Phytochemical Characterization and Antimicrobial Activity of Several Allium Extracts
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Composition of Allium Extracts
2.2. Antimicrobial Activity
3. Discussion
4. Materials and Methods
4.1. Plant Material and Extract Preparation
4.2. Phytochemical Analyses of the Allium Extracts
4.2.1. Total Polyphenolic Content Procedure (TPC)
4.2.2. Total Flavonoid Content Procedure (TFC)
4.2.3. Total Thiosulfinate Content Procedure (TTC)
4.3. Chromatographic Analysis of the Allium Extracts
4.4. Disk Diffusion Method
4.5. The Microdilution Method (MIC and MBC)
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Banik, A.; Abony, M.; Zerin, T.; Datta, S. Antibacterial Activity of Allium Sativum, Syzygium Aromaticum, and Cinnamomum Zeylanicum against Food Borne Pathogens in vitro. IOSR J. Pharm. Biol. Sci. 2018, 13, 68–73. [Google Scholar]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [PubMed]
- Rzewuska, M.; Czopowicz, M.; Kizerwetter-Swida, M.; Chrobak, D.; Błaszczak, B.; Binek, M. Multidrug resistance in Escherichia coli strains isolated from infections in dogs and cats in Poland (2007–2013). Sci. World J. 2015, 2015, 408205. [Google Scholar] [CrossRef] [PubMed]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef]
- Sapunjieva, T.; Alexieva, I.; Mihaylova, D. Antimicrobial and antioxidant activity of extracts of Allium ursinum L. In Proceedings of the National Youth Conference “Biological Sciences for a Better Future”, Plovdiv, Bulgaria, 19–20 October 2012; pp. 143–145. [Google Scholar]
- Diba, A.; Alizadeh, F. In vitro and in vivo antifungal activity of Allium hirtifolium and Allium sativum. Avicenna J. Phytomed. 2018, 8, 465–474. [Google Scholar]
- Umamaheswari, K.; Abirami, M. Assessment of antifungal action mechanism of green synthesized gold nanoparticles (AuNPs) using Allium sativum on Candida species. Mater. Lett. 2023, 333, 133616. [Google Scholar] [CrossRef]
- Krstin, S.; Sobeh, M.; Braun, M.S.; Wink, M. Tulbaghia violacea and Allium ursinum Extracts Exhibit Anti-Parasitic and Antimicrobial Activities. Molecules 2018, 23, 313. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Antimicrobial, antioxidant and antitumor activities of silver nanoparticles synthesized by Allium cepa extract: A green approach. J. Genet. Eng. Biotechnol. 2017, 15, 49–57. [Google Scholar] [CrossRef]
- Harris, J.C.; Cottrell, S.L.; Plummer, S.; Lloyd, D. Antimicrobial properties of Allium sativum (garlic). Appl. Microbiol. Biotechnol. 2001, 57, 282–286. [Google Scholar] [CrossRef]
- Leyva, J.M.; Ortega-Ramirez, L.A.; Ayala-Zavala, J.F. Garlic (Allium sativum Linn.) oils. In Essential Oils in Food Preservation, Flavor and Safety, 1st ed.; Academic Press: London, UK, 2015; pp. 441–446. [Google Scholar]
- Sobolewska, D.; Podolak, I.; Makowska-Wąs, J. Allium ursinum: Botanical, phytochemical and pharmacological overview. Phytochem. Rev. 2015, 14, 81–97. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef]
- Choudhary, S.; Noor, M.U.; Hussain, M.S.; Mishra, M.; Tyagi, S. Pharmacological properties and phytoconstituents of garlic (Allium sativum L.): A review. Biol. Sci. 2022, 2, 338–346. [Google Scholar] [CrossRef]
- Abdul Qadir, M.; Shahzadi, S.K.; Bashir, A.; Munir, A.; Shahzad, S.H. Evaluation of phenolic compounds and antioxidant and antimicrobial activities of some common herbs. Int. J. Anal. Chem. 2017, 2017, 3475738. [Google Scholar] [CrossRef]
