Recent Development on Determination of Low-Level 90Sr in Environmental and Biological Samples: A Review
Abstract
:1. Introduction
2. Sample Pretreatment
2.1. Pretreatment of Environmental Samples
2.2. Pretreatment of Biological Samples
3. Chemical Purification
3.1. Precipitation
3.2. Liquid–Liquid Extraction
3.3. Ion Exchange Chromatography
3.4. Extraction Chromatography
3.5. Adsorption
3.6. Electrosorption
4. Measurement
4.1. Beta Counter
4.2. Electrosorption Liquid Scintillation Counting
4.3. Cherenkov Counting
4.4. Mass Spectrometry
4.4.1. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
4.4.2. Resonance Ionization Mass Spectrometry (RIMS)
4.4.3. Thermal Ionization Mass Spectrometry (TIMS)
4.4.4. Accelerator Mass Spectrometry (AMS)
5. Automation in 90Sr Analytical Methods
6. Quality Control
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shao, Y.; Yang, G.; Tazoe, H.; Ma, L.; Yamada, M.; Xu, D. A review of measurement methodologies and their applications to environmental 90Sr. J. Environ. Radioact. 2018, 192, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Tazoe, H.; Yamagata, T.; Tsujita, K.; Nagai, H.; Obata, H.; Tsumune, D.; Kanda, J.; Yamada, M. Observation of Dispersion in the Japanese Coastal Area of Released 90Sr, 134Cs, and 137Cs from the Fukushima Daiichi Nuclear Power Plant to the Sea in 2013. Int. J. Environ. Res. Public Health 2019, 16, 4094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, B.C.; Croudace, I.W.; Warwick, P.E. Determination of 135Cs and 137Cs in environmental samples: A review. Anal. Chim. Acta 2015, 890, 7–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ješkovský, M.; Kaizer, J.; Kontuĺ, I.; Lujaniené, G.; Müllerová, M.; Povinec, P.P. Analysis of environmental radionuclides. In Handbook of Radioactivity Analysis; Academic Press: Cambridge, MA, USA, 2019; Volume 2, pp. 137–261. [Google Scholar]
- L’Annunziata, M.F. Table of Radioactive Isotopes. In Handbook of Radioactivity Analysis, 4th ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 2, pp. 953–1012. [Google Scholar]
- Liu, W.-S.; Chu, T.C.; Weng, P.S. Measurement of Strontium-90 and Caesium-137 in Milk. Jpn. J. Health Phys. 1970, 5, 195–198. [Google Scholar] [CrossRef]
- Lu, J.G.; Huang, Y.; Li, F.; Wang, L.; Li, S.; Hsia, Y. The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China. J. Environ. Radioact. 2006, 90, 89–99. [Google Scholar] [CrossRef]
- Desideri, C.G.D.; Monte, L. Migration processes of 137Cs and 90Sr in compartments of a lake ecosystem. J. Radioanal. Nucl. Chem. 2005, 266, 31–37. [Google Scholar] [CrossRef]
- Hirose, K.; Igarashi, Y.; Aoyama, M. Analysis of the 50-year records of the atmospheric deposition of long-lived radionuclides in Japan. Appl. Radiat. Isot. 2008, 66, 1675–1678. [Google Scholar] [CrossRef]
- Igarashi, Y.; Aoyama, M.; Hirose, K.; Miyao, T.; Yabuki, S. Is it possible to use 90Sr and 137Cs as tracers for the aeolian dust transport? Water Air Soil Pollut. 2001, 130, 349–354. [Google Scholar] [CrossRef]
- Igarashi, Y.; Aoyama, M.; Hirose, K.; Povinec, P.; Yabuki, S. What anthropogenic radionuclides (90Sr and 137Cs) in atmospheric deposition, surface soils and aeolian dusts suggest for dust transport over Japan. Water Air Soil Pollut. Focus 2005, 5, 51–69. [Google Scholar] [CrossRef]
- Aoyama, M.; Hirose, K.; Igarashi, Y. Re-construction and updating our understanding on the global weapons tests 137Cs fallout. J. Environ. Monit. 2006, 8, 431–438. [Google Scholar] [CrossRef]
- Egorov, V.N.; Povinec, P.P.; Polikarpov, G.G.; Stokozov, N.A.; Gulin, S.B.; Kulebakina, L.G.; Osvath, I. 90Sr and 137Cs in the Black Sea after the Chernobyl NPP accident: Inventories, balance and tracer applications. J. Environ. Radioact. 1999, 43, 137–155. [Google Scholar] [CrossRef]
- Voitsekhovitch, O.V.; Kanivets, V.V.; Kristhuk, B.F. Project RER/2/003 Status Report of the Ukrainian Research Hydrometeorological Institute for 2000–2001. In Working Material of Regional Co-Operation Project RER/2/003 “Marine Environmental Assessment of the Black Sea”; IAEA: Vienna, Austria, 2004. [Google Scholar]
- Buesseler, K.O.; Livingston, H.D. Natural and man-made radionuclides in the Black Sea. In Radionuclides in the Ocean: Inputs and Inventories; IPSN: Paris, France, 1996; pp. 199–217. [Google Scholar]
- Mirzoyeva, N.Y.; Egorov, V.N.; Polikarpov, G.G. Distribution and migration of 90Sr in components of the Dnieper River basin and the Black Sea ecosystems after the Chernobyl NPP accident. J. Environ. Radioact. 2013, 125, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.K.; Kavasi, N.; Sorimachi, A.; Arae, H.; Tokonami, S.; Mietelski, J.W.; Lokas, E.; Yoshida, S. Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima daiichi nuclear power plant. Sci. Rep. 2016, 6, 23925. [Google Scholar] [CrossRef] [Green Version]
- Hirose, K.; Povinec, P.P. 90Sr and 137Cs as tracers of oceanic eddies in the sea of Japan/East sea. J. Environ. Radioact. 2020, 216, 106179. [Google Scholar] [CrossRef] [PubMed]
