Aluminium(III) Oxide—The Silent Killer of Bacteria
Abstract
:1. Introduction
2. Materials and Methods
- A standard two-step anodisation with the use of perchloric acid (HClO, 60% pure p. a., Chempur, Poland) and chromium (VI) oxide (CrO, pure p. a., Chempur, Poland) compounds for electropolishing and the removal of the first-step AlO, respectively. This sample is denoted as AAO Cl+Cr, and its structure can be seen in Figure 1.
- A matrix prepared in a one-step anodisation procedure with the omission of the preliminary anodisation to avoid the necessity of the removal of aluminium oxide layer with the use of the chromium compound. This sample is denoted as AAO Cl,
- A matrix prepared without electropolishing in a one-step anodisation procdure. The fabrication of this type of sample requires none of the chlorine and chromium compounds. This sample is denoted as AAO Clean.
2.1. Microorganisms and Media
2.2. Estimation of Minimum Inhibition Concentration and Minimum Bactericidal Concentration
3. Results and Discussion
3.1. Microscopic Observations
3.2. Antibacterial Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAO | Anodised aluminium oxide |
LPS | Lipopolysacchrides |
SEM | Scanning electron microscopy |
EDS | Energy-dispersive X-ray spectroscopy |
CFU | Colony-forming units |
References
- Masuda, H.; Yada, K.; Osaka, A. Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys. 1998, 37, L1340. [Google Scholar] [CrossRef]
- Liu, S.; Tian, J.; Zhang, W. Fabrication and application of nanoporous anodic aluminum oxide: A review. Nanotechnology 2021, 32, 222001. [Google Scholar] [CrossRef] [PubMed]
- Poinern, G.E.J.; Ali, N.; Fawcett, D. Progress in nano-engineered anodic aluminum oxide membrane development. Materials 2011, 4, 487–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingham, C.J.; ter Maat, J.; de Vos, W.M. Where bio meets nano: The many uses for nanoporous aluminum oxide in biotechnology. Biotechnol. Adv. 2012, 30, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Toth, R.; Schabikowski, M.; Heier, J.; Braun, A.; Kata, D.; Graule, T. The effect of solvent and electric field on the size distribution of iron oxide microdots: Exploitation of self-assembly strategies for photoelectrodes. J. Mater. Res. 2011, 26, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Laskowski, Ł.; Laskowska, M.; Dulski, M.; Zubko, M.; Jelonkiewicz, J.; Perzanowski, M.; Vilà, N.; Walcarius, A. Multi-step functionalization procedure for fabrication of vertically aligned mesoporous silica thin films with metal-containing molecules localized at the pores bottom. Microporous Mesoporous Mater. 2019, 274, 356–362. [Google Scholar]
- Laskowska, M.; Dulski, M.; Marszałek, M.; Zubko, M.; Laskowski, Ł. Vertically aligned porous silica thin films functionalized by nickel chloride incorporated in walls. Microporous Mesoporous Mater. 2019, 276, 201–206. [Google Scholar] [CrossRef]
- Schabikowski, M.; Zalewska, M.; Kata, D.; Graule, T. The effect of CuO coatings on the electrokinetic properties of stone wool fibres determined by streaming potential measurements. Ceram. Int. 2016, 42, 13944–13951. [Google Scholar] [CrossRef]
- Liu, L.; Lee, W.; Huang, Z.; Scholz, R.; Gösele, U. Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane. Nanotechnology 2008, 19, 335604. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Hu, Y.; Wang, G.Q.; Gui, Y.; Wang, D.F.; Huang, J.Q.; Jie, X.H. Preparation and antimicrobial properties of surface antibacterial layer of aluminum. In Proceedings of the Advanced Materials Research; Trans Tech Publishers: Zurich, Switzerland, 2014; Volume 941, pp. 1659–1663. [Google Scholar]
- Schabikowski, M.; Laskowska, M.; Kowalczyk, P.; Fedorchuk, A.; Szőri-Dorogházi, E.; Németh, Z.; Kuźma, D.; Gawdzik, B.; Wypych, A.; Kramkowski, K.; et al. Functionalised Anodised Aluminium Oxide as a Biocidal Agent. Int. J. Mol. Sci. 2022, 23, 8327. [Google Scholar] [CrossRef]
- Laskowski, L.; Laskowska, M.; Fijalkowski, K.; Piech, H.; Jelonkiewicz, J.; Jaskulak, M.; Gnatowski, A.; Dulski, M. New class of antimicrobial agents: SBA-15 silica containing anchored copper ions. J. Nanomater. 2017, 2017. [Google Scholar] [CrossRef]
- Querido, M.M.; Aguiar, L.; Neves, P.; Pereira, C.C.; Teixeira, J.P. Self-disinfecting surfaces and infection control. Colloids Surf. Biointerfaces 2019, 178, 8–21. [Google Scholar] [CrossRef]
