Chiral Bromonium Salt (Hypervalent Bromine(III)) with N-Nitrosamine as a Halogen-Bonding Bifunctional Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Catalysts
2.2. Application of Chiral Catalysts
3. Materials and Methods
3.1. General Information
3.2. Synthesis of Chiral Bromonium Salts
3.2.1. Synthesis of 2
(R)-N-(2’-amino-3’-iodo-[1,1’-binaphthalen]-2-yl)acetamide (2)
3.2.2. Synthesis of 4a–c
(R)-6-(2-(ethyl(nitroso)amino)naphthalen-1-yl)benzo[b]naphtho [2,3-d]bromol-5-ium Tetrafluoroborate (4a)
(R)-6-(2-(ethyl(nitroso)amino)naphthalen-1-yl)benzo[b]naphtho [2,3-d]iodol-5-ium Tetrafluoroborate (4b)
(R)-6-(2-(ethyl(nitroso)amino)naphthalen-1-yl)benzo[b]naphtho [2,3-d]chlorol-5-ium Tetrafluoroborate (4c)
3.2.3. Synthesis of 4d
(R)-6-(2-(ethyl(nitroso)amino)naphthalen-1-yl)benzo[b]naphtho [2,3-d]bromol-5-ium chloride (4d)
3.3. General Procedure for Mannich Reaction of Imines with Active Methylenes
3.3.1. dimethyl (R)-2-(1-benzyl-3-((tert-butoxycarbonyl)amino)-2-oxoindolin-3-yl)malonate (7a)
3.3.2. dimethyl (R)-2-(3-((tert-butoxycarbonyl)amino)-1-methyl-2-oxoindolin-3-yl)malonate (7b) [48]
3.3.3. dimethyl (R)-2-(3-((tert-butoxycarbonyl)amino)-2-oxo-1-phenylindolin-3-yl)malonate (7c)
3.3.4. dimethyl (R)-2-(1-benzyl-3-((tert-butoxycarbonyl)amino)-4-chloro-2-oxoindolin-3-yl)malonate (7d)
3.3.5. dimethyl (R)-2-(1-benzyl-3-((tert-butoxycarbonyl)amino)-5-methyl-2-oxoindolin-3-yl)malonate (7e)
3.3.6. dimethyl (R)-2-(1-benzyl-3-((tert-butoxycarbonyl)amino)-5-chloro-2-oxoindolin-3-yl)malonate (7f)
3.3.7. dimethyl (R)-2-(1-benzyl-6-bromo-3-((tert-butoxycarbonyl)amino)-2-oxoindolin-3-yl)malonate (7g)
3.3.8. dimethyl (R)-2-(1-benzyl-3-((tert-butoxycarbonyl)amino)-7-chloro-2-oxoindolin-3-yl)malonate (7h)
3.3.9. dimethyl (R)-2-(1-benzyl-3-(((benzyloxy)carbonyl)amino)-2-oxoindolin-3-yl)malonate (7i)
3.3.10. dibenzyl (R)-2-(1-benzyl-3-((tert-butoxycarbonyl)amino)-2-oxoindolin-3-yl)malonate (7j)
3.3.11. diethyl (R)-2-(1-benzyl-3-((tert-butoxycarbonyl)amino)-2-oxoindolin-3-yl)malonate (7k) [47]
3.3.12. tert-butyl (S)-(1-benzyl-3-(2,4-dioxopentan-3-yl)-2-oxoindolin-3-yl)carbamate (7m) [48]
3.3.13. tert-butyl (S)-(1-benzyl-3-(1,3-dioxo-1,3-diphenylpropan-2-yl)-2-oxoindolin-3-yl)carbamate (7n) [58]
3.4. Synthesis of 8
dibenzo[b,d]bromol-5-ium Tetrafluoroborate (8) [28]
3.5. Calculation Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindblad, S.; Mehmeti, K.; Veiga, A.X.; Nekoueishahraki, B.; Gräfenstein, J.; Erdélyi, M. Halogen bond asymmetry in solution. J. Am. Chem. Soc. 2018, 140, 13503–13513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robidas, R.; Legault, C.Y.; Huber, S.M. A low cost, high accuracy method for halogen bonding complexes. Phys. Chem. Chem. Phys. 2021, 23, 3041–3049. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.J. The halogen bond: Nature and applications. Phys. Sci. Rev. 2017, 2, 20170136. [Google Scholar] [CrossRef]
- Nandy, A.; Kazi, I.; Guha, S.; Sekar, G. Visible-light-driven halogen-bond-assisted direct synthesis of heteroaryl thioethers using transition-metal-free one-pot C–I bond formation/C–S cross-coupling reaction. J. Org. Chem. 2021, 86, 2570–2581. [Google Scholar] [CrossRef]