- Koarai, K.; Kino, Y.; Takahashi, A.; Suzuki, T.; Shimizu, Y.; Chiba, M.; Osaka, K.; Sasaki, K.; Urushihara, Y.; Fukuda, T.; et al. 90Sr specific activity of teeth of abandoned cattle after the Fukushima accident—Teeth as an indicator of environmental pollution. J. Environ. Radioact. 2018, 183, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hirose, K.; Povinec, P.P. 137Cs and 90Sr in surface waters of the Sea of Japan: Variations and the Fukushima Dai-ichi Nuclear Power Plant accident impact. Mar. Pollut. Bull. 2019, 146, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ninomiya, K.; Takahashi, N.; Saito, T.; Kita, K. Rapid isolation method for radioactive strontium using Empore Strontium Rad Disk. J. Nucl. Radiochem. Sci. 2016, 16, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Aarkrog, A. Input of anthropogenic radionuclides into the World Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 2597–2606. [Google Scholar] [CrossRef]
- Ganzha, C.; Gudkov, D.; Ganzha, D.; Klenus, V.; Nazarov, A. Physicochemical forms of 90Sr and 137Cs in components of Glyboke Lake ecosystem in the Chornobyl exclusion zone. J. Environ. Radioact. 2014, 127, 176–181. [Google Scholar] [CrossRef]
- Povinec, P.P.; Aarkrog, A.; Buesseler, K.O.; Delfanti, R.; Hirose, K.; Hong, G.H.; Ito, T.; Livingston, H.D.; Nies, H.; Noshkin, V.E.; et al. 90Sr, 137Cs and 239,240Pu concentration surface water time series in the Pacific and Indian Oceans—WOMARS results. J. Environ. Radioact. 2005, 81, 63–87. [Google Scholar] [CrossRef]
- Li, W.B.; Hollriegl, V.; Roth, P.; Oeh, U. Influence of human biokinetics of strontium on internal ingestion dose of 90Sr and absorbed dose of 89Sr to organs and metastases. Radiat. Environ. Biophys. 2008, 47, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry; National Center for Environmental Health. Public Health Statement for Strontium. 2008. Available online: http://editors.eol.org/eoearth/wiki/Public_Health_Statement_for_Strontium (accessed on 10 June 2022).
- United Nations Scientific Committee on the Effects of Atomic Radiation. Ionizing Radiation: Sources and Effects of Ionizing Radiation; United Nations: New York, NY, USA, 1977. [Google Scholar]
- Vennart, M.C.T.J. The toxicity of 90Sr, 226Ra and 239Pu. Nature 1976, 263, 555–558. [Google Scholar]
- Vajda, N.; Kim, C.K. Determination of radiostrontium isotopes: A review of analytical methodology. Appl. Radiat. Isot. 2010, 68, 2306–2326. [Google Scholar] [CrossRef] [PubMed]
- Brun, S.; Bessac, S.; Uridat, D.; Boursier, B. Rapid method for the determination of radiostrontium in milk. J. Radioanal. Nucl. Chem. 2002, 253, 191–197. [Google Scholar] [CrossRef]
- Jabbar, T.; Khan, K.; Subhani, M.S.; Akhter, P. Determination of 90Sr in environment of district Swat, Pakistan. J. Radioanal. Nucl. Chem. 2009, 279, 377–384. [Google Scholar] [CrossRef]
- Amr, M.A.; Helal, A.I.; Al-Kinani, A.T.; Balakrishnan, P. Ultra-trace determination of 90Sr, 137Cs, 238Pu, 239Pu, and 240Pu by triple quadruple collision/reaction cell-ICP-MS/MS: Establishing a baseline for global fallout in Qatar soil and sediments. J. Environ. Radioact. 2016, 153, 73–87. [Google Scholar] [CrossRef]
- Takagai, Y.; Furukawa, M.; Kameo, Y.; Suzuki, K. Sequential inductively coupled plasma quadrupole mass-spectrometric quantification of radioactive strontium-90 incorporating cascade separation steps for radioactive contamination rapid survey. Anal. Methods 2014, 6, 355–362. [Google Scholar] [CrossRef]
- Habibi, A.; Cariou, N.; Boulet, B.; Cossonnet, C.; Gurriaran, R.; Gleizes, M.; Cote, G.; Larivière, D. Automated chromatographic separation coupled on-line to ICP-MS measurements for the quantification of actinides and radiostrontium in soil samples. J. Radioanal. Nucl. Chem. 2017, 314, 127–139. [Google Scholar] [CrossRef]
- Feuerstein, J.; Boulyga, S.F.; Galler, P.; Stingeder, G.; Prohaska, T. Determination of 90Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS). J. Environ. Radioact. 2008, 99, 1764–1769. [Google Scholar] [CrossRef]
- Amr, S.H.A.-M.M.A. Ultratrace Determination of Strontium-90 in Environmental Soil Samples from Qatar by Collision/Reaction Cell-Inductively Coupled Plasma Mass Spectrometry (CRC-ICP-MS/MS). In Proceedings of the ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management, Facility Decontamination and Decommissioning; Environmental Remediation; Environmental Management/Public Involvement/Crosscutting Issues/Global Partnering, V002T04A010, Brussels, Belgium, 8–12 September 2013; Volume 2. [Google Scholar] [CrossRef]
- Taylor, V.F.; Evans, R.D.; Cornett, R.J. Determination of 90Sr in contaminated environmental samples by tuneable bandpass dynamic reaction cell ICP-MS. Anal. Bioanal. Chem. 2007, 387, 343–350. [Google Scholar] [CrossRef]
- Dai, X.; Kramer-Tremblay, S. Five-column chromatography separation for simultaneous determination of hard-to-detect radionuclides in water and swipe samples. Anal. Chem. 2014, 86, 5441–5447. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.J.; Pulhani, V.; Dhole, S.D.; Dahiwale, S.S.; Bhade, S.P.D.; Anilkumar, S.; Singh, R. Development of rapid solvent extraction based radioanalytical technique for estimation of 90Sr in the presence of natural and anthropogenic radionuclides. J. Radioanal. Nucl. Chem. 2017, 314, 359–370. [Google Scholar] [CrossRef]