- Bar, M.; Binduga, U.E.; Szychowski, K.A. Methods of Isolation of Active Substances from Garlic (Allium sativum L.) and Its Impact on the Composition and Biological Properties of Garlic Extracts. Antioxidants 2022, 11, 1345. [Google Scholar] [CrossRef]
- Goncagul, G.; Ayaz, E. Antimicrobial effect of garlic (Allium sativum). Recent Pat. Antiinfect Drug Discov. 2010, 5, 91–93. [Google Scholar] [CrossRef]
- Khashan, A.A. Antibacterial Activity of garlic extract (Allium sativum) against Staphylococcus aureus in vitro. Glob. J. Bio-Sci. Biotechnol. 2014, 3, 346–348. [Google Scholar]
- Jain, I.; Jain, P.; Bisht, D.; Sharma, A.; Srivastava, B.; Gupta, N. Comparative evaluation of antibacterial efficacy of six indian plant extracts against Streptococcus mutans. J. Clin. Diagn. Res. JCDR 2015, 9, 50–53. [Google Scholar] [CrossRef]
- Induja, M.P.; Geetha, R.V. Antimicrobial activity of Allium cepa against bacteria causing enteric infection. Drug Invent. Today 2018, 10, 2489–2492. [Google Scholar]
- Yasmin, H.; Anbumalarmathi, J.; Aruna Sharmili, S. Phytochemical analysis and antimicrobial activity of garlic (Allium sativum L.) and onion (Allium cepa L.). Res. Crops 2018, 19, 245–248. [Google Scholar] [CrossRef]
- Krivokapić, M.; Bradić, J.; Petković, A.; Popović, M. Phytochemical and pharmacological properties of Allium ursinum. Ser. J. Exp. Clin. Res. 2018, 22, 357–362. [Google Scholar] [CrossRef]
- Chang, T.-C.; Chang, H.-T.; Chang, S.-T.; Lin, S.-F.; Chang, Y.-H.; Jang, H.-D. A Comparative Study on the Total Antioxidant and Antimicrobial Potentials of Ethanolic Extracts from Various Organ Tissues of Allium spp. Food Nutr. Sci. 2013, 4, 182–190. [Google Scholar]
- Lanzotti, V.; Scala, F.; Bonanomi, G. Compounds from Allium species with cytotoxic and antimicrobial activity. Phytochem. Rev. 2014, 13, 769–791. [Google Scholar] [CrossRef]
- Stupar, A.; Šaric, L.; Vidovic, S.; Bajic, A.; Kolarov, V.; Šaric, B. Antibacterial Potential of Allium ursinum Extract Prepared by the Green Extraction Method. Microorganisms 2022, 10, 1358. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.S.; Beshbishy, A.M.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; El-Hack, M.E.A.; Taha, A.E.; Abd-Elhakim, Y.M.; Devkota, H.P. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef]
- Nencini, C.; Cavallo, F.; Capasso, A.; Franchi, G.G.; Giorgio, G.; Micheli, L. Evaluation of antioxidative properties of Allium species growing wild in Italy. Phytother. Res. 2007, 21, 874–878. [Google Scholar] [CrossRef]
- Mihaylova, D.S.; Lante, A.; Tinello, F.; Krastanov, A.I. Study on the antioxidant and antimicrobial activities of Allium ursinum L. pressurised-liquid extract. Nat. Prod. Res. 2014, 28, 2000–2005. [Google Scholar] [CrossRef]
- Lachowicz, S.; Kolniak-Ostek, J.; Oszmiański, J.; Wiśniewski, R. Comparison of Phenolic Content and Antioxidant Capacity of Bear Garlic (Allium ursinum L.) in Different Maturity Stages. J. Food Process. Preserv. 2017, 41, e12921. [Google Scholar] [CrossRef]
- Nhut, P.T.; An, T.N.T.; Minh, L.V.; Truc, T.T.; Anh, N.H.T. Phytochemical screening of Allium tuberosum Rottler. ex Spreng as food spice. IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012021. [Google Scholar] [CrossRef]
- Singh, V.; Chauhan, G.; Krishan, P.; Shri, R. Allium schoenoprasum L.: A review of phytochemistry, pharmacology and future directions. Nat. Prod. Res. 2018, 32, 2202–2216. [Google Scholar] [CrossRef]
- Cakmakci, O.; Sensoy, S.; Alan, A.R. Bioactive constituents of Allium vineale L. accessions from Eastern Turkey. Sci. Hortic. 2022, 303, 111203. [Google Scholar] [CrossRef]