- Sehmi, S.K.; Lourenco, C.; Alkhuder, K.; Pike, S.D.; Noimark, S.; Williams, C.K.; Shaffer, M.S.; Parkin, I.P.; MacRobert, A.J.; Allan, E. Antibacterial surfaces with activity against antimicrobial resistant bacterial pathogens and endospores. ACS Infect. Dis. 2020, 6, 939–946. [Google Scholar] [CrossRef]
- Mikelonis, A.M.; Rowles, L.S.; Lawler, D.F. The effects of water chemistry on the detachment and dissolution of differently stabilized silver nanoparticles from ceramic membranes. Environ. Sci. Water Res. Technol. 2020, 6, 1347–1356. [Google Scholar] [CrossRef]
- Brüggemann, D. Nanoporous aluminium oxide membranes as cell interfaces. J. Nanomater. 2013, 2013, 32. [Google Scholar] [CrossRef]
- Ansari, M.A.; Khan, H.M.; Alzohairy, M.A.; Jalal, M.; Ali, S.G.; Pal, R.; Musarrat, J. Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa. World J. Microbiol. Biotechnol. 2015, 31, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Pornnumpa, N.; Jariyaboon, M. Antibacterial and corrosion resistance properties of anodized AA6061 aluminum alloy. Eng. J. 2019, 23, 171–181. [Google Scholar] [CrossRef]
- Gade, I.L.; Brækkan, S.; Næss, I.A.; Hansen, J.B.; Rosendaal, F.; Cannegieter, S.; Overvad, K.; Jensvoll, H.; Hammerstrøm, J.; Gran, O.V.; et al. Epidemiology of venous thromboembolism in hematological cancers: The Scandinavian Thrombosis and Cancer (STAC) cohort. Thromb. Res. 2017, 158, 157–160. [Google Scholar] [CrossRef]
- Raskob, G.E.; Angchaisuksiri, P.; Blanco, A.N.; Buller, H.; Gallus, A.; Hunt, B.J.; Hylek, E.M.; Kakkar, A.; Konstantinides, S.V.; McCumber, M.; et al. Thrombosis: A major contributor to global disease burden. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2363–2371. [Google Scholar] [CrossRef] [Green Version]
- Andreadou, I.; Iliodromitis, E.K.; Rassaf, T.; Schulz, R.; Papapetropoulos, A.; Ferdinandy, P. The role of gasotransmitters NO, H2S and CO in myocardial ischaemia/reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br. J. Pharmacol. 2015, 172, 1587–1606. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.; Borkowski, A.; Czerwonka, G.; Cłapa, T.; Cieśla, J.; Misiewicz, A.; Borowiec, M.; Szala, M. The microbial toxicity of quaternary ammonium ionic liquids is dependent on the type of lipopolysaccharide. J. Mol. Liq. 2018, 266, 540–547. [Google Scholar] [CrossRef]
- Borkowski, A.; Kowalczyk, P.; Czerwonka, G.; Cieśla, J.; Cłapa, T.; Misiewicz, A.; Szala, M.; Drabik, M. Interaction of quaternary ammonium ionic liquids with bacterial membranes–Studies with Escherichia coli R1–R4-type lipopolysaccharides. J. Mol. Liq. 2017, 246, 282–289. [Google Scholar] [CrossRef]
- Maciejewska, A.; Kaszowska, M.; Jachymek, W.; Lugowski, C.; Lukasiewicz, J. Lipopolysaccharide-linked Enterobacterial Common Antigen (ECALPS) Occurs in Rough Strains of Escherichia coli R1, R2, and R4. Int. J. Mol. Sci. 2020, 21, 6038. [Google Scholar] [CrossRef] [PubMed]
- Prost, M.; Prost, R. Basic parameters of evaluation of the effectiveness of antibiotic therapy. OphthaTherapy 2017, 4, 233–236. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Wilk, M.; Parul, P.; Szymczak, M.; Kramkowski, K.; Raj, S.; Skiba, G.; Sulejczak, D.; Kleczkowska, P.; Ostaszewski, R. The Synthesis and Evaluation of Aminocoumarin Peptidomimetics as Cytotoxic Agents on Model Bacterial E. coli Strains. Materials 2021, 14, 5725. [Google Scholar] [CrossRef]
- Samsonowicz-Górski, J.; Kowalczyk, P.; Koszelewski, D.; Brodzka, A.; Szymczak, M.; Kramkowski, K.; Ostaszewski, R. The Synthesis and Evaluation of Amidoximes as Cytotoxic Agents on Model Bacterial E. coli Strains. Materials 2021, 14, 7577. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Trzepizur, D.; Szymczak, M.; Skiba, G.; Kramkowski, K.; Ostaszewski, R. 1, 2-Diarylethanols—A New Class of Compounds That Are Toxic to E. coli K12, R2–R4 Strains. Materials 2021, 14, 1025. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Madej, A.; Szymczak, M.; Ostaszewski, R. α-Amidoamids as New Replacements of Antibiotics—Research on the Chosen K12, R2–R4 E. coli Strains. Materials 2020, 13, 5169. [Google Scholar] [CrossRef]
- Available online: https://www.jmp.com/en_gb/home.html (accessed on 1 October 2022).