- Decato, D.A.; Sun, J.; Bollera, M.R.; Berryman, O.B. Pushing the limits of the hydrogen bond enhanced halogen bond—The case of the C–H hydrogen bond. Chem. Sci. 2022, 13, 11156–11162. [Google Scholar] [CrossRef]
- Yang, H.; Wong, M.W. Application of halogen bonding to organocatalysis: A theoretical perspective. Molecules 2020, 25, 1045. [Google Scholar] [CrossRef] [Green Version]
- Jónsson, H.F.; Sethio, D.; Wolf, J.; Huber, S.M.; Fiksdahl, A.; Erdelyi, M. Halogen bond activation in gold catalysis. ACS Catal. 2022, 12, 7210–7220. [Google Scholar] [CrossRef]
- Minakata, S.; Miwa, H.; Yamamoto, K.; Hirayama, A.; Okumura, S. Diastereodivergent intermolecular 1,2-diamination of unactivated alkenes enabled by iodine catalysis. J. Am. Chem. Soc. 2021, 143, 4112–4118. [Google Scholar] [CrossRef]
- Riel, A.M.S.; Decato, D.A.; Sun, J.; Berryman, O.B. Halogen bonding organocatalysis enhanced through intramolecular hydrogen bonds. Chem. Commun. 2022, 58, 1378–1381. [Google Scholar] [CrossRef]
- Kniep, F.; Jungbauer, S.H.; Zhang, Q.; Walter, S.M.; Schindler, S.; Schnapperelle, I.; Herdtweck, E.; Huber, S.M. Organocatalysis by neutral multidentate halogen-bond donors. Angew. Chem. Int. Ed. 2013, 52, 7028–7032. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Nakatsuji, Y.; Li, S.; Tsuzuki, S.; Takemoto, Y. Direct N-glycofunctionalization of amides with glycosyl trichloroacetimidate by thiourea/halogen bond donor co-catalysis. Angew. Chem. Int. Ed. 2018, 57, 3646–3650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Loh, C.C.J. A multistage halogen bond catalyzed strain-release glycosylation unravels new hedgehog signaling inhibitors. J. Am. Chem. Soc. 2019, 141, 5381–5391. [Google Scholar] [CrossRef] [PubMed]
- Kuwano, S.; Suzuki, T.; Yamanaka, M.; Tsutsumi, R.; Arai, T. Catalysis based on C−I⋅⋅⋅π halogen bonds: Electrophilic activation of 2-alkenylindoles by cationic halogen-bond donors for [4+2] cycloadditions. Angew. Chem. Int. Ed. 2019, 58, 10220–10224. [Google Scholar] [CrossRef]
- Sutar, R.L.; Huber, S.M. Catalysis of organic reactions through halogen bonding. ACS Catal. 2019, 9, 9622–9639. [Google Scholar] [CrossRef]
- Robidas, R.; Reinhard, D.L.; Huber, S.M.; Legault, C.Y. A quantum-chemical analysis on the lewis acidity of diarylhalonium ions. ChemPhysChem 2022. [Google Scholar] [CrossRef]
- Oishi, S.; Fujinami, T.; Masui, Y.; Suzuki, T.; Kato, M.; Ohtsuka, N.; Momiyama, N. Three-center-four-electron halogen bond enables non-metallic complex catalysis for Mukaiyama-Mannich-type reaction. iScience 2022, 25, 105220. [Google Scholar] [CrossRef]
- Zong, L.; Ban, X.; Kee, C.W.; Tan, C.-H. Catalytic Enantioselective alkylation of sulfenate anions to chiral heterocyclic sulfoxides using halogenated pentanidium salts. Angew. Chem. Int. Ed. 2014, 53, 11849–11853. [Google Scholar] [CrossRef]
- Lu, Y.H.; Nakatsuji, H.; Okumura, Y.; Yao, L.; Ishihara, K. Enantioselective halo-oxy- and halo-azacyclizations induced by chiral amidophosphate catalysts and halo-lewis acids. J. Am. Chem. Soc. 2018, 140, 6039–6043. [Google Scholar] [CrossRef]