- Demir, T.; Akpınar, Ö.; Kara, H.; Güngör, H. Phenolic profile and investigation of biological activities of Allium scorodoprasum L. subsp. rotundum. Food Biosci. 2022, 46, 101548. [Google Scholar] [CrossRef]
- Khalili, S.; Saeidi Asl, M.R.; Khavarpour, M.; Vahdat, S.M.; Mohammadi, M. Comparative study on the effect of extraction solvent on total phenol, flavonoid content, antioxidant and antimicrobial properties of red onion (Allium cepa). Food Meas. 2022, 16, 3578–3588. [Google Scholar] [CrossRef]
- Moo-Huchin, V.M.; Canto-Pinto, J.C.; Cuevas-Glory, L.F.; Sauri-Duch, E.; Perez-Pacheco, E.; Betancur-Ancona, D. Effect of extraction solvent on the phenolic compounds content and antioxidant activity of ramon nut (Brosimum alicastrum). Chem. Pap. 2019, 73, 1647–1657. [Google Scholar] [CrossRef]
- Cahayani, W.A.; Tanuwijaya, C.; Chi, L.X.; Mulyastuti, Y. Antibacterial activity of garlic (Allium sativum) extract and molecular docking studies of allicin. In Proceedings of the International Conference on Bioinformatics and Nano-Medicine from Natural Resources for Biomedical Research—3rd Annual Scientific Meeting for Biomedical Sciences, Malang, Indonesia, 21–23 November 2018; Volume 2108. [Google Scholar]
- Liguori, L.; Giuseppina, A.; Filomena, N.; Fratianni, F.; Di Mateo, M.; Albanese, D. Biochemical, antioxidant properties and antimicrobial activity of different onion varieties in the Mediterranean area. J. Food Meas. Charact. 2019, 13, 1232–1241. [Google Scholar]
- Limpahong, S.J.; Moya, N.D.; Sapungan, R.A. Antibacterial effect of welsh onion (Allium fistulosum) leaf extract against Pseudomonas aeruginosa. Biol. Life Sci. 2019, 38, 7. [Google Scholar]
- Packia Lekshmi, N.C.J.; Viveka, S.; Jeeva, S.; Raja Brindha, J. Efficacy of crude extracts of Allium sativum and Allium cepa against human pathogens. Adv. Appl. Sci. Res. 2015, 6, 72–78. [Google Scholar]
- Pârvu, M.; Pârvu, A.E.; Vlase, L.; Rosca-Casian, O.; Pârvu, O. Antifungal properties of Allium ursinum L. ethanol extract. J. Med. Plant Res. 2011, 5, 2041–2046. [Google Scholar]
- Pârvu, M.; Vlase, L.; Fodorpataki, L.; Pârvu, O.; Bartha, C.; Rosca-Casian, O.; Barbu-Tudoran, L.; Pârvu, A.E. Chemical composition of celandine (Chelidonium majus L.) extract and its effects on Botrytis tulipae (Lib.) lind fungus and the tulip. Not. Bot. Hort. Agrobot. 2013, 41, 414–426. [Google Scholar] [CrossRef]
- Mot, A.C.; Damian, G.; Sarbu, C.; Silaghi-Dumitrescu, R. Redox reactivity in propolis: Direct detection of free radicals in basic medium and interaction with hemoglobin. Redox Rep. 2009, 14, 267–274. [Google Scholar] [CrossRef]
- Orăşan, O.; Oprean, R.; Saplonţai-Pop, A.; Filip, M.; Carpa, R.; Saroşi, C.; Moldovan, M.; Man, S.C. Antimicrobial activity and thiosulfinates profile of a formulation based on Allium cepa L. extract. Open Chem. 2017, 15, 175–181. [Google Scholar] [CrossRef]
- Pârvu, M.; Moţ, C.A.; Pârvu, A.E.; Mircea, C.; Stoeber, L.; Roşca-Casian, O.; Ţigu, A.B. Allium sativum extract chemical composition, antioxidant activity and antifungal effect against Meyerozyma guilliermondii and Rhodotorula mucilaginosa causing onychomycosis. Molecules 2019, 24, 3958. [Google Scholar] [CrossRef] [PubMed]
- Miron, T.; Shin, I.; Feigenblat, G.; Weiner, L.; Mirelman, D.; Wilchek, M.; Rabinkov, A. A spectrophotometric assay for allicin, alliin, and alliinase (alliin lyase) with a chromogenic thiol: Reaction of 4-mercaptopyridine with thiosulfinates. Anal. Biochem. 2002, 307, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Saplonţai-Pop, A.; Moţ, A.; Moldovan, M.; Oprean, R.; Silaghi-Dumitrescu, R.; Orășan, O.; Pârvu, M.; Gal, E.; Ionescu, C. Testing antiplatelet and antioxidant activity of the extract of seven varieties of Allium cepa L. Open Life Sci. 2015, 10, 89–98. [Google Scholar] [CrossRef]
