Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Prepared CSPs
2.2. Comparison of Enantioselectivity for the Prepared CSPs
2.3. Influence of Separation Conditions on Enantioselectivity of Chloro-E-CSP
2.3.1. Organic Solvent Type and Content
2.3.2. Effect of Different Additives
2.3.3. Buffer Concentration and pH Effects
3. Discussion
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Synthesis of Chiral Phases
4.3. Chromatographic Experiments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Grishin, D.V.; Zhdanov, D.D.; Pokrovskaya, M.V.; Sokolov, N.N. D-amino acids in nature, agriculture and biomedicine. Front. Life Sci. 2020, 13, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Lämmerhofer, M. Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases. J. Chromatogr. A 2010, 1217, 814–856. [Google Scholar] [CrossRef]
- Teixeira, J.; Tiritan, M.E.; Pinto, M.M.M.; Fernandes, C. Chiral Stationary Phases for Liquid Chromatography: Recent Developments. Molecules 2019, 24, 865. [Google Scholar] [CrossRef] [Green Version]
- Scriba, G.K.E. Chiral recognition in separation sciences. Part I: Polysaccharide and cyclodextrin selectors. TrAC Trends Anal. Chem. 2019, 120, 115639. [Google Scholar] [CrossRef]
- Chankvetadze, B. Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. J. Chromatogr. A 2012, 1269, 26–51. [Google Scholar] [CrossRef]
- Xiao, Y.; Ng, S.-C.; Tan, T.T.Y.; Wang, Y. Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. J. Chromatogr. A 2012, 1269, 52–68. [Google Scholar] [CrossRef]
- Armstrong, D.W.; DeMond, W. Cyclodextrin Bonded Phases For the Liquid Chromatographic Separation of Optical, Geometrical, and Structural Isomers. J. Chromatogr. Sci. 1984, 22, 411–415. [Google Scholar] [CrossRef]
- Nesterenko, P.N.; Krotov, V.V.; Staroverov, S.M. Effect of mobile phase composition on the enantioselectivity of chromatographic separation on a quinine-bonded silica stationary phase. J. Chromatogr. A 1994, 667, 19–28. [Google Scholar] [CrossRef]
- Ilisz, I.; Bajtai, A.; Péter, A.; Lindner, W. Cinchona alkaloid-based zwitterionic chiral stationary phases applied for liquid chromatographic enantiomer separations: An overview. In Chiral Separations; Methods in Molecular Biology; Scriba, G.K.E., Ed.; Humana: New York, NY, USA, 2019; Volume 1985, pp. 251–277. [Google Scholar] [CrossRef]
- Hoffmann, C.V.; Pell, R.; Lämmerhofer, M.; Lindner, W. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC. Anal. Chem. 2008, 80, 8780–8789. [Google Scholar] [CrossRef]
- Hyun, M.H. Liquid chromatographic enantioseparations on crown ether-based chiral stationary phases. J. Chromatogr. A 2016, 1467, 19–32. [Google Scholar] [CrossRef]
- Welch, C.J. Evolution of chiral stationary phase design in the Pirkle laboratories. J. Chromatogr. A 1994, 666, 3–26. [Google Scholar] [CrossRef]
- Pirkle, W.H.; Pochapsky, T.C. Considerations of Chiral Recognition Relevant to the Liquid Chromatographic Separation of Enantiomers. Chem. Rev. 1989, 89, 347–362. [Google Scholar] [CrossRef]
- Armstrong, D.W.; Tang, Y.; Chen, S.; Zhou, Y.; Bagwlll, C.; Chen, J.R. Macrocyclic Antibiotics as a New Class of Chiral Selectors for Liquid Chromatography. Anal. Chem. 1994, 66, 1473–1484. [Google Scholar] [CrossRef]
