Lewis Acid-Catalyzed Formal (4+2)-Cycloaddition between Cross-Conjugated Azatrienes and Styrylmalonates: The Way to Functionalized Quinolizidine Precursors
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. Synthetic Procedures
3.2.1. General Synthetic Procedure and Spectroscopic Data for Azatrienes 2
3.2.2. General Synthetic Procedure and Spectroscopic Data for Vinyltetrahydropyridines 3
3.2.3. General Synthetic Procedure and Spectroscopic Data for Heterocycles 5
3.2.4. General Synthetic Procedure and Spectroscopic Data for Heterocycle 6
3.2.5. General Synthetic Procedure and Spectroscopic Data for Azadiene 4
3.2.6. Gram-Scale Synthetic Procedure for Vinyltetrahydropyridine 3b
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Karunakaran, T.; Ngew, K.Z.; Zailan, A.A.D.; Mian, J.V.Y.; Abu Bakar, M.H. The chemical and pharmacological properties of mitragynine and its diastereomers: An insight review. Front. Pharmacol. 2022, 13, 805986–805997. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.-H.; Yu, Z.-P.; Capon, R.J.; Zhang, H. Natural enantiomers: Occurrence, biogenesis and biological properties. Molecules 2022, 27, 1279–1352. [Google Scholar] [CrossRef] [PubMed]
- Althagbi, H.I.; Alarif, W.M.; Al-Footy, K.O.; Abdel-Lateff, A. Marine-derived macrocyclic alkaloids (MDMAs): Chemical and biological diversity. Mar. Drugs 2020, 18, 368–402. [Google Scholar] [CrossRef] [PubMed]
- Michael, J.P. The Alkaloids: Chemistry and Biology, 1st ed.; Knölker, H.-J., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; Volume 75, pp. 1–498. [Google Scholar]
- Li, Y.; Wang, G.; Liu, J.; Ouyang, L. Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: Bioactivities, structure-activity relationships and preliminary molecular mechanisms. Eur. J. Med. Chem. 2020, 188, 111972–111997. [Google Scholar] [CrossRef] [PubMed]
- Toya, H.; Satoh, T.; Okano, K.; Takasu, K.; Ihara, M.; Takahashi, A.; Tanaka, H.; Tokuyama, H. Stereocontrolled total synthesis and biological evaluation of (−)- and (+)-petrosin and its derivatives. Tetrahedron 2014, 70, 8129–8141. [Google Scholar] [CrossRef]
- Guerola, M.; Sánchez-Roselló, M.; Mulet, C.; del Pozo, C.; Fustero, S. Asymmetric intramolecular aza-Michael reaction in desymmetrization processes. Total synthesis of hippodamine and epi-hippodamine. Org. Lett. 2015, 17, 960–963. [Google Scholar] [CrossRef] [PubMed]
- Alujas-Burgos, S.; Oliveras-González, C.; Álvarez-Larena, Á.; Bayón, P.; Figueredo, M. Iterative synthetic strategy for azaphenalene alkaloids. Total synthesis of (−)-9a epi-hippocasine. J. Org. Chem. 2018, 83, 5052–5057. [Google Scholar] [CrossRef]
- Alujas-Burgos, S.; Bayón, P.; Figueredo, M. Recent advances in the synthesis of azaphenalene alkaloids: First enantioselective approaches. Org. Biomol. Chem. 2018, 16, 8218–8229. [Google Scholar] [CrossRef]
- Borisov, D.D.; Novikov, R.A.; Tomilov, Y.V. GaCl3-Mediated reactions of donor–acceptor cyclopropanes with aromatic aldehydes. Angew. Chem. Int. Ed. 2016, 55, 12233–12237. [Google Scholar] [CrossRef]