- Zoriy, M.V.; Ostapczuk, P.; Halicz, L.; Hille, R.; Becker, J.S. Determination of 90Sr and Pu isotopes in contaminated groundwater samples by inductively coupled plasma mass spectrometry. Int. J. Mass Spectrom. 2005, 242, 203–209. [Google Scholar] [CrossRef]
- Kolacinska, K.; Chajduk, E.; Dudek, J.; Samczynski, Z.; Lokas, E.; Bojanowska-Czajka, A.; Trojanowicz, M. Automation of sample processing for ICP-MS determination of 90Sr radionuclide at ppq level for nuclear technology and environmental purposes. Talanta 2017, 169, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, S.L.; Culligan, B.K.; Utsey, R.C. Rapid determination of radiostrontium in seawater samples. J. Radioanal. Nucl. Chem. 2013, 298, 867–875. [Google Scholar] [CrossRef] [Green Version]
- Sakama, M.; Nagano, Y.; Saze, T.; Higaki, S.; Kitade, T.; Izawa, N.; Shikino, O.; Nakayama, S. Application of ICP-DRC-MS to screening test of strontium and plutonium in environmental samples at Fukushima. Appl. Radiat. Isot. 2013, 81, 201–207. [Google Scholar] [CrossRef]
- Guerin, N.; Riopel, R.; Rao, R.; Kramer-Tremblay, S.; Dai, X. An improved method for the rapid determination of 90Sr in cow’s milk. J. Environ. Radioact. 2017, 175–176, 115–119. [Google Scholar] [CrossRef]
- Tenjović, B.; Stojković, I.; Nikolov, J.; Todorović, N.; Spasojević, J.; Agbaba, J.; Pajić, M.; Krmar, M. 90Sr/90Y determination in milk by Cherenkov radiation after microwave digestion. J. Radioanal. Nucl. Chem. 2019, 320, 679–687. [Google Scholar] [CrossRef]
- Stamoulis, K.C.; Ioannides, K.G.; Karamanis, D.T.; Patiris, D.C. Rapid screening of 90Sr activity in water and milk samples using Cherenkov radiation. J. Environ. Radioact. 2007, 93, 144–156. [Google Scholar] [CrossRef]
- Kim, C.K.; Al-Hamwi, A.; Torvenyi, A.; Kis-Benedek, G.; Sansone, U. Validation of rapid methods for the determination of radiostrontium in milk. Appl. Radiat. Isot. 2009, 67, 786–793. [Google Scholar] [CrossRef]
- Kabai, E.; Hornung, L.; Savkin, B.T.; Poppitz-Spuhler, A.; Hiersche, L. Fast method and ultra fast screening for determination of 90Sr in milk and dairy products. Sci. Total Environ. 2011, 410–411, 235–240. [Google Scholar] [CrossRef]
- Kabai, E.; Savkin, B.; Mehlsam, I.; Poppitz-Spuhler, A. Combined method for the fast determination of pure beta emitting radioisotopes in food samples. J. Radioanal. Nucl. Chem. 2016, 311, 1401–1408. [Google Scholar] [CrossRef]
- Amano, H.; Sakamoto, H.; Shiga, N.; Suzuki, K. Method for rapid screening analysis of Sr-90 in edible plant samples collected near Fukushima, Japan. Appl. Radiat. Isot. 2016, 112, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Dang, L.; Shao, X.; Yin, L.; Ji, Y. Rapid method for determination of 90Sr in biological samples by liquid scintillation counting after separation on synthesized column. J. Environ. Radioact. 2018, 193–194, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Dulanská, S.; Remenec, B.; Mátel, Ľ.; Darážová, Ľ.; Galanda, D. Determination of 90Sr in bone samples using molecular recognition technology product AnaLig®Sr-01. J. Radioanal. Nucl. Chem. 2016, 311, 29–33. [Google Scholar] [CrossRef]
- Altzitzoglou, T.; Larosa, J.J.; Nicholl, C. Measurement of 90Sr in Bone Ash. Appl. Radiat. Isot. 1998, 49, 1313–1317. [Google Scholar] [CrossRef]
- Sadi, B.B.; Fontaine, A.; McAlister, D.; Li, C. Emergency Radiobioassay Method for Determination of 90Sr and 226Ra in a Spot Urine Sample. Anal. Chem. 2015, 87, 7931–7937. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, C.A.; Shkrob, I.A.; Mertz, C.J.; Dietz, M.L.; Kaminski, M.D. Novel tandem column method for the rapid isolation of radiostrontium from human urine. Anal. Chim. Acta 2012, 746, 114–122. [Google Scholar] [CrossRef]
- Vonderheide, A.P.; Zoriy, M.V.; Izmer, A.V.; Pickhardt, C.; Caruso, J.A.; Ostapczuk, P.; Hille, R.; Becker, J.S. Determination of 90Sr at ultratrace levels in urine by ICP-MS. J. Anal. At. Spectrom. 2004, 19, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Dulanská, S.; Remenec, B.; Bilohuštin, J.; Labaška, M.; Galanda, D. Rapid determination of 90Sr in urine samples using AnaLig® Sr-01. J. Radioanal. Nucl. Chem. 2012, 295, 2189–2192. [Google Scholar] [CrossRef]
- Tomita, J.; Takeuchi, E. Rapid analytical method of 90Sr in urine sample: Rapid separation of Sr by phosphate co-precipitation and extraction chromatography, followed by determination by triple quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). Appl. Radiat. Isot. 2019, 150, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Nielsen, S. Radionuclide Monitoring. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Sajeniouk, A.D. Routine radiochemical method for the determination of 90Sr, 238Pu, 239+240Pu, 241Am and 244Cm in environmental samples. J. Radioanal. Nucl. Chem. 2005, 264, 337–342. [Google Scholar] [CrossRef]
- Wang, J.J.; Wang, C.J.; Huang, C.C.; Lin, Y.M. Transfer Factors of 90Sr and 137Cs from Paddy Soil to the Rice Plant in Taiwan. J. Environ. Radioact. 1998, 39, 23–34. [Google Scholar] [CrossRef]
- Amano, H.; Arkhipov, T.U.A.; Paskevich, S.; Onuma, Y. Transfer of Long Lived Radionuclides in Chernobyl Soils to Edible Plants. IRPA-10. 2000, pp. 1–6. Available online: https://www.irpa.net/irpa10/cdrom/01059.pdf (accessed on 10 April 2022).