- Kuwano, S.; Suzuki, T.; Hosaka, Y.; Arai, T. A chiral organic base catalyst with halogen-bonding-donor functionality: Asymmetric Mannich reactions of malononitrile with N-Boc aldimines and ketimines. Chem. Commun. 2018, 54, 3847–3850. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, J.; Tan, S.M.; Tan, D.; Lee, R.; Tan, C.-H. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction. Science 2019, 363, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.-C.; Yeung, Y.-Y. Halogen-bond-catalyzed addition of carbon-based nucleophiles to N-acylimminium ions. Org. Lett. 2019, 21, 5665–5669. [Google Scholar] [CrossRef] [PubMed]
- Sutar, R.L.; Engelage, E.; Stoll, R.; Huber, S.M. Bidentate chiral Bis(imidazolium)-based halogen-bond donors: Synthesis and applications in enantioselective recognition and catalysis. Angew. Chem. Int. Ed. 2020, 59, 6806–6810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwano, S.; Nishida, Y.; Suzuki, T.; Arai, T. Catalytic asymmetric mannich-type reaction of malononitrile with N-Boc α-Ketiminoesters using chiral organic base catalyst with halogen bond donor functionality. Adv. Synth. Catal. 2020, 362, 1674–1678. [Google Scholar] [CrossRef]
- Ochiai, M.; Miyamoto, K.; Kaneaki, T.; Hayashi, S.; Nakanishi, W. Highly regioselective amination of unactivated alkanes by hypervalent sulfonylimino-λ3-bromane. Science 2011, 332, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Riedmüller, S.; Nachtsheim, B.J. Palladium-catalyzed synthesis of N-arylated carbazoles using anilines and cyclic diaryliodonium salts. Beilstein J. Org. Chem. 2013, 9, 1202–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallo, G.; Murray, J.S.; Politzer, P.; Pilati, T.; Ursini, M.; Resnati, G. Halogen bonding in hypervalent iodine and bromine derivatives: Halonium salts. IUCrJ 2017, 4, 411–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanzi, M.; Dherbassy, Q.; Wencel-Delord, J. Cyclic diaryl λ3-bromanes as original aryne precursors. Angew. Chem. Int. Ed. 2021, 60, 14852–14857. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.; Saito, M.; Tsuji, S.; Takagi, T.; Shiro, M.; Uchiyama, M.; Ochiai, M. Benchtop-stable hypervalent Bromine(III) compounds: Versatile strategy and platform for air- and moisture-stable λ3-bromanes. J. Am. Chem. Soc. 2021, 143, 9327–9331. [Google Scholar] [CrossRef]
- Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev. 2016, 116, 3328–3435. [Google Scholar] [CrossRef]
- Parra, A. Chiral hypervalent iodines: Active players in asymmetric synthesis. Chem. Rev. 2019, 119, 12033–12088. [Google Scholar] [CrossRef] [PubMed]
- Heinen, F.; Engelage, E.; Dreger, A.; Weiss, R.; Huber, S.M. Iodine(III) derivatives as halogen bonding organocatalysts. Angew. Chem. Int. Ed. 2018, 57, 3830–3833. [Google Scholar] [CrossRef] [PubMed]
- Heinen, F.; Engelage, E.; Cramer, C.J.; Huber, S.M. Hypervalent Iodine(III) compounds as biaxial halogen bond donors. J. Am. Chem. Soc. 2020, 142, 8633–8640. [Google Scholar] [CrossRef] [PubMed]
- Mayer, R.J.; Ofial, A.R.; Mayr, H.; Legault, C.Y. Lewis acidity scale of diaryliodonium ions toward oxygen, nitrogen, and halogen lewis bases. J. Am. Chem. Soc. 2020, 142, 5221–5233. [Google Scholar] [CrossRef]
- Heinen, F.; Reinhard, D.L.; Engelage, E.; Huber, S.M. A bidentate Iodine(III)-based halogen-bond donor as a powerful organocatalyst. Angew. Chem. Int. Ed. 2021, 60, 5069–5073. [Google Scholar] [CrossRef]
- Robidas, R.; Reinhard, D.L.; Legault, C.Y.; Huber, S.M. Iodine(III)-based halogen bond donors: Properties and applications. Chem. Rec. 2021, 21, 1912–1927. [Google Scholar] [CrossRef]