- Borisov, D.D.; Novikov, R.A.; Eltysheva, A.S.; Tkachev, Y.V.; Tomilov, Y.V. Styrylmalonates as an alternative to donor–acceptor cyclopropanes in the reactions with aldehydes: A route to 5,6-dihydropyran-2-ones. Org. Lett. 2017, 19, 3731–3734. [Google Scholar] [CrossRef]
- Novikov, R.A.; Levina, A.A.; Borisov, D.D.; Volodin, A.D.; Korlyukov, A.A.; Tkachev, Y.V.; Platonova, Y.B.; Tomilova, L.G.; Tomilov, Y.V. Synthesis of the cationic gallium phthalocyanines and their catalytic application in gallium (III)-activated processes for donor–acceptor substrates. Organometallics 2020, 39, 2580–2593. [Google Scholar] [CrossRef]
- Borisov, D.D.; Novikov, R.A.; Tomilov, Y.V. Reactions of styrylmalonates with aromatic aldehydes: Detailed synthetic and mechanistic studies. J. Org. Chem. 2021, 86, 4457–4471. [Google Scholar] [CrossRef] [PubMed]
- Borisov, D.D.; Chermashentsev, G.R.; Novikov, R.A.; Tomilov, Y.V. Coupling of styrylmalonates with furan and benzofuran carbaldehydes: Synthesis and chemistry of substituted (4-oxocyclopent-2-enyl) malonates. J. Org. Chem. 2021, 86, 8489–8499. [Google Scholar] [CrossRef] [PubMed]
- Sergeev, P.G.; Novikov, R.A.; Tomilov, Y.V. Lewis acid-catalyzed formal (4 + 2)- and (2 + 2 + 2)-cycloaddition between 1-azadienes and styrylmalonates as analogues of donor-acceptor cyclopropanes. Adv. Synth. Catal. 2021, 363, 5292–5299. [Google Scholar] [CrossRef]
- Snyder, H.R.; Heckert, R.E. A method for the rapid cleavage of sulfonamides. J. Am. Chem. Soc. 1952, 74, 2006–2009. [Google Scholar] [CrossRef]
- Javorskis, T.; Orentas, E. Chemoselective deprotection of sulfonamides under acidic conditions: Scope, sulfonyl group migration, and synthetic applications. J. Org. Chem. 2017, 82, 13423–13439. [Google Scholar] [CrossRef]
- Birkinshaw, T.N.; Holmes, A.B. Synthesis of (±)-isoprosopinines A and B. Tetrahedron Lett. 1987, 28, 813–816. [Google Scholar] [CrossRef]
- Tanner, D.; Ming, H.H.; Bergdahl, M. Stereocontrolled synthesis of the spirocyclic alkaloid (±)-nitramine. Tetrahedron Lett. 1988, 29, 6493–6495. [Google Scholar] [CrossRef]
- Roemmele, R.C.; Rapoport, H. Removal of N-arylsulfonyl groups from hydroxy α-amino acids. J. Org. Chem. 1988, 53, 2367–2371. [Google Scholar] [CrossRef]
- Ji, S.; Gortler, L.B.; Waring, A.; Battisti, A.J.; Bank, S.; Closson, W.D.; Wriede, P.A. Cleavage of sulfonamides with sodium naphthalene. J. Am. Chem. Soc. 1967, 89, 5311–5312. [Google Scholar] [CrossRef]
- Alonso, E.; Ramon, D.J.; Yus, M. Reductive deprotection of allyl, benzyl and sulfonyl substituted alcohols, amines and amides using a naphthalene-catalysed lithiation. Tetrahedron 1997, 53, 14355–14368. [Google Scholar] [CrossRef]
- Teng, M.; Zi, W.; Ma, D. Total synthesis of the monoterpenoid indole alkaloid (±)-aspidophylline A. Angew. Chem. Int. Ed. 2014, 53, 1814–1817. [Google Scholar] [CrossRef] [PubMed]