- Maxwell, S.L.; Culligan, B.K.; Shaw, P.J. Rapid determination of radiostrontium in large soil samples. J. Radioanal. Nucl. Chem. 2012, 295, 965–971. [Google Scholar] [CrossRef] [Green Version]
- Grahek, Ž.; Košutić, K.; Rožmarić-Mačefat, M. Strontium isolation from natural samples with Sr resin and subsequent determination of 90Sr. J. Radioanal. Nucl. Chem. 2006, 268, 179–190. [Google Scholar] [CrossRef]
- Bossew, P.; Lettner, H.; Hubmer, A.; Erlinger, C.; Gastberger, M. Activity ratios of 137Cs, 90Sr and 239+240Pu in environmental samples. J. Environ. Radioact. 2007, 97, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Roane, J.E.; DeVol, T.A.; Leyba, J.D.; Fjeld, R.A. The use of extraction chromatography resins to concentrate actinides and strontium from soil for radiochromatographic analyses. J. Environ. Radioact. 2003, 66, 227–245. [Google Scholar] [CrossRef]
- Kavasi, N.; Sahoo, S.K.; Sorimachi, A.; Tokonami, S.; Aono, T.; Yoshida, S. Measurement of 90Sr in soil samples affected by the Fukushima Daiichi Nuclear Power Plant accident. J. Radioanal. Nucl. Chem. 2015, 303, 2565–2570. [Google Scholar] [CrossRef]
- Bermejo-Barrera, P.; Moreda-Piñeiro, A.; Bermejo-Barrera, A. Sample pre-treatment methods for the trace elements determination in seafood products by atomic absorption spectrometry. Talanta 2001, 57, 969–984. [Google Scholar] [CrossRef]
- Torres, J.M.; Tent, J.; Llaurado, M.; Rauret, G. A rapid method for 90Sr determination in the presence of 137Cs in environmental samples. J. Environ. Radioact. 2002, 59, 113–125. [Google Scholar] [CrossRef]
- Dion, M.P.; Springer, K.W.E.; Sumner, R.I.; Thomas, M.-L.P.; Eiden, G.C. Analytical determination of radioactive strontium and cesium by Thermal Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2020, 449, 116273. [Google Scholar] [CrossRef]
- Russell, B.C.; Croudace, I.W.; Warwick, P.E.; Milton, J.A. Determination of precise 135Cs/137Cs ratio in environmental samples using sector field inductively coupled plasma mass spectrometry. Anal. Chem. 2014, 86, 8719–8726. [Google Scholar] [CrossRef] [PubMed]
- Jurecic, S.; Benedik, L.; Planinsek, P.; Necemer, M.; Kump, P.; Pihlar, B. Analysis of uranium in the insoluble residues after decomposition of soil samples by various techniques. Appl. Radiat. Isot. 2014, 87, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, S.L.; Culligan, B.; Hutchison, J.B.; Utsey, R.C.; Sudowe, R.; McAlister, D.R. Rapid method to determine 89Sr/90Sr in large concrete samples. J. Radioanal. Nucl. Chem. 2016, 310, 399–411. [Google Scholar] [CrossRef]
- Taylor, V.F.; Evans, R.D.; Cornett, R.J. Preliminary evaluation of 135Cs/137Cs as a forensic tool for identifying source of radioactive contamination. J. Environ. Radioact. 2008, 99, 109–118. [Google Scholar] [CrossRef]
- Zhang, Z.; Igarashi, J.; Satou, Y.; Ninomiya, K.; Sueki, K.; Shinohara, A. Activity of 90Sr in Fallout Particles Collected in the Difficult-to-Return Zone around the Fukushima Daiichi Nuclear Power Plant. Environ. Sci. Technol. 2019, 53, 5868–5876. [Google Scholar] [CrossRef]
- Povinec, P.P.; Froehlich, K.; Gastaud, J.; Oregioni, B.; Pagava, S.V.; Pham, M.K.; Rusetski, V. Distribution of 90Sr, 137Cs and 239,240Pu in Caspian Sea water and biota. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 2835–2846. [Google Scholar] [CrossRef]
- Gaca, P.; Mietelski, J.W.; Kitowski, I.; Grabowska, S.; Tomankiewicz, E. 40K, 137Cs, 90Sr, 238,239+240Pu and 241Am in mammals’ skulls from owls’ pellets and owl skeletons in Poland. J. Environ. Radioact. 2005, 78, 93–103. [Google Scholar] [CrossRef]
- Lee, S.H.; Oh, J.S.; Lee, J.M.; Lee, K.B.; Park, T.S.; Lee, M.K.; Kim, S.H.; Choi, J.K. A preliminary study for the development of reference material using oyster for determination of 137Cs, 90Sr and plutonium isotopes. Appl. Radiat. Isot. 2016, 109, 109–113. [Google Scholar] [CrossRef]
- Sugiyama, H.; Terada, H.; Takahashi, M.; Iijima, I.; Isomura, K. Contents and Daily Intakes of Gamma-Ray Emitting Nuclides, 90Sr, and 238U using Market-Basket Studies in Japan. J. Health Sci. 2007, 53, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Brun, S.P.; Kergadallan, Y.; Boursier, B.; Fremy, J.-M.; Janin, F.O. Methodology for determination of radiostrontium in milk: A review. Lait 2003, 83, 1–15. [Google Scholar] [CrossRef]
- Puhakainen, M.; Heikkinen, T.; Rahola, T. Levels of 90Sr and 137Cs in the urine of Finnish people. Radiat. Prot. Dosim. 2003, 103, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, U.; Parsi, M.A.; Lourdusamy, D.; Grove, D.; Sanaka, M.R.; Hammel, J.P.; Vargo, J.J.; Dweik, R.A. Volatile Organic Compounds in Urine for Noninvasive Diagnosis of Malignant Biliary Strictures: A Pilot Study. Dig. Dis. Sci. 2015, 60, 2150–2157. [Google Scholar] [CrossRef] [PubMed]
- Balarama Krishna, M.V.; Chandrasekaran, K.; Venkateswarlu, G.; Karunasagar, D. A cost-effective and rapid microwave-assisted acid extraction method for the multi-elemental analysis of sediments by ICP-AES and ICP-MS. Anal. Methods 2012, 4, 3290–3299. [Google Scholar] [CrossRef]
- Vesper, H.W.; Mi, L.; Enada, A.; Myers, G.L. Assessment of microwave-assisted enzymatic digestion by measuring glycated hemoglobin A1c by mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 2865–2870. [Google Scholar] [CrossRef]
- Alvarez, A.; Navarro, N. Method for actinides and Sr-90 determination in urine samples. Appl. Radiat. Isot. 1996, 47, 869–873. [Google Scholar] [CrossRef]
- Chu, T.C.; Wang, J.J.; Lin, Y.M. Radiostrontium Analytical Method using Crown-ether Compound and Cerenkov Counting and Its Applications in Environmental Monitoring. Appl. Radiat. Isot. 1998, 49, 1313–1317. [Google Scholar] [CrossRef]
- ISO 18589-5:2019; Measurement of Radioactivity in the Environment-Soil—Part 5: Strontium 90—Test Method Using Proportional Counting or Liquid Scintillation Counting. International Standard Organization: Geneva, Switzerland, 2019.