- Bosca, B.; Mot, A.C. Novel simultaneous determination of alliin and allicin in Allium sp. using digital subtraction HPTLC. J. Chromatogr. B 2023, 1222, 123700. [Google Scholar] [CrossRef] [PubMed]
- Carpa, R.; Dragan-Bularda, M.; Muntean, V. General Microbiology—Practical Guide; Presa Universitara Clujeana: Cluj-Napoca, Romania, 2014; pp. 58–61. [Google Scholar]
- Ciorîță, A.; Zăgrean-Tuza, C.; Moț, A.C.; Carpa, R.; Pârvu, M. The phytochemical analysis of Vinca L. species leaf extracts is correlated with the antioxidant, antibacterial, and antitumor effects. Molecules 2021, 26, 3040. [Google Scholar] [CrossRef]
- Bienvenue, D.N.; Bong, D.A.; Brian, N.Z.; Staphane, J.; Hortense, G.; Charles, M.B. In Vitro Evaluation of the Efficacy of an Aqueous Extract of Allium Sativum as an Antibacterial Agent on Three Major Periodontal Pathogens. J Oral Dent. Health Res. 2021, 3, 121. [Google Scholar]
- Bin, C.; Al-Dhabi, N.A.; Esmail, G.A.; Arokiyaraj, S.; Arasu, M.V. Potential effect of Allium sativum bulb for the treatment of biofilm forming clinical pathogens recovered from periodontal and dental caries. Saudi J. Biol. Sci. 2020, 27, 1428–1434. [Google Scholar] [CrossRef]
Species | TFC (μg QE/g) | TPC (μg GAE/g) | TTC (μg AE/g) |
---|---|---|---|
A. sativum | 44.5± 4.1 | 278 ± 15 | 333 ± 5 |
A. senescens L. subsp. montanum | 52.6 ± 1.2 | 423 ± 35 | 21 ± 2 |
A. fistulosum | 27.6 ± 0.3 | 327 ± 8 | 36 ± 2 |
A. cepa cv. Arieș red | 54.9 ± 2.4 | 418 ± 7 | 12 ± 4 |
White variety of A. cepa | 18.6 ± 1.5 | 175 ± 11 | 5 ± 1 |
A. ursinum | 22.9 ± 0.2 | 354 ± 13 | 312 ± 7 |
Analyte (μg/g) | A. sativum | A. ursinum |
---|---|---|
Gentisic acid | 38 ± 5 | <LOD |
Chlorogenic acid | 36 ± 3 | 40 ± 5 |
4-hydroxybenzoic acid | 16 ± 3 | <LOD |
p-coumaric acid | 26 ± 4 | 102 ± 10 |
Alliin | 1580 ± 30 | 260 ± 15 |
Allicin | 280 + 15 | 130 ± 10 |
Extracts | E. coli | S. aureus | C. albicans | C. parapsilosis | ||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
A. sativum | 6.25 | 25 | 12.5 | 25 | 12.5 | 12.5 | 6.25 | 12.5 |
A. ursinum | 6.25 | 12.5 | 25 | 50 | 6.25 | 12.5 | 6.25 | 25 |
A. sativum + A. ursinum 1:1 | 6.25 | 12.5 | 6.25 | 12.5 | 6.25 | 12.5 | 6.25 | 12.5 |
A. sativum + A. ursinum 1:2 | 6.25 | 12.5 | 12.5 | 12.5 | 50 | 50 | 6.25 | 12.5 |
A. sativum + A. ursinum 2:1 | 50 | 50 | 50 | 50 | 12.5 | 25 | 50 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbu, I.A.; Ciorîță, A.; Carpa, R.; Moț, A.C.; Butiuc-Keul, A.; Pârvu, M. Phytochemical Characterization and Antimicrobial Activity of Several Allium Extracts. Molecules 2023, 28, 3980. https://doi.org/10.3390/molecules28103980
Barbu IA, Ciorîță A, Carpa R, Moț AC, Butiuc-Keul A, Pârvu M. Phytochemical Characterization and Antimicrobial Activity of Several Allium Extracts. Molecules. 2023; 28(10):3980. https://doi.org/10.3390/molecules28103980
Chicago/Turabian StyleBarbu, Ioana Andreea, Alexandra Ciorîță, Rahela Carpa, Augustin Catalin Moț, Anca Butiuc-Keul, and Marcel Pârvu. 2023. "Phytochemical Characterization and Antimicrobial Activity of Several Allium Extracts" Molecules 28, no. 10: 3980. https://doi.org/10.3390/molecules28103980
APA StyleBarbu, I. A., Ciorîță, A., Carpa, R., Moț, A. C., Butiuc-Keul, A., & Pârvu, M. (2023). Phytochemical Characterization and Antimicrobial Activity of Several Allium Extracts. Molecules, 28(10), 3980. https://doi.org/10.3390/molecules28103980