- Berthod, A.; Qiu, H.X.; Staroverov, S.M.; Kuznestov, M.A.; Armstrong, D.W. Chiral recognition with macrocyclic glycopeptides: Mechanisms and applications. In Chiral Recognition in Separation Methods: Mechanisms and Applications; Berthod, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 203–222. [Google Scholar] [CrossRef]
- Berkecz, R.; Tanács, D.; Péter, A.; Ilisz, I. Enantioselective liquid chromatographic separations using macrocyclic glycopeptide-based chiral selectors. Molecules 2021, 26, 3380. [Google Scholar] [CrossRef] [PubMed]
- Fedorova, I.A.; Shapovalova, E.N.; Shpigun, O.A.; Staroverov, S.M. Bovine serum albumin adsorbed on eremomycin and grafted on silica as new mixed-binary chiral sorbent for improved enantioseparation of drugs. J. Food Drug Anal. 2016, 24, 848–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haginaka, J. Progress in Chiral Stationary Phases Based on Proteins and Glycoproteins. Chem. Pharm. Bull. 2022, 70, 458–468. [Google Scholar] [CrossRef]
- Shen, J.; Okamoto, Y. Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers. Chem. Rev. 2016, 116, 1094–1138. [Google Scholar] [CrossRef]
- Yuan, C.; Jia, W.; Yu, Z.; Li, Y.; Zi, M.; Yuan, L.-M.; Cui, Y. Are Highly Stable Covalent Organic Frameworks the Key to Universal Chiral Stationary Phases for Liquid and Gas Chromatographic Separations? J. Am. Chem. Soc. 2022, 144, 891–900. [Google Scholar] [CrossRef]
- Carenzi, G.; Sacchi, S.; Abbondi, M.; Pollegioni, L. Direct chromatographic methods for enantioresolution of amino acids: Recent developments. Amino Acids 2020, 52, 849–862. [Google Scholar] [CrossRef]
- Pell, R.; Sić, S.; Lindner, W. Mechanistic investigations of cinchona alkaloid-based zwitterionic chiral stationary phases. J. Chromatogr. A 2012, 1269, 287–296. [Google Scholar] [CrossRef]
- Konya, Y.; Taniguchi, M.; Furuno, M.; Nakano, Y.; Tanaka, N.; Fukusaki, E. Mechanistic study on the high-selectivity enantioseparation of amino acids using a chiral crown ether-bonded stationary phase and acidic, highly organic mobile phase by liquid chromatography/time-of-flight mass spectrometry. J. Chromatogr. A 2018, 1578, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.K.; Lord, B.S.; Yin, L.; Stringham, R.W. Enantioseparation of amino acids on a polysaccharide-based chiral stationary phase. J. Chromatogr. A 2002, 945, 147–159. [Google Scholar] [CrossRef]
- Lipka, E.; Dascalu, A.-E.; Messara, Y.; Tsutsqiridze, E.; Farkas, T.; Chankvetadze, B. Separation of enantiomers of native amino acids with polysaccharide-based chiral columns in supercritical fluid chromatography. J. Chromatogr. A 2019, 1585, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Staroverov, S.M.; Kuznetsov, M.A.; Nesterenko, P.N.; Vasiarov, G.G.; Katrukha, G.S.; Fedorova, G.B. New chiral stationary phase with macrocyclic glycopeptide antibiotic eremomycin chemically bonded to silica. J. Chromatogr. A 2006, 1108, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Ekborg-Ott, K.H.; Liu, Y.; Armstrong, D.W. Highly enantioselective HPLC separations using the covalently bonded macrocyclic antibiotic, ristocetin A, chiral stationary phase. Chirality 1998, 10, 434–483. [Google Scholar] [CrossRef]