- ISO 13160:2012; Water Quality—Strontium 90 and Strontium 89—Test Methods Using Liquid Scintillation Counting or Proportional Counting. International Standard Organization: Geneva, Switzerland, 2012.
- HJ 815-2016; Radiochemical Analysis of Strontium-90 in Water and Ash of Biological Samples, Chinese Standard. Standard Press of China: Beijing, China, 2016.
- GB 14883.3-2016; Determination of Radioactive Substances Strontium-89 and Strontium-90 in Food, Chinese Standard. Standard Press of China: Beijing, China, 2016.
- Borcherding, J.; Nies, H. An improved method fo the determination of 90Sr in large samples of seawater. J. Radioanal. Nucl. Chem. 1986, 98, 127–131. [Google Scholar] [CrossRef]
- Pedersen, C.J. Crystalline Salt Complexes of Macrocyclic Polyethers. J. Am. Chem. Soc. 1969, 92, 386–391. [Google Scholar] [CrossRef]
- Vaney, B.; Friedli, C.; Geering, J.J.; Lerch, P. Rapid trace determination of radiostrontium in milk and drinking water. J. Radioanal. Nucl. Chem. 1989, 134, 87–95. [Google Scholar] [CrossRef]
- Tormos, J.; Jouve, A.; Revy, A.D.; Millan-Gomez, H.R.; Erarioa, M.J. Rapid Method for Determining Strontium-90 Contaminated Samples of Soil and Plant. J. Environ. Radioact. 1995, 27, 193–206. [Google Scholar] [CrossRef]
- Castrillejo, M.; Casacuberta, N.; Breier, C.F.; Pike, S.M.; Masque, P.; Buesseler, K.O. Reassessment of 90Sr, 137Csand 134Cs in the Coast off Japan Derived from the Fukushima Dai-ichi Nuclear Accident. Environ. Sci. Technol. 2016, 50, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.M.; Moody, W.A.; Williamson, J.A. A Simple Method to Screen for Radiostrontium in Water by Ion Exchange Chromatography. Health Phys. 2019, 116, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, E.P.; Dietz, M.L.; Fisher, D.E. Correlation of the Extraction of Strontium Nitrate by a Crown Ether with the Water Content of the Organic Phase. Solvent Extr. Ion Exch. 1990, 8, 199–208. [Google Scholar] [CrossRef]
- Grahek, Z.; Dulanska, S.; Karanovic, G.; Coha, I.; Tucakovic, I.; Nodilo, M.; Matel, L. Comparison of different methodologies for the 90Sr determination in environmental samples. J. Environ. Radioact. 2018, 181, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q.; Zheng, S. Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J. 2009, 151, 19–29. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y. Concurrent removal of Cu(II), Co(II) and Ni(II) from wastewater by nanostructured layered sodium vanadosilicate: Competitive adsorption kinetics and mechanisms. J. Environ. Chem. Eng. 2021, 9, 105945. [Google Scholar] [CrossRef]
- Zhang, N.; Ishag, A.; Li, Y.; Wang, H.; Guo, H.; Mei, P.; Meng, Q.; Sun, Y. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review. J. Clean. Prod. 2020, 277, 123360. [Google Scholar] [CrossRef]
- Manos, M.J.; Kanatzidis, M.G. Metal sulfide ion exchangers: Superior sorbents for the capture of toxic and nuclear waste-related metal ions. Chem. Sci. 2016, 7, 4804–4824. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, P.; Zhang, M.; Yan, S.; Dong, L.; Zhang, G. Synthesis of a robust layered metal sulfide for rapid and effective removal of Sr2+ from aqueous solutions. Chem. Eng. J. 2019, 372, 1205–1215. [Google Scholar] [CrossRef]
- Liu, C.; Wu, T.; Hsu, P.C.; Xie, J.; Zhao, J.; Liu, K.; Sun, J.; Xu, J.; Tang, J.; Ye, Z.; et al. Direct/Alternating Current Electrochemical Method for Removing and Recovering Heavy Metal from Water Using Graphene Oxide Electrode. ACS Nano 2019, 13, 6431–6437. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhou, L.; Zhang, L.; Zhang, S.; Chen, F.; Zhou, R.; Hua, D. Two-Dimensional Imprinting Strategy to Create Specific Nanotrap for Selective Uranium Adsorption with Ultrahigh Capacity. ACS Appl. Mater. Interfaces 2022, 14, 9408–9417. [Google Scholar] [CrossRef] [PubMed]
- Hojatpanah, M.R.; Khanmohammadi, A.; Khoshsafar, H.; Hajian, A.; Bagheri, H. Construction and application of a novel electrochemical sensor for trace determination of uranium based on ion-imprinted polymers modified glassy carbon electrode. Chemosphere 2022, 292, 133435. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xu, M.; Yin, J.; Shui, R.; Yang, S.; Hua, D. Dual Ion-Imprinted Mesoporous Silica for Selective Adsorption of U(VI) and Cs(I) through Multiple Interactions. ACS Appl. Mater. Interfaces 2021, 13, 6322–6330. [Google Scholar] [CrossRef]
- Lee, H.-K.; Choi, J.-W.; Choi, S.-J. Magnetic ion-imprinted polymer based on mesoporous silica for selective removal of Co(II) from radioactive wastewater. Sep. Sci. Technol. 2020, 56, 1842–1852. [Google Scholar] [CrossRef]