- Blair, L.M.; Sperry, J. Total syntheses of (±)-spiroindimicins B and C enabled by a late-stage Schöllkopf–Magnus–Barton–Zard (SMBZ) reaction. Chem. Commun. 2016, 52, 800–802. [Google Scholar] [CrossRef] [PubMed]
- Wua, P.; Zhoub, Q.; Liua, X.-Y.; Xuea, F.; Qin, Y. Synthetic studies towards (–)-deserpidine: Total synthesis of the stereoisomer and derivative of (–)-deserpidine. Chin. Chem. Lett. 2021, 32, 401–404. [Google Scholar] [CrossRef]
- Vedejs, E.; Lin, S. Deprotection of arenesulfonamides with samarium iodide. J. Org. Chem. 1994, 59, 1602–1603. [Google Scholar] [CrossRef]
- Alonso, D.A.; Andersson, P.G. Deprotection of sulfonyl aziridines. J. Org. Chem. 1998, 63, 9455–9461. [Google Scholar] [CrossRef]
- Hayashi, T.; Kawai, M.; Tokunaga, N. Asymmetric synthesis of diarylmethyl amines by rhodium-catalyzed asymmetric addition of aryl titanium reagents to imines. Angew. Chem. Int. Ed. 2004, 43, 6125–6128. [Google Scholar] [CrossRef]
- Kuriyama, M.; Soeta, T.; Hao, X.; Chen, Q.; Tomioka, K. N-Boc-L-valine-connected amidomonophosphane rhodium (I) catalyst for asymmetric arylation of N-tosylarylimines with arylboroxines. J. Am. Chem. Soc. 2004, 126, 8128–8129. [Google Scholar] [CrossRef]
- Grach, G.; Santos, J.S.-d.O.; Lohier, J.; Mojovic, L.; Plé, N.; Turck, A.; Reboul, V.; Metzner, P. Diastereoselective addition of enantiopure lithium tert-butylsulfinylferrocene to imines. J. Org. Chem. 2006, 71, 9572–9579. [Google Scholar] [CrossRef]
- Duan, H.; Jia, Y.; Wang, L.; Zhou, Q. Enantioselective Rh-catalyzed arylation of N-tosylarylimines with arylboronic acids. Org. Lett. 2006, 8, 2567–2569. [Google Scholar] [CrossRef]
- Ankner, T.; Hilmersson, G. Instantaneous deprotection of tosylamides and esters with SmI2/amine/water. Org. Lett. 2009, 11, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Berhal, F.; Wu, Z.; Zhang, Z.; Ayad, T.; Ratovelomanana-Vidal, V. Enantioselective synthesis of 1-aryl-tetrahydroisoquinolines through iridium catalyzed asymmetric hydrogenation. Org. Lett. 2012, 14, 3308–3311. [Google Scholar] [CrossRef] [PubMed]
- Ritzen, B.; Hoekman, S.; Verdasco, E.D.; van Delft, F.L.; Rutjes, F.P.J.T. Enantioselective chemoenzymatic synthesis of cis- and trans-2,5-disubstituted morpholines. J. Org. Chem. 2010, 75, 3461–3464. [Google Scholar] [CrossRef] [PubMed]
- Goulaouic-Dubois, C.; Guggisberg, A.; Hesse, M. Protection of amines by the pyridine-2-sulfonyl group and its cleavage under mild conditions (SmI2 or electrolysis). J. Org. Chem. 1995, 60, 5969–5972. [Google Scholar] [CrossRef]
- Aaseng, J.E.; Gautun, O.R. Synthesis of substituted (S)-2-aminotetralins via ring-opening of aziridines prepared from l-aspartic acid β-tert-butyl ester. Tetrahedron 2010, 66, 8982–8991. [Google Scholar] [CrossRef][Green Version]
- Nakamura, Y.; Tanaka, S.; Serizawa, R.; Morohashi, N.; Hattori, T. Synthesis of mono-and 1,3-diaminocalix[4]arenes via Ullmann-type amination and amidation of 1,3-bistriflate esters of calix [4] arenes J. Org. Chem. 2011, 76, 2168–2179. [Google Scholar] [CrossRef]