- Davankov, V.A. Enantioselective ligand exchange in modern separation techniques. J. Chromatogr. A 2003, 1000, 891–915. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, M.A.; Nesterenko, P.N.; Vasiyarov, G.G.; Staroverov, S.M. Sorbents with immobilized glycopeptide antibiotics for separating optical isomers by high-performance liquid chromatography. Appl. Biochem. Microbiol. 2006, 42, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, M.A.; Nesterenko, P.N.; Vasiyarov, G.G.; Staroverov, S.M. High-performance liquid chromatography of α-amino acid enantiomers on eremomycin-modified silica. J. Anal. Chem. 2008, 63, 57–64. [Google Scholar] [CrossRef]
- Berthod, A.; Liu, Y.; Bagwill, C.; Armstrong, D.W. Facile liquid chromatographic enantioresolution of native amino acids and peptides using a teicoplanin chiral stationary phase. J. Chromatogr. A 1996, 731, 123–137. [Google Scholar] [CrossRef]
- Berthod, A.; Chen, X.; Kullman, J.P.; Armstrong, D.W.; Gasparrini, F.; D’Acquarica, I.; Villani, C.; Carotti, A. Role of the carbohydrate moieties in chiral recognition on teicoplanin- based LC stationary phases. Anal. Chem. 2000, 72, 1767–1780. [Google Scholar] [CrossRef]
- Xiao, T.L.; Tesarova, E.; Anderson, J.L.; Egger, M.; Armstrong, D.W. Evaluation and comparison of a methylated teicoplanin aglycone to teicoplanin aglycone and natural teicoplanin chiral stationary phases. J. Sep. Sci. 2006, 29, 429–445. [Google Scholar] [CrossRef]
- Shen, B.; Zhang, D.; Yu, X.; Guo, W.; Han, Y.; Xu, X. Evaluation and comparison of a 3,5-dimethylphenyl isocyanate teicoplanin with phenyl isocyanate teicoplanin chiral stationary phase using RP-HPLC. Chin. J. Chem. 2012, 30, 157–162. [Google Scholar] [CrossRef]
- Shen, B.; Yuan, J.; Xu, B.; Xu, X. Evaluation and comparison of m-tolyl isocyanate teicoplanin and teicoplanin chiral stationary phase. Acta Chim. Sin. 2009, 67, 2005–2012. [Google Scholar]
- Ismail, O.H.; Catani, M.; Mazzoccanti, G.; Felletti, S.; Manetto, S.; De Luca, C.; Ye, M.; Cavazzini, A.; Gasparrini, F. Boosting the enantioresolution of zwitterionic-teicoplanin chiral stationary phases by moving to wide-pore core-shell particles. J. Chromatogr. A 2022, 1676, 463190. [Google Scholar] [CrossRef]
- Hellinghausen, G.; Lopez, D.A.; Lee, J.T.; Wang, Y.; Weatherly, C.A.; Portillo, A.E.; Berthod, A.; Armstrong, D.W. Evaluation of the Edman degradation product of vancomycin bonded to core-shell particles as a new HPLC chiral stationary phase. Chirality 2018, 30, 1067–1078. [Google Scholar] [CrossRef]
- Ghassempour, A.; Alizadeh, R.; Najafi, N.M.; Karami, A.; Römpp, A.; Spengler, B.; Aboul-Enein, H.Y. Crystalline degradation products of vancomycin as chiral stationary phase in microcolumn liquid chromatography. J. Sep. Sci. 2008, 31, 2339–2345. [Google Scholar] [CrossRef]
- D’Acquarica, I. New synthetic strategies for the preparation of novel chiral stationary phases for high-performance liquid chromatography containing natural pool selectors. J. Pharm. Biomed. Anal. 2000, 23, 3–13. [Google Scholar] [CrossRef]
- Prosuntsova, D.S.; Plodukhin, A.Y.; Ananieva, I.A.; Beloglazkina, E.K.; Nesterenko, P.N. New composite stationary phase for chiral high-performance liquid chromatography. J. Porous Mater. 2020, 28, 407–414. [Google Scholar] [CrossRef]
- Kopchenova, M.V.; Stepanova, M.V.; Asnin, L.D. Unusual Difference in Enantioselectivity of Two Chiral Stationary Phases with Grafted Antibiotic Ristocetin A. Chromatographia 2021, 84, 307–311. [Google Scholar] [CrossRef]