- Fattahi, M.; Ezzatzadeh, E.; Jalilian, R.; Taheri, A. Micro solid phase extraction of cadmium and lead on a new ion-imprinted hierarchical mesoporous polymer via dual-template method in river water and fish muscles: Optimization by experimental design. J. Hazard. Mater. 2021, 403, 123716. [Google Scholar] [CrossRef]
- Yin, J.; Yang, S.; He, W.; Zhao, T.; Li, C.; Hua, D. Biogene-derived aerogels for simultaneously selective adsorption of uranium(VI) and strontium(II) by co-imprinting method. Sep. Purif. Technol. 2021, 271, 118849. [Google Scholar] [CrossRef]
- Huang, C.-C.; Siao, S.-F. Removal of copper ions from an aqueous solution containing a chelating agent by electrosorption on mesoporous carbon electrodes. J. Taiwan Inst. Chem. Eng. 2018, 85, 29–39. [Google Scholar] [CrossRef]
- Liu, C.; Hsu, P.-C.; Xie, J.; Zhao, J.; Wu, T.; Wang, H.; Liu, W.; Zhang, J.; Chu, S.; Cui, Y. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat. Energy 2017, 2, 17007. [Google Scholar] [CrossRef]
- Xiang, S.; Mao, H.; Geng, W.; Xu, Y.; Zhou, H. Selective removal of Sr(II) from saliferous radioactive wastewater by capacitive deionization. J. Hazard. Mater. 2022, 431, 128591. [Google Scholar] [CrossRef]
- Wang, W.; Liu, S.; Zhou, Y.; Luo, J.; Shi, J.; Zhou, Z.; Ma, J. Extraction of Sr2+ from aqueous solutions using an asymmetric pulsed current-assisted electrochemical method. Sep. Purif. Technol. 2021, 276, 119235. [Google Scholar] [CrossRef]
- Sato, Y.; Minemoto, K.; Nemoto, M. Three-dimensional visualization of a beta-emitting nuclide by combining a directional Geiger-Mueller counter and structure from motion. J. Instrum. 2021, 16, 10008. [Google Scholar] [CrossRef]
- Kashirin, I.A.; Ermakov, A.I.; Malinovskiy, S.V.; Belanov, S.V.; Sapozhnikov, Y.A.; Efimov, K.M.; Tikhomirov, V.A.; Sobolev, A.I. Liquid scintillation determination of low level components in complex mixtures of radionuclides. Appl. Radiat. Isot. 2000, 53, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Uesugi, M.; Watanabe, R.; Sakai, H.; Yokoyama, A. Rapid method for determination of 90Sr in seawater by liquid scintillation counting with an extractive scintillator. Talanta 2018, 178, 339–347. [Google Scholar] [CrossRef]
- Todorovic, N.; Stojkovic, I.; Nikolov, J.; Tenjovic, B. 90Sr determination in water samples using Cerenkov radiation. J. Environ. Radioact. 2017, 169–170, 197–202. [Google Scholar] [CrossRef]
- Rondahl, S.H.; Rameback, H. Evaluation of different methods for measuring 89Sr and 90Sr: Measurement uncertainty for the different methods as a function of the activity ratio. Appl. Radiat. Isot. 2018, 140, 87–95. [Google Scholar] [CrossRef]
- Aldave de las Heras, L.; Sandow, M.; Olszewski, G.; Serran-Purroy, M.; van Winckel, S.; Glatz, J.-P. Determination of traces of radionuclides by hyphenated techniques coupled to inductively coupled plasma mass spectrometry (ICP-MS). Rev. Soc. Catalana Quím. 2013, 12, 61–67. [Google Scholar]
- Zheng, J.; Bu, W.; Tagami, K.; Shikamori, Y.; Nakano, K.; Uchida, S.; Ishii, N. Determination of 135Cs and 135Cs/137Cs atomic ratio in environmental samples by combining ammonium molybdophosphate (AMP)-selective Cs adsorption and ion-exchange chromatographic separation to triple-quadrupole inductively coupled plasma-mass spectrometry. Anal. Chem. 2014, 86, 7103–7110. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, J.; Pan, S.; Dong, W.; Yamada, M.; Aono, T.; Guo, Q. Pu and 137Cs in the Yangtze River estuary sediments: Distribution and source identification. Environ. Sci. Technol. 2011, 45, 1805–1811. [Google Scholar] [CrossRef]
- Bu, W.; Zheng, J.; Liu, X.; Long, K.; Hu, S.; Uchida, S. Mass spectrometry for the determination of fission products 135Cs, 137Cs and 90Sr: A review of methodology and applications. Spectrochim. Acta Part B At. Spectrosc. 2016, 119, 65–75. [Google Scholar] [CrossRef]
- Hou, X.; Dai, X. Environmental liquid scintillation analysis. In Handbook of Radioactivity Analysis; Academic Press: Cambridge, MA, USA, 2020; Volume 2, pp. 41–136. [Google Scholar]
- Amr, M.A.; Abdel-Lateef, A.M. Comparing the capability of collision/reaction cell quadrupole and sector field inductively coupled plasma mass spectrometers for interference removal from 90Sr, 137Cs, and 226Ra. Int. J. Mass Spectrom. 2011, 299, 184–190. [Google Scholar] [CrossRef]
- Kluge, H.-J. Resonance ionization mass spectroscopy for nuclear research and trace analysis. Hyperfine Interact. 1987, 37, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Cheon, D.; Iwata, Y.; Miyabe, M.; Hasegawa, S. Development of Bandpass Filtered External Cavity Diode Laser System for RIMS of Radioactive Strontium Isotopes. In Proceedings of the Second International Symposium on Radiation Detectors and Their Uses (ISRD2018), Tsukuba, Japan, 23–26 January 2018. [Google Scholar] [CrossRef] [Green Version]