- Kumar, V.; Ramesh, N.G. Iodine catalyzed one-pot diamination of glycals with chloramine-T: A new approach to 2-amino-β-glycosylamines for applications in N-glycopeptide synthesis. Chem. Commun. 2006, 4952–4954. [Google Scholar] [CrossRef]
- Kumar, V.; Ramesh, N.G. A versatile strategy for the synthesis of N-linked glycoamino acids from glycals. Org. Biomol. Chem. 2007, 5, 3847–3858. [Google Scholar] [CrossRef]
- Jensen, K.L.; Franke, P.T.; Nielsen, L.T.; Daasbjerg, K.; Jørgensen, K.A. Anodic oxidation and organocatalysis: Direct regio- and stereoselective access to meta-substituted anilines by α-arylation of aldehydes. Angew. Chem. Int. Ed. 2010, 49, 129–133. [Google Scholar] [CrossRef]
- Yamagishi, T.; Ichikawa, H.; Haruki, T.; Yokomatsu, T. Diastereoselective synthesis of α,β’-disubstituted aminomethyl (2-carboxyethyl) phosphinates as phosphinyl dipeptide isosteres. Org. Lett. 2008, 10, 4347–4350. [Google Scholar] [CrossRef]
- Blay, G.; Cardona, L.; Climent, E.; Pedro, J.R. Highly enantioselective zinc/binol-catalyzed alkynylation of N-sulfonyl aldimines. Angew. Chem. Int. Ed. 2008, 47, 5593–5596. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.C.; Flugge, L.A.; Petillo, P.A. SmI2-promoted deprotection of N-(arylsulfonyl) glucosamines. J. Org. Chem. 1997, 62, 4864–4866. [Google Scholar] [CrossRef]
- Gaston, J.J.; Tague, A.J.; Smyth, J.E.; Butler, N.M.; Willis, A.C.; van Eikema Hommes, N.; Yu, H.; Clark, T.; Keller, P.A. The detosylation of chiral 1,2-bis (tosylamides). J. Org. Chem. 2021, 86, 9163–9180. [Google Scholar] [CrossRef]
- Okabe, K.; Natsume, M. The second generation synthesis of a tumor promoter pendolmycin. Tetrahedron 1991, 47, 7615–7624. [Google Scholar] [CrossRef]
- Pak, C.S.; Lim, D.S. Deprotection of 2-pyridyl sulfonyl group from pyridine-2-sulfonamides by magnesium in methanol. Synth. Commun. 2001, 31, 2209–2214. [Google Scholar] [CrossRef]
- Kan, T.; Fukuyama, T. Ns strategies: A highly versatile synthetic method for amines. Chem. Commun. 2004, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Fukuyama, T.; Jow, C.-K.; Cheung, M. 2- and 4-Nitrobenzenesulfonamides: Exceptionally versatile means for preparation of secondary amines and protection of amines. Tetrahedron Lett. 1995, 36, 6373–6374. [Google Scholar] [CrossRef]
- Kobayashi, S.; Furuya, T.; Otani, T.; Saito, T. A novel and facile stereocontrolled synthetic method for polyhydro-quinolines and pyridopyridazines via a diene-transmissive Diels–Alder reaction involving inverse electron-demand hetero Diels–Alder cycloaddition of cross-conjugated azatrienes. Tetrahedron 2008, 64, 9705–9716. [Google Scholar] [CrossRef]
- Borisov, D.D.; Chermashentsev, G.R.; Novikov, R.A.; Tomilov, Y.V. Synthesis of substituted β-styrylmalonates by sequential isomerization of 2-arylcyclopropane-1,1-dicarboxylates and (2-arylethylidene) malonates. Synthesis 2021, 53, 2253–2259. [Google Scholar] [CrossRef]