- Kowalczyk, P.; Gawdzik, B.; Trzepizur, D.; Szymczak, M.; Skiba, G.; Raj, S.; Kramkowski, K.; Lizut, R.; Ostaszewski, R. δ-Lactones—A New Class of Compounds That Are Toxic to E. coli K12 and R2–R4 Strains. Materials 2021, 14, 2956. [Google Scholar] [CrossRef]
- Gawdzik, B.; Kowalczyk, P.; Koszelewski, D.; Brodzka, A.; Masternak, J.; Kramkowski, K.; Wypych, A.; Ostaszewski, R. The Evaluation of DHPMs as Biotoxic Agents on Pathogen Bacterial Membranes. Membranes 2022, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- Sahrawat, P.; Kowalczyk, P.; Koszelewski, D.; Szymczak, M.; Kramkowski, K.; Wypych, A.; Ostaszewski, R. Influence of Open Chain and Cyclic Structure of Peptidomimetics on Antibacterial Activity in E. coli Strains. Molecules 2022, 27, 3633. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.; Koszelewski, D.; Gawdzik, B.; Samsonowicz-Górski, J.; Kramkowski, K.; Wypych, A.; Lizut, R.; Ostaszewski, R. Promiscuous Lipase-Catalyzed Markovnikov Addition of H-Phosphites to Vinyl Esters for the Synthesis of Cytotoxic α-Acyloxy Phosphonate Derivatives. Materials 2022, 15, 1975. [Google Scholar] [CrossRef] [PubMed]
Strain | AAO Clean | AAO + Cl | AAO Cl+Cr | Type of Test |
---|---|---|---|---|
K12 | * | ** | ** | MIC |
R2 | * | ** | ** | MIC |
R3 | * | ** | ** | MIC |
R4 | * | ** | ** | MIC |
K12 | *** | ** | ** | MBC |
R2 | *** | ** | ** | MBC |
R3 | *** | ** | ** | MBC |
R4 | *** | ** | ** | MBC |
K12 | ** | * | * | MBC/MIC |
R2 | ** | * | * | MBC/MIC |
R3 | ** | * | * | MBC/MIC |
R4 | ** | * | * | MBC/MIC |
Sample | Pore Size [nm] | Distance between Pores [nm] |
---|---|---|
AAO Clean | 34 ± 9 | 80 ± 19 |
AAO Cl | 44 ± 12 | 103 ± 13 |
AAO Cl+Cr | 47 ± 12 | 103 ± 6 |
Element | C-K | O-K | Al-K | Cl-K | Cr-K | Au-M |
---|---|---|---|---|---|---|
Weight % | 2.88 ± 0.16 | 27.12 ± 3.17 | 34.12 ± 0.99 | 0.01 ± 0.01 | 0.02 ± 0.02 | 35.85 ± 2.37 |
Atom % | 7.10 ± 0.35 | 49.98 ± 3.30 | 37.50 ± 2.62 | 0.01± 0.01 | 0.01 ± 0.03 | 5.41 ± 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schabikowski, M.; Kowalczyk, P.; Karczmarska, A.; Gawdzik, B.; Wypych, A.; Kramkowski, K.; Wrzosek, K.; Laskowski, Ł. Aluminium(III) Oxide—The Silent Killer of Bacteria. Molecules 2023, 28, 401. https://doi.org/10.3390/molecules28010401
Schabikowski M, Kowalczyk P, Karczmarska A, Gawdzik B, Wypych A, Kramkowski K, Wrzosek K, Laskowski Ł. Aluminium(III) Oxide—The Silent Killer of Bacteria. Molecules. 2023; 28(1):401. https://doi.org/10.3390/molecules28010401
Chicago/Turabian StyleSchabikowski, Mateusz, Paweł Kowalczyk, Agnieszka Karczmarska, Barbara Gawdzik, Aleksandra Wypych, Karol Kramkowski, Karol Wrzosek, and Łukasz Laskowski. 2023. "Aluminium(III) Oxide—The Silent Killer of Bacteria" Molecules 28, no. 1: 401. https://doi.org/10.3390/molecules28010401
APA StyleSchabikowski, M., Kowalczyk, P., Karczmarska, A., Gawdzik, B., Wypych, A., Kramkowski, K., Wrzosek, K., & Laskowski, Ł. (2023). Aluminium(III) Oxide—The Silent Killer of Bacteria. Molecules, 28(1), 401. https://doi.org/10.3390/molecules28010401