | 27 ± 3 b | 44 ± 3 c | 67 ± 5 c | nd | nd | nd | 11 ± 1 a | 303 ± 9 b |
D. latifolia | nd | 36 ± 2 b | 11 ± 1 b | 13 ± 1 a | 291 ± 12 c | 3 ± 0 a | 23 ± 2 b | 11 ± 1 a | nd | nd | 6 ± 1 a | nd | nd | nd |
D. regia | 49 ± 3 c | 142 ± 6 e | 11 ± 1 b | 209 ± 9 d | 502 ± 16 e | 34 ± 4 b | 28 ± 3 b | 129 ± 7 e | nd | nd | nd | 72 ± 3 b | 9 ± 1 a | nd |
E. phaseoloides | nd | 11 ± 1 a | nd | 14 ± 1 a | 133 ± 5 b | nd | 30 ± 2 b | 29 ± 1 b | nd | nd | 16 ± 2 ab | nd | 8 ± 1 a | nd |
H. binata | nd | 129 ± 5 e | 10 ± 1 b | 53 ± 3 b | 390 ± 17 d | 17 ± 1 a | 46 ± 4 c | 29 ± 2 b | nd | nd | 48 ± 3 c | nd | 8 ± 1 a | nd |
P. pterocarpum | 18 ± 1 a | 66 ± 3 c | 2 ± 1 a | 273 ± 11 e | 11 ± 1 a | 107 ± 5 c | 2 ± 0 a | 63 ± 5 d | nd | nd | nd | 90 ± 4 c | 13 ± 1 a | nd |
S. catechu | nd | 265 ± 9 f | nd | 598 ± 24 f | 396 ± 15 d | nd | 27 ± 2 b | 40 ± 2 c | nd | 25 ± 2 a | nd | nd | nd | nd |
S. sesban | 33 ± 2 b | 109 ± 4 d | nd | 301 ± 9 e | 354 ± 14 cd | 10 ± 1 a | 34 ± 2 b | 31 ± 2 b | 27 ± 3 b | nd | 25 ± 2 b | nd | nd | 41 ± 2 a |
V. nilotica | nd | 68 ± 3 c | 2 ± 0 a | 4 ± 0 a | 592 ± 17 e | nd | 33 ± 2 b | 25 ± 2 b | nd | nd | nd | 12 ± 1 a | nd | 44 ± 3 a |
Species | Plant Type | Use | ||||||
---|---|---|---|---|---|---|---|---|
Timber | Agroforestry | Ornamental | Traditional Medicines | Fodder | Food | Fuelwood | ||
A. auriculiformis | Tree | e | a b c h i* | c | a c | a c | ||
A. concinna | Tree | i* | o | • | • | |||
A. lebbeck | Tree | c | c | c | f o | c g h | c | |
A. odoratissima | Tree | q | q | f j | • | |||
B. racemosa | Tree | k | k | k | ||||
C. fistula | Tree | e | p | f o | • | • | ||
D. latifolia | Tree | e | ||||||
D. regia | Tree | a | a | a | a | |||
E. phaseoloides | Liana | m n | m | |||||
H. binata | Tree | e | • | |||||
P. pterocarpum | Tree | p | g | |||||
S. catechu | Tree | i* | f | d | ||||
S. sesban | Tree | h i* | l | • | l | |||
V. nilotica | Tree | e | h i* | • | h | • |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grygier, A.; Chakradhari, S.; Ratusz, K.; Rudzińska, M.; Patel, K.S.; Lazdiņa, D.; Segliņa, D.; Górnaś, P. Evaluation of Selected Medicinal, Timber and Ornamental Legume Species’ Seed Oils as Sources of Bioactive Lipophilic Compounds. Molecules 2023, 28, 3994. https://doi.org/10.3390/molecules28103994
Grygier A, Chakradhari S, Ratusz K, Rudzińska M, Patel KS, Lazdiņa D, Segliņa D, Górnaś P. Evaluation of Selected Medicinal, Timber and Ornamental Legume Species’ Seed Oils as Sources of Bioactive Lipophilic Compounds. Molecules. 2023; 28(10):3994. https://doi.org/10.3390/molecules28103994
Chicago/Turabian StyleGrygier, Anna, Suryakant Chakradhari, Katarzyna Ratusz, Magdalena Rudzińska, Khageshwar Singh Patel, Danija Lazdiņa, Dalija Segliņa, and Paweł Górnaś. 2023. "Evaluation of Selected Medicinal, Timber and Ornamental Legume Species’ Seed Oils as Sources of Bioactive Lipophilic Compounds" Molecules 28, no. 10: 3994. https://doi.org/10.3390/molecules28103994
APA StyleGrygier, A., Chakradhari, S., Ratusz, K., Rudzińska, M., Patel, K. S., Lazdiņa, D., Segliņa, D., & Górnaś, P. (2023). Evaluation of Selected Medicinal, Timber and Ornamental Legume Species’ Seed Oils as Sources of Bioactive Lipophilic Compounds. Molecules, 28(10), 3994. https://doi.org/10.3390/molecules28103994