- Chagarovskiy, A.O.; Ivanova, O.A.; Rakhmankulov, E.R.; Budynina, E.M.; Trushkov, I.V.; Melnikov, M.Y. Lewis acid-catalyzed isomerization of 2-arylcyclopropane-1,1-dicarboxylates: A new efficient route to 2-styrylmalonates. Adv. Synth. Catal. 2010, 352, 3179–3184. [Google Scholar] [CrossRef]
- Tsedilin, A.M.; Fakhrutdinov, A.N.; Eremin, D.B.; Zalesskiy, S.S.; Chizhov, A.O.; Kolotyrkina, N.G.; Ananikov, V.P. How sensitive and accurate are routine NMR and MS measurements? Mendeleev Commun. 2015, 25, 454–456. [Google Scholar] [CrossRef]
Entry * | X | Y | Z | T, °C | t, Days | Products, | Total Yields, % ** | Ratio 3/3′ ** |
---|---|---|---|---|---|---|---|---|
1 | 4-Cl | 4-MeO | 4-NO2 | 20 | 0.5 | 3k, 3k′ | 72 | 1/1 |
2 *** | 4-Cl | 4-MeO | 4-NO2 | –20 | 3 | 3k, 3k′ | 61 | 1/1 |
3 | 4-Cl | 2,6-Cl2 | H | 20 | 0.5 | 3l, 3l′ | 52 | 1/1 |
4 | 4-Cl | 2,6-Cl2 | H | –20 | 5 | 3l, 3l′ | 56 | 1.2/1 |
5 | 2-Cl | 2,6-Cl2 | H | 20 | 0.5 | 3m, 3m′ | 74 | 2/1 |
6 | 2-Cl | 2,6-Cl2 | H | –20 | 5 | 3m, 3m′ | 54 | 4/1 |
Entry | Oxide | T, °C | t, h | Yield 6, % |
---|---|---|---|---|
1 | SiO2 | 20 | 12 | 16 |
2 | SiO2 | –20 | 12 | 26 |
3 * | Al2O3 | 20 | 72 | 11 ** |
4 | Al2O3 | 40 | 6 | c.m. *** |
No | Reagent | Solvent | T, °C | t, h | Yield 4, % |
---|---|---|---|---|---|
1 | SmI2 (6 eq) | THF | 20 → 65 | 6 | n.r. |
2 | SmI2 (6 eq), HMPA (18 eq) | THF | 20 | 0.25 | traces |
3 * | SmI2 (6 eq), HMPA (18 eq) | THF | –78 | 1 | traces |
4 | SmI2 (10 eq), Et3N (20 eq), H2O (30 eq) | THF | 20 | 0.25 | n.r. |
5 | Mg (40 eq), ))) | MeOH | 20 | 1 | further reduction (traces) |
6 | Mg (10 eq), ))) | MeOH | 20 | 0.25 | |
7 | Mg (3 eq), HgCl2 (cat.) | MeOH | –20 | 1 | n.r. |
8 | TfOH (1 eq) | DCE ** | 60 | 1 | c.m. |
9 * | TfOH (1 eq) | CH2Cl2 | –20 → 20 | 1 | c.m. |
10 | HBr/AcOH | 100 | 1 | c.m. | |
11 | Na-naphthalenide (10 eq) | THF | –78 | 0.75 | 30 |
12 | Na-naphthalenide (6 eq) | THF | –78 | 0.25 | 40 |
13 | Na-naphthalenide(6 eq) | DME | –60 | 0.25 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergeev, P.G.; Novikov, R.A.; Tomilov, Y.V. Lewis Acid-Catalyzed Formal (4+2)-Cycloaddition between Cross-Conjugated Azatrienes and Styrylmalonates: The Way to Functionalized Quinolizidine Precursors. Molecules 2023, 28, 88. https://doi.org/10.3390/molecules28010088
Sergeev PG, Novikov RA, Tomilov YV. Lewis Acid-Catalyzed Formal (4+2)-Cycloaddition between Cross-Conjugated Azatrienes and Styrylmalonates: The Way to Functionalized Quinolizidine Precursors. Molecules. 2023; 28(1):88. https://doi.org/10.3390/molecules28010088
Chicago/Turabian StyleSergeev, Pavel G., Roman A. Novikov, and Yury V. Tomilov. 2023. "Lewis Acid-Catalyzed Formal (4+2)-Cycloaddition between Cross-Conjugated Azatrienes and Styrylmalonates: The Way to Functionalized Quinolizidine Precursors" Molecules 28, no. 1: 88. https://doi.org/10.3390/molecules28010088
APA StyleSergeev, P. G., Novikov, R. A., & Tomilov, Y. V. (2023). Lewis Acid-Catalyzed Formal (4+2)-Cycloaddition between Cross-Conjugated Azatrienes and Styrylmalonates: The Way to Functionalized Quinolizidine Precursors. Molecules, 28(1), 88. https://doi.org/10.3390/molecules28010088