- Bushaw, B.A.; Cannon, B.D. Diode laser based resonance ionization mass spectrometric measurement of strontium-90. Spectrochim. Acta Part B At. Spectrosc. 1997, 52, 1839–1854. [Google Scholar] [CrossRef]
- Steeb, J.L.; Graczyk, D.G.; Tsai, Y.; Mertz, C.J.; Essling, A.M.; Sullivan, V.S.; Carney, K.P.; Finck, M.R.; Giglio, J.J.; Chamberlain, D.B. Application of mass spectrometric isotope dilution methodology for 90Sr age-dating with measurements by thermal-ionization and inductively coupled-plasma mass spectrometry. J. Anal. At. Spectrom. 2013, 28, 1493–1507. [Google Scholar] [CrossRef]
- Paul, M.; Berkovits, D.; Cecil, L.D.; Feldstein, H.; Hershkowitz, A.; Kashiv, Y.; Vogt, S. Environmental 90Sr measurements. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1997, 123, 394–399. [Google Scholar] [CrossRef]
- Sasa, K.; Honda, M.; Hosoya, S.; Takahashi, T.; Takano, K.; Ochiai, Y.; Sakaguchi, A.; Kurita, S.; Satou, Y.; Sueki, K. A sensitive method for Sr-90 analysis by accelerator mass spectrometry. J. Nucl. Sci. Technol. 2020, 58, 72–79. [Google Scholar] [CrossRef]
- Satou, Y.; Sueki, K.; Sasa, K.; Matsunaka, T.; Takahashi, T.; Shibayama, N.; Izumi, D.; Kinoshita, N.; Matsuzaki, H. Technological developments for strontium-90 determination using AMS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2015, 361, 233–236. [Google Scholar] [CrossRef]
- Hain, K.; Martschini, M.; Gülce, F.; Honda, M.; Lachner, J.; Kern, M.; Pitters, J.; Quinto, F.; Sakaguchi, A.; Steier, F.; et al. Developing Accelerator Mass Spectrometry Capabilities for Anthropogenic Radionuclide Analysis to Extend the Set of Oceanographic Tracers. Front. Mar. Sci. 2022, 9, 837515. [Google Scholar] [CrossRef]
- De Regge, P.; Radecki, Z.; Moreno, J.; Burns, K.; Kis-Benedek, G.; Bojanowski, R. The IAEA proficiency test on evaluation of methods for 90Sr measurement in a mineral matrix. J. Radioanal. Nucl. Chem. 2000, 246, 511–519. [Google Scholar] [CrossRef]
- Cheng, Q.; Jiang, S.; Wen, D.; Ma, J. Evaluation of Uncertainty for Measurement Result of 90Sr in Environmental Soil Samples. Sichuan Environ. 2009, 28, 22–25. [Google Scholar]
- Jiang, Y. Evaluation of Detection Uncertainty of Sr-90 in Water. Adm. Tech. Environ. Monit. 2004, 16, 15–18. [Google Scholar]
Sample Type | Quantity | Analytical Protocol | Analytical Performance | Reference | ||||
---|---|---|---|---|---|---|---|---|
Pretreatment | Purification | Measurement | Chemical Yield, % | Turnover Time or Sample Throughput | Detection Limit | |||
Soil, water, vegetation | Ash 10 g 100 mL of water | Acid digestion with conc. HNO3 | Liquid–liquid extraction with tributyl phosphate (TBP) | LSC via 90Y | 75–90 | / | 0.03 Bq/kg | [31] |
Soil | 50 or 1000 g | Acid digestion with conc. HNO3 + conc. HCl | Method 1. Sr resin Method 2: No purification | Method 1: ICP-MS Method 2: CRC-ICP-MS/MS, O2 as reaction gas | Method 1: 67–80 Method 2: / | / | Method 1: 0.04 ng/kg Mehotd 2: / | [32] |
Soil | 1 g | Microwave digestion with 10 v/v% HNO3 | Sr resin in an automated lab-on-valve system | On-line DRC-ICP-MS, O2 as reaction gas | / | 14.6 min (from injection to MS detection) | 3.9 Bq/kg | [33] |
Soil | 0.5 g | Alkaline fusion with LiBO2-LiBr | Sr resin in an automated flow system | On-line ICP-MS | >80 | 2.4 h (10 samples in 24 h) | 0.37 ng/kg | [34] |
Soil | 1 g | Microwave digestion with conc. HF + conc. HClO4 and aqua regia | Sr resin with a vacuum box | DRC-ICP-MS | / | 2 d | 1 Bq/g (0.2 pg/g) | [35] |
Soil | 10–500 g | For 10 g samples: acid digestion with conc. HF + conc. HClO4 + conc. HNO3 For 50–500 g samples: acid digestion with conc. HCl + conc. HNO3 | Sr resin | CRC-ICP-MS/MS, O2 as reaction gas | 67–80% | 2 d | 0.1 pg/g | [36] |
Soil, plant | Soil: 50 g Plant: 10 g of ash | Acid digestion with conc. HCl followed by oxalate co-precipitation (SrC2O4 and Y2(C2O4)3) | Chromatography by HDEHP-kel-F | Low-level gas flow alpha-beta counter via 90Y | / | / | Soil: 0.16 Bq/kg Plant: 0.39 Bq/kg | [7] |
River water, aquatic plant and sediment | Water: 1 L Plant/sediment: 2–3 g | Water: pre-concentration with cation exchange resin Plant: microwave digestion with 8 M HNO3 Sediment: microwave digestion with 8 M HNO3 + H2O2 | Sr resin (two time) | DRC-ICP-MS, O2 as reaction gas Cerenkov counting | Water: 84–98 Plant: 62–82 Sediment: 68–98 | Water: 36 samples in 24 h Plant/sediment: 24 samples in 24 h | Water: 5 Bq/L (3 pg/L) Plant: 0.2 Bq/g (0.04 pg/g) Sediment: 0.5 Bq/g (0.1 pg/g) | [37] |
Water | 20 mL | Acidification to 8 M HNO3 with conc. HNO3 | Sr resin | Cherenkov and LSC | 86.2 ± 2.2 | / | 140 mBq for 20 mL water samples | [38] |
Water | 20 mL | No pretreatment | Liquid–liquid extraction with 10% di-2-ethylhexylphosphoric acid (HDEHP) | Cherenkov counting | ~90% | / | 2.4 Bq/L | [39] |