- Yoshida, Y.; Ishikawa, S.; Mino, T.; Sakamoto, M. Bromonium salts: Diaryl-λ3-bromanes as halogen-bonding organocatalysts. Chem. Commun. 2021, 57, 2519–2522. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, J.; Liu, Z.-J. Diaryliodonium salts as efficient Lewis acid catalysts for direct three component Mannich reactions. RSC Adv. 2015, 5, 25485–25488. [Google Scholar] [CrossRef]
- Yoshida, Y.; Mino, T.; Sakamoto, M. Chiral hypervalent Bromine(III) (bromonium salt): Hydrogen- and halogen-bonding bifunctional asymmetric catalysis by diaryl-λ3-bromanes. ACS Catal. 2021, 11, 13028–13033. [Google Scholar] [CrossRef]
- Yoshida, Y.; Fujimura, T.; Mino, T.; Sakamoto, M. Chiral binaphthyl-based iodonium salt (hypervalent Iodine(III)) as hydrogen- and halogen-bonding bifunctional catalyst: Insight into abnormal counteranion effect and asymmetric synthesis of N,S-acetals. Adv. Synth. Catal. 2022, 364, 1091–1098. [Google Scholar] [CrossRef]
- Beard, J.C.; Swager, T.M. An organic chemist’s guide to N-nitrosamines: Their structure, reactivity, and role as contaminants. J. Org. Chem. 2021, 86, 2037–2057. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Pi, C.; Cui, X.; Wu, Y. Rh(III)-catalyzed tandem acylmethylation/nitroso migration/cyclization of N-nitrosoanilines with sulfoxonium ylides in one pot: Approach to 3-nitrosoindoles. Org. Lett. 2020, 22, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Jiao, N. Cationic Cobalt(III) catalyzed indole synthesis: The regioselective intermolecular cyclization of N-nitrosoanilines and alkynes. Angew. Chem. Int. Ed. 2016, 55, 4035–4039. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fan, Y.; Gao, Y.; Sun, C.; Xu, C.; Zhu, J. Rhodium(III)-catalyzed N-nitroso-directed C-H olefination of arenes. High-yield, versatile coupling under mild conditions. J. Am. Chem. Soc. 2013, 135, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, X.; Shao, Y.; Xie, H.; Deng, Y.; Ke, Z.; Jiang, H.; Zeng, W. Co(III)-catalyzed coupling-cyclization of aryl C–H Bonds with α-diazoketones involving wolff rearrangement. ACS Catal. 2018, 8, 1308–1312. [Google Scholar] [CrossRef]
- Yoshimura, M.; Muraoka, T.; Nakatsuka, H.; Huang, H.; Kitamura, M. Synthesis of 3,3′-diaryl-substituted 2,2′-diamino- 1,1′-binaphthyl and its derivatives. J. Org. Chem. 2010, 75, 4315–4318. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Wang, D.; Feng, J.; Li, P.; Zhao, D.; Wang, R. Synthesis of N-alkoxycarbonyl ketimines derived from isatins and their application in enantioselective synthesis of 3-aminooxindoles. Org. Lett. 2012, 14, 2512–2515. [Google Scholar] [CrossRef]
- Rao, K.S.; Ramesh, P.; Chowhan, L.R.; Trivedi, R. Asymmetric Mannich reaction: Highly enantioselective synthesis of 3-amino-oxindoles via chiral squaramide based H-bond donor catalysis. RSC Adv. 2016, 6, 84242–84247. [Google Scholar] [CrossRef]
- Il’in, M.V.; Sysoeva, A.A.; Novikov, A.S.; Bolotin, D.S. Diaryliodoniums as hybrid hydrogen- and halogen-bond-donating organocatalysts for the Groebke-Blackburn-Bienaymé reaction. J. Org. Chem. 2022, 87, 4569–4579. [Google Scholar] [CrossRef]
- Available online: http://supramolecular.org (accessed on 26 December 2022).