- Olsufyeva, E.N.; Tevyashova, A.N. Synthesis, properties, and mechanism of action of new generation of polycyclic glycopeptide antibiotics. Curr. Top. Med. Chem. 2017, 17, 2166–2198. [Google Scholar] [CrossRef]
- Lisichkin, G.V.; Fadeev AYu Serdan, A.A.; Nesterenko, P.N.; Mingalev, P.G.; Furman, D.B. Khimiya Privitykh Poverkhnostnykh Soedinenii; Chemistry of Grafted Surface Compounds; Fizmatlit: Moscow, Russia, 2003; 592p. [Google Scholar]
- Takács-Novák, K.; Noszál, B.; Tókés-Kövesdi, M.; Szász, G. Acid-base properties and proton-speciation of vancomycin. Int. J. Pharm. 1993, 89, 261–263. [Google Scholar] [CrossRef]
- Sarvin, N.A.; Puzankov, R.V.; Nesterenko, P.N.; Staroverov, S.M. Enantioselectivity of liquid chromatographic separation of profens on chiral sorbents with immobilized eremomycin derivatives and oritavancin. Sorbtsionnye i Khromatograficheskie Protsessy 2022, 22, 638–649. (In Russian) [Google Scholar]
Antibiotic | Adsorbent | C, % | ΔC, % | Concentration of Bonded Antibiotics | |
---|---|---|---|---|---|
μmol/g | Group/nm2 | ||||
Eremomycin | E-CSP | 12.23 | 7.03 | 80.3 | 0.20 |
Eremomycin amide | Amide-E-CSP | 11.65 | 6.45 | 73.6 | 0.18 |
Eremomycin adamantylamide | Adamantylamide-E-CSP | 12.82 | 7.65 | 76.8 | 0.19 |
Chloreremomycin | Chloro-E-CSP | 15.07 | 9.26 | 91.5 | 0.22 |
Chiral Stationary Phases | E-CSP | Chloro-E-CSP | Amide-E-CSP | Adamantylamide-E-CSP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Amino Acid | k’L | α | RS | k’L | α | RS | k’L | α | RS | k’L | α | RS |
Alanine | 0.23 | 2.70 | 1.50 | 0.37 | 3.48 | 2.81 | 0.13 | 2.85 | 1.17 | 0.15 | 2.36 | 2.04 |
Valine | 0.22 | 3.33 | 2.02 | 0.34 | 2.87 | 2.32 | 0.12 | 3.12 | 1.45 | 0.15 | 2.75 | 2.02 |
Norvaline | 0.33 | 2.71 | 1.70 | 0.30 | 2.94 | 2.27 | 0.23 | 2.52 | 1.23 | 0.22 | 2.12 | 1.37 |
Leucine | 0.31 | 2.38 | 1.68 | 0.32 | 2.06 | 1.90 | 0.24 | 2.31 | 1.52 | 0.23 | 2.00 | 1.28 |
Isoleucine | 0.24 | 3.70 | 2.26 | 0.30 | 3.29 | 3.16 | 0.13 | 3.17 | 1.44 | 0.12 | 2.65 | 1.77 |
Norleucine | 0.34 | 2.05 | 1.31 | 0.30 | 1.83 | 1.85 | 0.23 | 1.81 | 0.69 | 0.24 | 1.64 | 0.86 |
Tryptophan | 2.83 | 1.76 | 2.20 | 2.38 | 1.10 | 0.82 | 1.82 | 1.62 | 2.06 | 1.60 | 1.66 | 3.00 |
Tyrosine | 0.83 | 4.25 | 4.35 | 0.79 | 1.24 | 0.81 | 0.66 | 3.87 | 4.66 | 0.54 | 3.41 | 0.53 |
Phenylalanine | 0.76 | 3.79 | 2.71 | 0.71 | 1.31 | 0.82 | 0.55 | 3.44 | 3.72 | 0.44 | 2.83 | 0.56 |
Aspartic acid | 2.18 | 1.51 | 1.50 | 2.92 | 1.47 | 1.62 | 1.47 | 1.50 | 1.30 | 1.30 | 1.38 | 1.03 |
Glutamic acid | 1.82 | 2.29 | 2.60 | 2.11 | 2.39 | 3.51 | 1.11 | 2.05 | 2.32 | 1.14 | 2.11 | 2.55 |
Histidine | 0.23 | 1.42 | 0.35 | 0.30 | 1.000 | 0.00 | 0.14 | 1.32 | 0.53 | 0.12 | 1.27 | 0.62 |
Lysine | 0.0 | 1.0 | 0.0 | 0.30 | 1.000 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 | 0.4 |
Arginine | 0.0 | 1.0 | 0.0 | 0.30 | 1.000 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 |
Ornithine | 0.0 | 1.0 | 0.0 | 0.30 | 1.000 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Proline | 0.44 | 9.0 | 5.22 | 0.67 | 2.26 | 1.73 | 0.22 | 7.01 | 6.97 | 0.22 | 8.69 | 5.35 |
Cysteine | 0.35 | 2.47 | 1.62 | 0.60 | 1.63 | 0.91 | 0.26 | 1.30 | 0.50 | 0.24 | 1.61 | 0.82 |
Asparagine | 0.34 | 1.00 | 0.0 | 0.34 | 1.43 | 0.91 | 0.0 | 1.00 | 0.0 | 0.0 | 1.05 | 0.67 |
Glutamine | 0.23 | 2.81 | 1.91 | 0.34 | 1.75 | 1.37 | 0.15 | 2.90 | 1.33 | 0.16 | 2.33 | 1.14 |