Ground water | 10 mL | Evaporation | No purification | ICP-SFMS with medium mass resolution under cold plasma conditions | 82% | / | 11 fg/mL | [40] |
Water, reactor coolant | 4 mL–1 L | Cation exchange resin in an automated multisyringe flow-injection analysis lab-on-valve (MSFIA-LOV) system | Sr resin in an MSFIA-LOV system | DRC-ICP-MS, CH4 as reaction gas | 53–101 | 16 min to 6 h depending on sample size | 14.5 Bq/L for 1 L sample | [41] |
Seawater | 1–10 L | Ca3PO4 +Fe(OH)3 co-precipitation | Sr and DGA resin | Gas flow proportional counter | >80% | 1–10 mBq/L (MDA) | [42] | |
Water and soil | Water: 10 mL Soil: 0.3 g | Water: filtration and dilution with 0.1 M ammonium acetate Soil: microwave assisted acid digestion with conc. HNO3-cocn. HCL-cocn. HF | InertSep ME-1 resin in an automated separation system | DRC-ICP-MS | / | / | 0.6 ng/L | [43] |
Milk | 40 mL | Fat/protein removal with HCl, trichloroacetic acid, centrifugation | Co-precipitation + Sr resin | LSC | 70 ± 4 | 5 h | 2.8 ± 0.3 Bq/L | [44] |
Milk | 5 mL | HNO3 + H2O2, microwave digestion | No purification | Cherenkov counting | / | Sample preparation: ca. 1 h Counting time varied from 0.5 h to 10 h | 5.13–6.76 Bq/L (10 h measurement) | [45] |
Milk | 20 mL | No pretreatment | No purification | Cherenkov counting | / | / | 1.7 Bq/L | [46] |
Milk | 500 mL | Cation exchange chromatography | Sr resin | LSC | 80–95 | 7 h | 0.1 Bq/L | [47] |
Milk | 500 mL | Cation exchange chromatography | Sr resin | Low background proportional counter | 62 | 10 h | 0.09 Bq/L for 500 mL milk | [30] |
Milk and dairy products | Milk: 100 mL Dairy products: 50 g | Fat and proteins isolation using tri-chloroacetic acid (TCA) | Sr resin | LSC | 90 | 7–8 h | 0.8 Bq/L | [48] |
Milk and dairy products | Milk: 100 mL Dairy products: 50 mL | Fat and proteins isolation using tri-chloroacetic acid (TCA) and anion exchange chromatography | Sr resin | LSC | 70–80 | 20 h | 0.2 Bq/L for milk 0.4 Bq/L for dairy products | [49] |
Vegetation | 40–500 g | Acid digestion with HCl or HNO, followed by Fe(OH)3 | DGA resin | Cherenkov counting via 90Y | 82–107 | <3 d | 14 mBq/kg | [50] |
Vegetation | 10 g of ash | Acid digestion with conc. NO3 + H2O2 | Extraction chromatography (crown ether on teflon powder) | LSC | 78 | 10 h | 1.28 Bq/kg | [51] |
Bone | 7–10 g of ash | Total dissolution with conc. HNO3 | Sr resin (AnaLigr®Sr-01) | Cherenkov counting via 90Y | 85–96 | / | 2.6 Bq/kg | [52] |
Bone | 5 g of ash | Acid digestion with conc. NO3 + H2O2 | Sr(NO3)2 precipitation with fuming acid + Sr resin | LSC | 71–83 | / | 10 Bq/kg | [53] |
Urine | 50 mL | Acidification with conc. HClO4 to 4M HClO4 | Sr resin in a HPLC system | Cherenkov countering | About 85 | <8 h | 2 Bq/L | [54] |
Urine | 5–20 mL | Acidification with methanesulfonic acid and pretreatment with activated charcoal | Diphonix + Sr resin | / | >98 | <1 h | / | [55] |
Urine | / | Ca3PO4 co-precipitation | Sr resin | ICP-SFMS | 82–86 | / | 0.4 pg/L | [56] |
Urine | 25–500 mL | Acidification with conc. HNO3 to 2 M HNO3 | Sr resin (AnaLigr®Sr-01) | Cherenkov counting | 60.2–100 | Separation: 2.5–3.0 h Counting: 2 weeks | 0.12 Bq/L | [57] |
Urine | 5–20 mL | Acidification with methanesulfonic acid and decolorization with charcoal, and treatment with Diphonix® resin | Sr resin | / | 99 | <1 h | / | [55] |
Urine | 1–2 L | Phosphate precipitation | Pre-filter + TRU + Sr resin | ICP-MS/MS, O2 as collision gas | 67–84 (77 on average) | 10 h | 1 Bq/sample | [58] |
Interference | Abundance (%) |
---|---|
90Zr+ | 90Zr 51.5 |
89Y1H+ | 89Y 100 |
78Kr12C+ | 78Kr 23.3 |
74Ge16O+ | 74Ge 36.5 |
50Cr40Ar+ | 50Cr 4.29 |
50Ti40Ar+ | 50Ti 5.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Ren, H.; Zhou, L.; Wang, P.; Lou, X.; Zou, H.; Cao, Y. Recent Development on Determination of Low-Level 90Sr in Environmental and Biological Samples: A Review. Molecules 2023, 28, 90. https://doi.org/10.3390/molecules28010090
Zhou Z, Ren H, Zhou L, Wang P, Lou X, Zou H, Cao Y. Recent Development on Determination of Low-Level 90Sr in Environmental and Biological Samples: A Review. Molecules. 2023; 28(1):90. https://doi.org/10.3390/molecules28010090
Chicago/Turabian StyleZhou, Zhen, Hong Ren, Lei Zhou, Peng Wang, Xiaoming Lou, Hua Zou, and Yiyao Cao. 2023. "Recent Development on Determination of Low-Level 90Sr in Environmental and Biological Samples: A Review" Molecules 28, no. 1: 90. https://doi.org/10.3390/molecules28010090
APA StyleZhou, Z., Ren, H., Zhou, L., Wang, P., Lou, X., Zou, H., & Cao, Y. (2023). Recent Development on Determination of Low-Level 90Sr in Environmental and Biological Samples: A Review. Molecules, 28(1), 90. https://doi.org/10.3390/molecules28010090