- Hibbert, D.B.; Thordarson, P. The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis. Chem. Commun. 2016, 52, 12792–12805. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian, 16th ed.; revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, 16th ed.; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Hu, F.-L.; Wei, Y.; Shi, M.; Pindi, S.; Li, G. Asymmetric catalytic aza-Morita–Baylis–Hillman reaction for the synthesis of 3-substituted-3-aminooxindoles with chiral quaternary carbon centers. Org. Biomol. Chem. 2013, 11, 1921–1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seayad, A.M.; Ramalingam, B.; Yoshinaga, K.; Nagata, T.; Chai, C.L.L. Highly enantioselective titanium-catalyzed cyanation of imines at room temperature. Org. Lett. 2010, 12, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Jing, C.; Zhai, C.; Hu, W. A novel method for synthesizing N-alkoxycarbonyl aryl α-imino esters and their applications in enantioselective transformations. Adv. Synth. Catal. 2012, 354, 301–307. [Google Scholar] [CrossRef]
- Da Silva, C.D.G.; Katla, R.; dos Santos, B.F.; Tavares, J.M.C., Jr.; Albuquerque, T.B.; Kupfer, V.L.; Rinaldi, A.W.; Domingues, N.L.C. Cobalt used as a novel and reusable catalyst: A new and one-pot synthesis of isatin-derived N,S-acetals using substituted isatins and thiols. Synthesis 2019, 51, 4014–4022. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Ferrer, P.; Sanz-Novo, M.; Maestro, A.; Andrés, J.M.; Pedrosa, R. Synthesis of enantioenriched 3-amino-3-substituted oxindoles by stereoselective mannich reaction catalyzed by supported bifunctional thioureas. Adv. Synth. Catal. 2019, 361, 3645–3655. [Google Scholar] [CrossRef]
Entry | Solvent | Temp. (°C) | X (mol%) | Yield (%) a | Ee (%) |
---|---|---|---|---|---|
1 | toluene | −20 | 2.5 | >99 | 68 |
2 | THF | −20 | 2.5 | 90 | 62 |
3 | CH2Cl2 | −20 | 2.5 | 97 | 43 |
4 | Et2O | −20 | 2.5 | 92 | 2 |
5 | CH3CN | −20 | 2.5 | 96 | Rac. |
6 | toluene | −10 | 2.5 | >99 | 36 |
7 | toluene | −30 | 2.5 | 91 | 68 |
8 | toluene | −20 | 1.0 | 92 | Rac. |
9 | toluene | −20 | 5.0 | 91 | 59 |
10 | toluene | −20 | - | 88 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, Y.; Ao, T.; Mino, T.; Sakamoto, M. Chiral Bromonium Salt (Hypervalent Bromine(III)) with N-Nitrosamine as a Halogen-Bonding Bifunctional Catalyst. Molecules 2023, 28, 384. https://doi.org/10.3390/molecules28010384
Yoshida Y, Ao T, Mino T, Sakamoto M. Chiral Bromonium Salt (Hypervalent Bromine(III)) with N-Nitrosamine as a Halogen-Bonding Bifunctional Catalyst. Molecules. 2023; 28(1):384. https://doi.org/10.3390/molecules28010384
Chicago/Turabian StyleYoshida, Yasushi, Tatsuya Ao, Takashi Mino, and Masami Sakamoto. 2023. "Chiral Bromonium Salt (Hypervalent Bromine(III)) with N-Nitrosamine as a Halogen-Bonding Bifunctional Catalyst" Molecules 28, no. 1: 384. https://doi.org/10.3390/molecules28010384
APA StyleYoshida, Y., Ao, T., Mino, T., & Sakamoto, M. (2023). Chiral Bromonium Salt (Hypervalent Bromine(III)) with N-Nitrosamine as a Halogen-Bonding Bifunctional Catalyst. Molecules, 28(1), 384. https://doi.org/10.3390/molecules28010384