Serine | 0.25 | 1.52 | 0.62 | 0.33 | 1.60 | 0.88 | 0.14 | 1.53 | 0.44 | 0.13 | 1.27 | 0.71 |
Threonine | 0.15 | 1.50 | 0.41 | 0.30 | 1.84 | 1.10 | 0.14 | 1.43 | 0.41 | 0.14 | 1.33 | 0.35 |
Methionine | 0.32 | 2.09 | 1.61 | 0.47 | 2.05 | 1.88 | 0.22 | 1.91 | 1.00 | 0.20 | 1.78 | 1.32 |
Mobile Phase | 10% MeOH− 0.1 M NaH2PO4 pH 4.5 | Water | 10% MeOH− 0.1% HClO4 pH 4.5 (NH4OH) | 10% MeOH− Water | 10% MeOH− 0.1%TFA | |||||
---|---|---|---|---|---|---|---|---|---|---|
Amino Acid | α | α | α | α | α | |||||
Leucine | 0.35 | 2.59 | 0.30 | 2.00 | 0.41 | 3.73 | 0.30 | 2.39 | 0.30 | 2.00 |
Valine | 0.31 | 4.09 | 0.30 | 3.59 | 0.30 | 3.69 | 0.30 | 3.83 | 0.30 | 1.72 |
Cysteine | 0.31 | 2.00 | 0.41 | 2.08 | 0.41 | 2.25 | 0.41 | 2.14 | 0.30 | 1.00 |
Asparagine | 0.26 | 1.51 | 0.30 | 1.40 | 0.41 | 1.51 | 0.30 | 1.44 | 0.30 | 1.00 |
Methionine | 0.34 | 2.21 | 1.09 | 3.09 | 0.53 | 1.62 | 0.41 | 2.94 | 0.30 | 1.76 |
Tryptophan | 2.04 | 1.11 | 3.36 | 1.03 | 3.95 | 1.24 | 3.12 | 1.00 | 0.30 | 1.00 |
Phenylalanine | 0.59 | 1.31 | 0.77 | 1.00 | 0.77 | 1.05 | 0.77 | 1.00 | 0.77 | 1.00 |
Aspartic acid | 2.63 | 1.44 | - | - | 3.83 | 1.38 | - | - | 0.53 | 1.33 |
Alanine | 0.25 | 3.79 | 1.09 | 1.60 | 0.97 | 1.95 | - | - | - | - |
Lysine | 0.09 | 1.74 | 4.71 | 1.00 | 1.00 | 1.00 |
Amino Acid | 10% MeOH, 0.2 M Sodium Phosphate Buffer | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH 3.6 | pH 4.5 | pH 7.2 | pH 8.3 | |||||||||
α | RS | α | RS | α | RS | α | RS | |||||
Leucine | 0.30 | 2.27 | 2.1 | 0.30 | 2.23 | 2.0 | 0.30 | 2.11 | 2.0 | 0.30 | 1.92 | 1.9 |
Valine | 0.30 | 3.47 | 2.9 | 0.30 | 3.63 | 3.0 | 0.30 | 3.55 | 2.9 | 0.30 | 3.55 | 2.9 |
Cysteine | 0.41 | 1.91 | 1.7 | 0.53 | 2.13 | 1.9 | 0.30 | 1.60 | 1.7 | 0.30 | 1.60 | 1.5 |
Asparagine | 0.30 | 1.72 | 1.0 | 0.30 | 1.60 | 1.1 | 0.30 | 1.56 | 1.1 | 0.30 | 1.60 | 1.0 |
Methionine | 0.41 | 2.25 | 2.0 | 0.41 | 2.20 | 2.0 | 0.30 | 1.80 | 2.0 | 0.41 | 2.02 | 1.9 |
Tryptophan * | 2.04 | 1.00 | 0.8 | 2.04 | 1.11 | 0.9 | 2.42 | 1.19 | 1.0 | 2.18 | 1.18 | 1.0 |
Phenylalanine * | 0.59 | 1.16 | 0.8 | 0.59 | 1.31 | 0.8 | 0.89 | 1.32 | 0.9 | 0.77 | 1.23 | 0.8 |
Histidine | 0.18 | 1.00 | 0.18 | 0.0 | 1.0 | 0.0 | 0.30 | 1.16 | 0.5 | 0.30 | 1.16 | 0.6 |
Lysine | 0.18 | 1.00 | 0.18 | 0.0 | 1.0 | 0.0 | 0.30 | 1.08 | 0.3 | 0.30 | 1.20 | 0.5 |
Aspartic acid | 1.12 | 1.42 | 1.5 | 1.47 | 1.44 | 1.5 | 0.41 | 1.34 | 1.6 | 0.18 | 1.00 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarvin, N.; Puzankov, R.; Vasiyarov, G.; Nesterenko, P.N.; Staroverov, S.M. Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography. Molecules 2023, 28, 85. https://doi.org/10.3390/molecules28010085
Sarvin N, Puzankov R, Vasiyarov G, Nesterenko PN, Staroverov SM. Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography. Molecules. 2023; 28(1):85. https://doi.org/10.3390/molecules28010085
Chicago/Turabian StyleSarvin, Nikita, Ruslan Puzankov, Georgii Vasiyarov, Pavel N. Nesterenko, and Sergey M. Staroverov. 2023. "Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography" Molecules 28, no. 1: 85. https://doi.org/10.3390/molecules28010085
APA StyleSarvin, N., Puzankov, R., Vasiyarov, G., Nesterenko, P. N., & Staroverov, S. M. (2023). Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography. Molecules, 28(1), 85. https://doi.org/10.3390/molecules28010085